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We discuss the cosmological evolution of a braneworld in five-dimensional Gauss-Bonnet gravity. Our
discussion allows the fifth (bulk) dimension to be spacelike as well as timelike. The resulting equations of
motion have the form of a cubic equation in the �H2; ��� ��2� plane, where � is the brane tension and �
is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological
evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the
possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated
expansion can be phantomlike so that w<�1. At late times, this branch approaches de Sitter space
(w � �1) and avoids the big-rip singularities usually present in phantom models. For a timelike extra
dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.
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I. INTRODUCTION

Braneworld models of the universe—in which the ob-
servable universe is a four-dimensional timelike hypersur-
face (brane) embedded in a higher-dimensional (bulk)
spacetime—have attracted much attention recently. This
is partly due to the fact that superstring/M-theory seems to
require the existence of extra dimensions and the brane-
world approach may be one way of reconciling our �3�
1�-dimensional universe with these higher-dimensional
theories [1–3].

Another reason for the current popularity of the brane-
world construct is the fact that brane cosmology is usually
accompanied by new features and is therefore, in principle,
falsifiable [4,5]. The simplest Randall-Sundrum (RS) bra-
neworld, for instance, gives rise to an evolutionary equa-
tion for the brane which differs from standard general
relativity (GR) at early times [3]. This leads to several
interesting consequences. For instance, the very early uni-
verse expands as H / �, instead of the more familiar H /����
�
p

in standard cosmology. The changed expansion rate
causes a scalar field to experience greater damping, which,
in turn, allows inflation to occur for a broader class of
initial conditions and potentials [6]. If the fifth dimension
is timelike then the universe generically bounces and
avoids the initial big-bang singularity which plagues stan-
dard cosmology [7]. (The behavior of anisotropies in the
RS scenario can also be very different from that in standard
general relativity [8].)

A complementary approach to braneworld cosmology
pioneered by the DGP model [9] allows the universe to
accelerate at late times, thus providing a geometrical an-
swer to the riddle posed by dark energy. Models which
unify the RS and DGP approaches also lead to several new
features [5,10]. For instance, (i) the phenomenon of dark
energy can be transient so that the universe accelerates for
a while before settling back into matter dominated expan-
sion, (ii) the effective equation of state of dark energy can
be phantomlike (weff � �1), and (iii) new cosmological
singularities can arise in such models [11]. Such alternative
cosmological models provide reasonable fits to the current
cosmological data [12].

In this paper we address the issue of cosmological
evolution on a brane in a theory of gravity whose action
includes, in addition to the familiar Einstein term, a Gauss-
Bonnet contribution. Gauss-Bonnet terms arise naturally in
superstring theories [13], and their cosmological effects
have been discussed in several papers [14–16]. The present
paper deals with this issue in greater generality; we exam-
ine both cases: when the bulk dimension is spacelike as
well as when it is timelike. We also develop a new pictorial
method of analysis which provides qualitative insights into
the evolution of the universe in this potentially important
new model of gravity.

II. BASIC EQUATIONS

We begin with the following n-dimensional (n � 5)
action:

 S �
Z
dnx

�������
�g
p

�
1

2�2
n
�R� 2�� �LGB�

�
; (1)
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where R is the n-dimensional Ricci scalar, � is the
n-dimensional cosmological constant, and �n :�

�������������
8�Gn
p

,
where Gn is the n-dimensional gravitational constant. The
Gauss-Bonnet term LGB is a combination of the Ricci
scalar, the Ricci tensor R��, and the Riemann tensor
R����:

 LGB :� R2 � 4R��R
�� � R����R

����: (2)

The constant � in (1) is the coupling constant of the Gauss-
Bonnet term, and for �! 0 our model reduces to the
familiar Randall-Sundrum model [3]. The action (1) can
be obtained in the low-energy limit of heterotic superstring
theory [13], in which case � can be regarded as the inverse
string tension and is positive definite. We, therefore, as-
sume �> 0 throughout this paper. (We shall explicitly be
assuming n � 5 since for n � 4 the Gauss-Bonnet term is
a topological invariant and does not contribute to the field
equations.)

The gravitational equations which result from the action
(1) are

 G�
� � �H�

� ����� � 0; (3)

where

 G�� :� R�� �
1
2g��R; (4)

 H�� :� 2�RR�� � 2R��R
�
� � 2R�	R���	

� R��	
R��	
	 �
1
2g��LGB: (5)

A. Bulk solution

The n-dimensional vacuum solution can be obtained as a
product manifold Mn 
 M2 � Kn�2 with the line element

 ds2
n � �h�r�dt2 � "

dr2

h�r�
� r2
ijdxidxj; (6)

where Kn�2 is an �n� 2�-dimensional space of constant
curvature with unit metric 
ij. In the equations which
follow, k denotes the curvature of Kn�2 and takes the
values 1 (positive curvature), 0 (zero curvature), and �1
(negative curvature). The value of the constant " deter-
mines whether the (bulk) fifth dimension is spacelike (" �
1) or timelike (" � �1). In the former case, M2 is a
Lorentzian manifold, whereas in the latter case, it is a
Euclidean manifold.

The basic equations of the theory under consideration
are

 

0� r2�2��n� 3��n� 4�h� "fr2� 2�k�n� 3��n� 4�g	
d2h

dr2 � 2�n� 3�r�2��n� 4��n� 5�h

� "fr2� 2�k�n� 4��n� 5�g	
dh
dr
� 2�r2�n� 3��n� 4�

�
dh
dr

�
2
���n� 3��n� 4��n� 5��n� 6�h2

� "�n� 3��n� 4�h�r2� 2�k�n� 5��n� 6�	 � 2�r4� k�n� 3��n� 4�r2��k2�n� 3��n� 4��n� 5��n� 6�; (7)
 

0� �n� 2�r�2��n� 3��n� 4�h� "fr2� 2�k�n� 3��n� 4�g	
dh
dr
���n� 2��n� 3��n� 4��n� 5�h2

� "�n� 2��n� 3�h�r2� 2�k�n� 4��n� 5�	 � 2�r4� k�n� 2��n� 3�r2��k2�n� 2��n� 3��n� 4��n� 5�; (8)

where the former is the �i; i� component of Eq. (3), while
the latter is the �t; t� or �r; r� component acting as a con-
straint. The general solution of these equations is
 

h�r� � "k�
r2

2�n� 3��n� 4��

�

�
"�

������������������������������������������������������������������
1�

��

rn�1 �
8�n� 3��n� 4�

�n� 1��n� 2�
��

s �
; (9)

where � is a constant. Our solution for h�r� has two
branches, which correspond to the two signs in front of
the square root in Eq. (9). We call the family with the
minus (plus) sign the minus-branch (plus-branch) solution.

(i) For " � 1, the minus-branch solution has the
general-relativistic limit as �! 0, while there is
no general-relativistic limit for the plus-branch so-
lution. (The global structures of this solution were
presented in [17].)

(ii) For " � �1, the plus-branch solution has the
general-relativistic limit as �! 0, while the
minus-branch solution does not.

Hereafter, we shall be considering a five-dimensional bulk
spacetime, for which the metric (6) reduces to

 

ds2
5 � g��dx

�dx�

� �h�r�dt2 � "
dr2

h�r�

� r2�d�2 � fk���2�d�2 � sin2�d
2�	; (10)

 h�r� � "k�
r2

4�

�
"�

����������������������������������
1�

��

r4 �
4

3
��

s �
; (11)

where f0��� � �, f1��� � sin�, f�1��� � sinh�, and
" � 
1.
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In this spacetime, there are two classes of singularities
when � � 0. One is the central singularity at r � 0, and
the other is the branch singularity at r � rb :�
����=�1� 4��=3�	1=4 > 0, when the term inside the
square root in Eq. (11) vanishes. The branch singularity
exists if � is negative, or if 1� 4��=3< 0 for positive �.

B. Friedmann equation on the brane

The position of the three-brane is described by the
functions r � a��� and t � T��� parametrized by the
proper time � on the brane. The tangent vector to the brane
is written as

 u�
@
@x�

� _T
@
@t
� _a

@
@r
; (12)

where a dot denotes the differentiation with respect to �.
The normalization condition u�u� � �1 leads to

 1 � h�a� _T2 � "
_a2

h�a�
; (13)

and the induced metric of the three-brane �gab is given by

 ds2
4 � �gabdyadyb

� �d�2 � a���2�d�2 � fk���
2�d�2 � sin2�d
2�	:

(14)

The unit normal one-form to the three-brane n� is given by

 n�dx
� � _adt� _Tdr; (15)

where n�u� � 0 and n�n� � 1=" are satisfied.
The extrinsic curvature of the three-brane is obtained

from Kab :� n�;�e
�
a e�b, where e�a :� @x�=@ya. We have

 e0
adya � _td�; e1

adya � _ad�; eiadya � �ijdy
j;

(16)

and

 Kab � �n�e
�
a;b � ����n�e

�
a e�b: (17)

Then, we obtain the nonzero component of Ka
b as

 K�
� � �

1

h _T

�
�a�

h0

2"

�
; Ki

j � �
h _T
"a
�ij; (18)

where a prime denotes differentiation with respect to a.
The junction condition at the brane is given by [15,16]

 

�Ka
b	
 � �

a
b�K	
 � 2��3�Jab	


� �ab�J	
 � 2Padbf�K
df	
� � ��

2
5�
a
b; (19)

where
 

Jab :� 1
3�2KKadK

d
b � KdfK

dfKab

� 2KadKdfKfb � K2Kab�; (20)

 Padbf :� Radbf � 2ha�fRb	d � 2hd�bRf	a � Rha�bhf	d:

(21)

The energy-momentum tensor �ab on the brane is given by

 �ab � diag���; p; p; p� � diag���;��;��;��; �;

(22)

where � and p are the energy density and pressure of a
perfect fluid on the three-brane, and the constant � is the
brane tension. We have introduced the notation

 �X	
 :� X� � X�; (23)

where X
 is the quantity X evaluated either on the � or�
side of the brane, and Padbf is the divergence-free part of
the Riemann tensor, i.e.,

 DaPadbf � 0; (24)

where Da is the covariant derivative on the brane.
From the ��; �� and �i; i� components of Eqs. (13) and

(19), we obtain
 

�4
5

36
��� ��2 �

�
h�a�

a2 � "H
2

�

�

�
1�

4�
3

�
3k� h�a�

a2 � �3� "�H2

��
2
;

(25)

where H :� _a=a. Here, we have assumed Z2 symmetry of
reflection with respect to the brane. This generalized
Friedmann equation reduces to that obtained by Davis
[16] for " � 1.

Differentiating Eq. (25) with respect to � and using
Eq. (13) and the ��; �� and �i; i� components of Eq. (19),
we obtain

 _� � �3H�p� ��; (26)

which is the energy-conservation equation on the three-
brane. Let us assume that the perfect fluid on the three-
brane obeys

 p � �
� 1��; (27)

where we assume that the equation of state of matter on the
brane lies within the Zeldovich interval 0<
 � 2 due to
the dominant energy condition (equivalently,�1<w � 1,
where w :� p=� � 
� 1 is the equation of state). From
Eq. (26), we then obtain

 � �
�0

a3
 ; (28)

where �0 is a positive constant, so that � is a monotonically
decreasing function of a for 
 > 0.

C. The Randall-Sundrum limit

In this paper, we shall consider only those solutions of
(11) and (25) which possess the general-relativistic limit
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since other solutions may describe physically inadmissible
evolution of our brane. The minus- and plus-branch solu-
tions in (11) have the general-relativistic limits for " � 1
and �1 in (25), respectively.

As mentioned earlier, the action (1) contains the
Randall-Sundrum model as a subclass. Setting �! 0 in
Eq. (25), one gets the generalized RS model

 

�4
5

36
��� ��2 �

"

a2

�
k�

�

8a2 �
1

6
�a2

�
� "H2: (29)

From this equation and from Eq. (28), we obtain

 H2 �
�4

5

36"

�
�0

a3
 � �
�

2
�
k

a2 �
�

8a4 �
1

6
�: (30)

The Randall-Sundrum model corresponds to " � 1, while
the dual model with " � �1 was discussed in [7].
Permitted values of the expansion factor must clearly
satisfy H2 � 0. An interesting consequence of (30) is the
possibility of singularity-free solutions when " � �1 [7].

III. PICTORIAL ANALYSIS OF COSMOLOGICAL
EVOLUTION

We saw in the previous section that the evolution equa-
tion for the Gauss-Bonnet brane can be quite complicated
and, therefore, difficult to analyze analytically. In this
section, we present a general method of analysis which
allows one to study pictorially the behavior arising from
the generic cosmological equation (25).

We notice that Eq. (25), describing the cosmological
evolution of the Gauss-Bonnet brane, always has the
form of a cubic curve in the �H2; �2

tot� plane:

 C�2
tot � �A
H

2��B�H2�2; (31)

where �tot :� �� �, A and B are functions of a, C is a
positive constant, and the 
 sign corresponds to " � 
1.
The value of the cosmological constant � can be positive,
negative, or zero. The right-hand side of Eq. (31) has
exactly three real zeros in H2, two of which coincide,
namely, �H2�1 � �A and �H2�2;3 � �B. Only part of
this cubic curve lies in the physical domainH2 � 0, �2

tot �
0, and it is in this domain that the evolution of the brane
takes place. Consequently, the evolution of our brane uni-
verse can be pictured as a point moving along this cubic
curve in the physical domain �2

tot � 0, H2 � 0.
This pictorial representation is very useful in appreciat-

ing the full gamut of possibilities for cosmic evolution of
this brane. For comparison, it is helpful to note that cos-
mological evolution in GR is described by

 H2 � �tot �
k

a2 ; (32)

where we have set the proportionality term 8�G=3 to unity.
Equation (32) describes a quadratic curve in the �H2; �2

tot�
plane. Another example is the Randall-Sundrum brane,
which, for every value of a, is described by a straight

line in the �H2; �2
tot� plane:

 H2 �
�2

tot

"
�

�

6
�
k

a2 �
�

8a4 ; (33)

where " � 
1, and we have set the term �4
5=36 in (30) to

unity.
Before commencing our discussion on the subtleties of

cosmological evolution on the Gauss-Bonnet brane, it will
be helpful to first consider the different evolutionary pos-
sibilities in a spatially flat universe described by the more
familiar general-relativistic equation (32) with k � 0,
where � acts as a cosmological constant. In this case the
expansion of the universe can proceed in three distinct
ways, corresponding to the cases �> 0, �< 0, and � �
0. All three possibilities correspond to motion along the
quadratic curve in Fig. 1.

Notice that expansion along the entire curve from the
top (early times) to the origin (late times) takes place only
if � � 0. In the absence of a cosmological constant (� �
0) the origin �H2; �2

tot� � �0; 0� is reached at �! 1. In
contrast, for �< 0, the origin is reached in a finite interval
of time when the matter density has dropped to � � j�j. At
this point H � 0; in other words, expansion ceases and the
universe begins to contract. Evolution thereafter proceeds
upward along the same curve—in reverse fashion.

FIG. 1. The evolution of a spatially flat Friedmann-Robertson-
Walker universe in GR proceeds along this curve. The downward
arrow indicates expansion while the upward arrow indicates
contraction. The latter is only possible if �< 0. For �> 0 the
expansion of the universe terminates at the point D at which � �
0. At this point, the universe expands exponentially. For � � 0,
the origin (H � 0, � � 0) marks the end point of evolution. The
scale of the x and y axes is arbitrary.
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Finally, if �> 0, evolution does not proceed all the way
to the origin but terminates at some point D along the
curve. At this point, �! 0 so that �tot � � and H2 � �.
The end point D of evolution corresponds to the universe’s
asymptotic approach towards de Sitter space. (This, for
instance, would be the case for a spatially flat �CDM
universe which accelerates at late times.)

A. Spacelike extra dimension (" � 1)

Let us now discuss the evolution on the Gauss-Bonnet
brane in greater detail. For a spacelike extra dimension, the
cosmological equation (25) has the form

 C�2
tot � �A�H

2��B�H2�2; (34)

where

 C :�
�2

5

36

�
3

8�

�
2
> 0; (35)

and

 A :�
1

4�

�
1�

����������������������������������
1�

��

a4 �
4

3
��

s �
;

B :�
1

8�

�
2


����������������������������������
1�

��

a4 �
4

3
��

s �
�

3

8�
�
A
2
;

(36)

in general, are functions of the scale factor a.
As mentioned earlier, Eq. (34) has the form of a cubic

curve in the �H2; �2
tot� plane. The two signs in (36) corre-

spond to the two different ways of embedding the brane in
the bulk space. In this paper we only consider the upper
sign, which has the general-relativistic limit.

As discussed in the previous section, the evolution of the
braneworld is described by a point moving along the cubic
curve in the �H2; �2

tot� plane, in the physical domain H2 �
0, �2

tot � 0, with the parameters of the cubic curve simul-
taneously changing with time due to the dependence of A

and B on the scale factor (see below). The evolution can
proceed in three distinct ways which are summarized
below. All three cases correspond to B> 0 in Eq. (36),
and the first two also have A < 0.

(1) The behavior of the universe is shown in the left
panel of Fig. 2. The point P corresponds to H2 �
�A. During the course of expansion, the motion
along the curve is initially downwards from the
initial big-bang singularity towards P. However,
for P to be reachable in a finite time interval, the
brane tension � must be negative since only then is
��� ��2 � 0 permitted. The point P marks a turn-
ing point for the evolution along the curve: after this
point, the energy density of the universe keeps
decreasing while the quantity ��� ��2 is increas-
ing. In the case � � 0, we also have _H � 0 at the
point P. In this case, the Hubble parameter passes
through an inflection point at P. Since

 

�a
a
� _H �H2; (37)

it follows that �a � aH2 > 0 when � � j�j. In other
words, _H > 0 for some length of time during the
upward motion along the curve away from P. Thus
the universe accelerates at late times. Note that _H �
�4�G� in �CDM and _H > 0 is usually associated
with a phantom equation of state w<�1 in dark-
energy models. (This qualitative behavior will take
place also for sufficiently small values of ��=a4

reached in the course of expansion in the neighbor-
hood of the point P, which will make A almost
constant in time.)
The growth in H, however, cannot continue indef-
initely since �! 0 eventually, and ��� ��2 ! �2

(corresponding to the pointD), which impliesH2 !
const. This means that the universe approaches a de
Sitter-like attractor (D) at very late times. We there-

(a) (b)

FIG. 2. Spacelike extra dimension: A < 0, B> 0 (left panel) and A > 0, B> 0 (right panel) in (34). The point P is the turning point,
and the point E is the point of recollapse.
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fore conclude that our Gauss-Bonnet brane can dis-
play phantomlike features and super-accelerate at
late times, before approaching w! �1 in the dis-
tant future. Note that the big-rip future singularity
(at which H ! 1) is absent in this case, which is
one of the appealing features of this scenario. (Other
braneworld models with this property have been
discussed in [10].)

(2) For �> 0, the point P can never be reached, and
expansion proceeds along BB! D, culminating in
de Sitter-like asymptotic expansion at D.

(3) The case with B> 0 and A> 0 is shown in the right
panel of Fig. 2. The point E is the point of recol-
lapse. At this point the (spatially flat) universe
ceases to expand and begins to contract. The point
E is reachable either if the brane tension is negative,
or if it is positive with the value of �2 lying below
the point E.

One should note that, theoretically, the scale-factor de-
pendent parameter A�a� can change sign during the course
of evolution, so that the curve along which the evolution
takes place can continuously evolve from that in the right
panel of Fig. 2 to that in its left panel, and vice versa. This
introduces an obvious modification to the description of the
evolution, which does not change in any significant way.

The complete set of figures showing the �H2; �2
tot� plane

are shown in Fig. 7 of the Appendix.

B. Timelike extra dimension (" � �1)

Also in this case, there is only one branch of the generic
cosmological equation (25) having the general-relativistic
limit which has the form (31), namely,

 C�2
tot � �A�H

2��B�H2�2; (38)

where

 C :�
�2

5

36

�
3

16�

�
2
> 0; (39)

and

 A :�
1

4�

� ����������������������������������
1�

��

a4 �
4

3
��

s
� 1

�
;

B :�
1

4�

�
1�

1

4

����������������������������������
1�

��

a4 �
4

3
��

s �
�

3

16�
�
A
4
:

(40)

Clearly, the theory makes sense only for A> 0 (for
which the branch singularity does not appear). Then, typi-
cally, B< 0, in which case we obtain the graph shown in
the left panel of Fig. 3. The point P corresponds toH2 � A,
and the point O corresponds to H2 � �B.

There is also a small range of parameters where B> 0.
For this, we require

 A<
3

4�
or

����������������������������������
1�

��

a4 �
4

3
��

s
< 4: (41)

A typical graph illustrating the case 0<B< 2A (equiva-
lently 1=12�< A< 3=4�) is shown in the right panel of
Fig. 3.

The graph corresponding to B> 2A, which is equivalent
to

 A<
1

12�
or

����������������������������������
1�

��

a4 �
4

3
��

s
<

4

3
; (42)

is shown in Fig. 4.
The end points E and P in all graphs are the reverse

points of evolution. The point S is the position of a sudden
‘‘quiescent’’ singularity of the type described in [11,18].
Indeed, the evolution of the universe cannot be continued
beyond this point because the quantity �2

tot should change
in the same direction (decrease), which is physically im-
possible. Note that the value of H is finite and nonzero at
this point, while _H is divergent. [This can easily be seen by
writing d�H2�=d� � d�H2�=d�tot � d�tot=d� where
d�tot=���3H� and noting that d�H2�=d�tot ! 1 at S.]
The Kretschmann invariant on the brane K :� RabcdR

abcd

is given by

 K � 12�H4 � � _H �H2�2	; (43)

and diverges as the quiescent singularity is approached.

ρ2

H
2

tot

E

O

S

P

(a)

ρ2

H
2

tot

E

S

P

(b)

FIG. 3. Timelike extra dimension: B< 0 (left panel) and 0< B< 2A (right panel). The points E (bounce or recollapse) and P are the
turning points of the evolution, while the point S corresponds to a sudden or quiescent singularity.
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Consider first the evolution of the Gauss-Bonnet brane
suggested by the left panel in Fig. 3. The big-bang singu-
larity which featured prominently in Fig. 2 has effectively
been replaced by the sudden singularity S. The following
three possibilities for evolution immediately suggest them-
selves:

(1) Expansion commences at S and proceeds via O to E
which marks a turning point at which H � 0.
Thereafter the universe ceases to expand and begins
to contract. The contracting trajectory ends (via O)
at S. The sudden singularity at S marks both the
beginning and end of evolution in this scenario. (The
possibility that quantum effects might modify cos-
mological evolution in the vicinity of such a singu-
larity has been discussed in [19]; see also [20].)

(2) The universe contracts from the singularity at S
until it reaches E, where it bounces, then expands
via O to S.
In both cases, the brane tension must be negative
��< 0� since that is a necessary condition for reach-
ing the point O. In the vicinity of � � j�j, the map
��� ��2 ! � is bivalued (see Fig. 5), which allows
��� ��2 to increase both when � increases as well
as decreases. This ambiguity is responsible for the
two possibilities discussed above.

(3) The trajectory S! P describes a super-accelerating
universe expanding from the singularity S, since it
suggests that H2 increases while � decreases. (In
fact, _H ! 1 at the point S.) If � � 0, then _H > 0
throughout this phase, and it is unlikely that SP in
this case can describe the real universe. If �> 0,

then, in the course of the evolution, super-
acceleration may be replaced by the ‘‘usual’’ accel-
eration. If the brane tension is negative, then the
point P is reached, after which the evolution turns
back to the PS path. Then, depending on the value of
the brane tension, it either reaches the singularity S
again or asymptotically approaches the de Sitter
state at an intermediate point between S and P.

Of course, we have described only the main and most
interesting possibilities of evolution. We remember that
during the evolution the parameters A and B describing
the cubic curve change their values, and it may happen that
the curve changes its shape during the evolution, that some
critical points leave the physical domain H2 � 0, �2

tot � 0
or, on the contrary, enter this domain. All such possibilities
are quite easy to investigate case by case, but we will not do
so in this paper.

The complete set of figures showing the �H2; �2
tot� plane

are shown in Fig. 8 of the Appendix.

C. Bouncing braneworld

It is clear that the only bouncing point during the uni-
verse contraction can be the point E in Figs. 3(a) and 4. For
the bounce to be possible, we need the inverse monotonic
dependence between H2 and �2

tot in the neighborhood of
the bouncing point E.

In order to better address the issue of a bounce in the
Gauss-Bonnet brane, let us first consider this issue within
the context of the Randall-Sundrum model (which presents
a limiting case of our braneworld). As mentioned earlier,
cosmological evolution of the RS brane is described by

ρ2

H
2

tot

E

Q

P

FIG. 4. Bouncing Gauss-Bonnet brane with a timelike extra
dimension and B> 2A. The Gauss-Bonnet brane contracts from
a de Sitter-like initial stage at P to Q at which � � j�j and
�tot :� �� � � 0 (since �< 0). Further contraction takes the
universe from Q to E, and along this segment both � and �� �
increase. At E the density of the universe has reached its
maximum value, while the Hubble parameter has declined to
zero. The universe therefore bounces at E, then reexpands and
evolves in reverse fashion along E! Q! P. Note that P marks
the beginning and end point of evolution.

FIG. 5. For negative values of the brane tension (�< 0) two
values of the matter density � map onto a single value of �tot �
�� �, as illustrated in this figure.
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Eq. (33) which represents a straight line in the �H2; �2
tot�

plane. We show this line in the left panel of Fig. 6 for a
timelike extra dimension (" � �1).

One can see a close qualitative similarity between the
curve on the left panel of this figure and the curve in Fig. 4.
The bouncing scenario in Figs. 4 and 6 proceeds as follows:
the universe begins to contract from the point P at which
� � 0 and H � const. In other words, both the starting
point and end point of evolution correspond to de Sitter
space. An increase in the value of the matter density brings
us to the pointQ at which � � j�j and �tot :� �� � � 0.
(Note that �< 0 is a prerequisite of this model, since
otherwise the point Q cannot be reached.) The universe
contracts further from Q to E, and in this segment both �
and �� � increase. At E the density has reached a finite
maximum value, while the Hubble parameter has declined
to zero. The universe therefore bounces at E, then reex-
pands and evolves in reverse fashion along E! Q! P.

IV. DISCUSSION

Braneworld cosmology has attracted considerable inter-
est during the past decade. This is partly due to the fact that
such models may play an important role in the low-energy
limit of M-theory/string theory. Another reason for the
growing interest in brane dynamics is associated with the
new features which some of these models possess and
which, in turn, can lead to new cosmological predictions
and scenarios. Our attempt in this paper has been to de-
velop a completely general qualitative approach to deter-
mine the salient features of a brane embedded in a five-
dimensional bulk and evolving according to the precepts of
Einstein-Gauss-Bonnet gravity. For this purpose we show
that the �3� 1�-dimensional equations of motion of sev-
eral popular cosmological models can be depicted as sim-
ple curves in the �H2; ��� ��2� plane. (Here H is the
Hubble parameter, � the density, and � the brane tension.)

For instance, the spatially flat Friedmann-Robertson-
Walker universe in GR has the form of a quadratic curve,
while the Randall-Sundrum model describes a straight line
in the �H2; ��� ��2� plane. The Gauss-Bonnet brane, on
the other hand, describes a cubic curve in the �H2; ���

��2� plane—see Eqs. (31)–(33). This pictorial depiction
of dynamics permits us to discover the salient features of
cosmic evolution very simply. Applying this approach to
the Gauss-Bonnet brane, we discover the following inter-
esting properties:

(1) For a finite region in parameter space the Gauss-
Bonnet brane accelerates at late times. Acceleration
can be phantomlike (w<�1) but does not lead to
the eventual destruction of the universe in a big-rip
future singularity. Instead, at very late times the
expansion of the universe approaches de Sitter space
and becomes exponential (i.e. w! �1). (The pos-
sibility that the current expansion of the universe
may be phantomlike has evoked much recent inter-
est and discussion; see [10,21] for a nonexhaustive
list of papers discussing this issue, and [22] for a
summary of recent observational results.)

(2) The expansion of the universe may commence from
or terminate in a ‘‘sudden’’ quiescent singularity, at
which the Hubble parameter and the density of
matter remain finite but _H diverges.

(3) The universe can evade the initial big-bang singu-
larity and bounce. (This possibility is realized if the
fifth dimension is timelike.)

Whether any of these properties of the Gauss-Bonnet
braneworld is realized in practice is currently an open
question which can be answered by the following: (i) a
deeper understanding of the embedding of this cosmology
within a more fundamental theoretical framework and (ii) a
comparison with observations.
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APPENDIX

Figures 7 and 8 describe the evolution of our brane with
a spacelike and a timelike extra dimension, respectively.
These figures supplement those appearing in the main body
of the paper.
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