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We consider Green’s functions associated to a scalar field propagating on a curved, ultrastatic
background, in the presence of modified dispersion relations. The usual proper-time DeWitt-Schwinger
procedure to obtain a series representation of Green’s functions is doomed to failure because of higher
order spatial derivatives in the Klein-Gordon operator. We show how to overcome this difficulty by
considering a preferred frame, associated to a unit timelike vector. With respect to this frame, we can
express Green’s functions as an integral over all frequencies of a space-dependent function. The latter can
be expanded in momentum space, as a series with geometric coefficients similar to the DeWitt-Schwinger
ones. By integrating over all frequencies, we finally find the expansion of Green’s function up to four
derivatives of the metric tensor. The relation with the proper-time formalism is also discussed.
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I. INTRODUCTION

Modified dispersion relations (MDRs) have recently
attracted a flurry activity in various high-energy physics
models. The common motivation is that MDRs can be used
as a phenomenological approach to investigate physics at
the Planck scale, where general relativity is no longer
reliable. In general, the lack of a complete theory of
quantum gravity leads one to consider trans-Planckian
effects as perturbative above a certain energy scale. The
first application is certainly in cosmology. Several authors
believe that trans-Planckian effects affected the early-stage
evolution of the Universe, and that they left some observ-
able fingerprints, e.g., in the cosmic microwave back-
ground inhomogeneities (see, for example, [1]). A similar
situation occurs in black hole physics, where the quantum
thermal emission discovered by Hawking [2] is related to
modes of arbitrarily large frequency near the horizon. In
this case, it has been proved that the spectrum emitted at
infinite distance from the hole is only marginally affected
by MDRs [3].

Some fundamental theories, such as string theory, loop
quantum gravity, and double special relativity, predict
MDRs (see the review [4] for references). However, little
is known about the modifications that MDRs generate in
the formalism of quantum field theory on curved space. For
example, the renormalization of the stress tensor is crucial
to evaluate the backreaction in the semiclassical theory [5].
Such a quantity, in the presence of MDRs, has been re-
cently obtained in the context of cosmology, by the authors
of [6]. In this work, it is shown that the renormalization
procedure leads to a rescaling of the bare Newton’s con-
stant and cosmological constant. However, in the case of
nonhomogeneous backgrounds, the renormalization of the

stress tensor, in the presence of MDRs, appears much more
difficult, as the Klein-Gordon operator, unlike the cosmo-
logical case, now contains spatial derivatives of (at least)
fourth order (see, for example, [7]). In fact, the usual
DeWitt-Schwinger representation of Green’s functions,
which is the starting point of the point-splitting technique
[8–10], does not work in this case.

In this paper, we begin to consider the problem of MDRs
on nonhomogeneous manifolds by first looking at the
ultrastatic case. Our method, which should be applicable
also to stationary metrics, relies upon the existence of a
preferred frame. It is known that, even though MDRs break
the local Lorentz invariance, general covariance can be
preserved by introducing a preferred frame through a
dynamical unit timelike vector field u� [11,12]. With the
help of the latter, we can foliate the manifold into spacelike
surfaces. Furthermore, if the space-time is also ultrastatic,
Green’s functions can be written as an integral over all
frequencies of a function, which is independent of the time
associated to the observer comoving with u�. This function
satisfies an equation, which can be solved in momentum
space by applying the well-known Bunch and Parker pro-
cedure [13]. Thus, we can find a momentum-space repre-
sentation of the time-independent part of Green’s
functions.

The plan of this work is the following: in the next
section, we introduce the modified dispersion relation
which will be used in this work, and, in Sec. III, we
calculate the two-point function in flat space. In Sec. IV
we introduce the DeWitt-Schwinger analysis, suitably
adapted to our case. In Sec. V we present the Bunch and
Parker method, and we find the expansion of Green’s
function in momentum space up to four derivatives of the
metric. Finally, we conclude with some remarks and fur-
ther conjectures. Throughout this paper, we use the signa-
ture ��;�;�;�� � ��, and set @ � c � 1.*rinaldim@bo.infn.it
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II. MODIFIED DISPERSION RELATIONS

In Minkowski space-time the dispersion relation for a
scalar field of mass m can be found by inserting the ansatz
�� exp��ik0t� i ~k � ~x� in the Klein-Gordon equation

 ��r2 �m2�� � 0; (1)

which, together with the identity !k � jk0j, yields

 !2
k � j

~kj2 �m2: (2)

A general dispersion relation can be written as

 !2
k � j

~kj2 �F �j ~kj� �m2; (3)

where F �j ~kj� is a scalar function of the modulus of the
wave vector ~k. If F depends on the square of the modulus,
rotation invariance is preserved. If it is also analytic, then it
can be expanded, and, to leading order, the MDR reads

 !2
k � j

~kj2 � �2j ~kj4 �m2; (4)

where � is a cutoff parameter that sets the lowest value of ~k
at which corrections to the dispersion relation are ignored.
Also, the sign of �2 indicates wether the modes are sub-
luminal (�2 < 0) or superluminal (�2 > 0). These kinds of
MDRs were considered in cosmology, but also in the
context of the analogue models of gravity constructed
with superfluids [3]. It is clear that MDRs, such as (4),
break Lorentz invariance. However, general covariance can
be preserved if the preferred frame is associated to a
dynamical quantity. This is the route followed by Eling
and Jacobson [11]: the preferred frame is determined by a
unit timelike vector field ua, which enters quadratically the
action. The latter has the form

 S �
Z
d4x

�������
�g
p

��a1R� b1F
abFab � ��gabu

aub � 1��;

(5)

where a1 and b1 are constant parameter, Fab � 2r�aub	,
and � is a Lagrange multiplier that ensures ua to be a unit
timelike vector. It is then possible to construct a massless
scalar field Lagrangian, which preserves general covari-
ance, and reads

 L ’ �
1
2��r’�

2 � �2�r̂2’�2�; (6)

where � sets the scale at which Lorentz invariance breaks.
The operator r̂2 is the covariant spatial Laplacian defined
as

 r̂ 2’ � �qacra�qcbrb’�; (7)

where qab is the induced metric on the spatial sections,
defined by

 qab � gab � uaub: (8)

The inclusion of the vector field ua as a dynamical
variable leads to a theory similar to the Maxwell-Einstein
action. Therefore, one expects an Abelian conserved
charge associated to ua. However, it is possible to show
that if one assumes a Friedmann-Lemaitre-Robertson-
Walker (FLRW) flat metric, the equations of motion are
trivially solved, i.e., Fab � 0. On the contrary, symmetries
do not allow one to choose Fab � 0, together with a
Schwarzschild metric. In fact, the conserved charge asso-
ciated to Fab does not vanish, leading to a Reissner-
Nordström form for the metric [11]. Therefore, when
MDRs associated to dynamical vector fields are consid-
ered, the modes propagate on a modified metric. In this
case, one can argue that the modifications introduced by ua

can be somehow set to be very small, so that the modes
with a MDR can still be seen as propagating on an un-
changed background. In any case, in order to evaluate the
effects of MDRs at the level of backreaction, we first need
to compute the renormalized Green’s functions. In order to
do so, we begin by evaluating the DeWitt-Schwinger ex-
pansion in Secs. IVand V, while in the next section we look
at the simple flat space case.

III. MDRS IN FLAT SPACE

Before embarking upon the study of the curved back-
ground case, let us have a look first to what happens in flat
space. For simplicity, we consider the 2-dimensional
Minkowski metric

 ds2 � �dt2 � dx2; (9)

where the Klein-Gordon equation, obtained from the
Lagrangian (6), reads

 r2��x; t� � �2@4
x��x; t� � 0; �2 > 0: (10)

Despite the modification, the standard function
exp��i!t� ipx� is a basis for the (physical) solution
space, provided !2

p � p2 � �2p4. This might be confus-
ing, since we expect four independent solutions. Indeed,
this is the case but two out of the four solutions have
imaginary momenta. To show this, it is sufficient to replace
the ansatz ��x; t� � ’�x� exp��i!pt� into Eq. (10), and
find the fourth-order differential equation

 �2@4
x’�x� � @

2
x’�x� �!

2’�x� � 0: (11)

The latter has four independent solutions of the form

 ’1;2�x� � C1;2e
����x; ’3;4�x� � C3;4e
����x; (12)
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where C1;2;3;4 are normalization constants, and

 ��
� �

�����������������������������������
1


�����������������������
1� 4�2!2

p

qr
���
2
p
�

: (13)

We note that ���� is a pure imaginary number and that, for
�! 0, it tends to the usual factor i!p. On the contrary,
���� is real and it diverges when �! 0. By solving the
above identity for !p, one finds that

 !2
p � 
��

�
��2 � �2���
��4; (14)

which is nothing but the modified dispersion relation,
provided we identify ���� with ip. It then follows that
���� � p and the corresponding functions ’3;4 span an
unphysical sector of the solution space [14].

In momentum space, the massless propagator corre-
sponding to the modified dispersion reads

 G�p� �
1

p�p
� � �2p4 �

1

!2
p � p

2
0

: (15)

To compute the two-points function, it is convenient to find
first the Wightman functions G� and G�, by choosing the
appropriate contour C in the 2-dimensional Fourier trans-
form [15]

 G�x�; x0�� �
Z
C

dp0dp

�2��2
eip

��x�

!2
p � p

2
0

; (16)

where �x� � x� � x0�. The pole structure of the above
integral is formally the same as in the relativistic case: by
adding a small imaginary part to the denominator, the poles
are located at p0 � 
!p � i�, with �� 1. The functions
iG� and iG� can be found directly by choosing C as circles
around each pole (clockwise around �!p and counter-
clockwise around �!p; see [5]). The result is

 G
�x�; x0�� �
1

2�

Z �1
�

cos�p�x�����������������������
p2 � �2p4

p e��i�t
��������������
p2��2p4
p

�dp;

(17)

where � is the usual IR cutoff, and �x � x0 � x, �t �
t0 � t. The breaking of Lorentz invariance is now manifest,
since �x and �t do not have the same p prefactor. This
integral cannot be solved exactly; hence, some approxima-
tions need to be done. First, we note that the ratio between
the integrand in Eq. (17) and the integrand of the relativ-
istic propagator,

 G
rel�x
�; x0�� �

1

2�

Z �1
�

cos�p�x�
p

e��ip�t�dp; (18)

tends to one as p! 0�. It is then reasonable to assume that
the IR behavior of the modified Green’s function is the

same as the relativistic one. Therefore, we do not worry too
much about the IR divergence and we look at the large p
regime, by approximating the integral (17) as

 

d
d�t
�G� �G�� � �

1

2�

Z �1
0

dp cos�p�x� sin��p2�t�;

(19)

which yields

 h�2�x�; x0��i � G� �G�

� �

���������
�t

2��

s �
cos

�
�x2

4��t

�
� sin

�
�x2

4��t

��

�
�x
2�

�
C
�

�x���������������
2���t
p

�
� S

�
�x���������������

2���t
p

��
;

(20)

whereC and S are Frenel’s integrals [16]. It is interesting to
note that in the coincidence limit x� � x0�, this expression
is actually finite. However, we expect divergences in the
coincidence limit of the energy-momentum tensor, as the
latter is calculated through derivatives of the two-point
function with respect to �t and �x.

IV. DEWITT-SCHWINGER EXPANSION

In the previous section we found an expression for the
two-point function at large momenta and in flat space. In
the relativistic case, the generalization of such expressions
on curved space proceeds through the DeWitt-Schwinger
construction [8–10], which works directly in coordinate
space. Here we briefly outline the procedure, adapted to the
modified dispersion relation (4), with �2 > 0. We consider
a n� 1-dimensional globally hyperbolic manifold, such
that it can be foliated into spacelike surfaces of constant �
[12]. The parameter � can be used to define the unit time-
like tangent vector u� � �@��, with respect to some
coordinate system x�. Therefore, � assumes the role of
the time relative to a free-falling observer moving with
velocity u�. Thus, we can write the metric as

 ds2 � g��dx
�dx� � �d�2 � q��dx

�dx�; (21)

where d� � u�dx
�. In this paper, we consider the case

when q�� � g�� � u�u� does not depend on �, i.e., when
the metric is ultrastatic. The form of this metric guarantees
that

 detg�� � detqij; (22)

where Latin indices, here and in the following, label spatial
coordinates only. Thus, the d’Alambertian operator acting
on a scalar � can be decomposed as
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 r2� � r̂2�� ��; (23)

where the dot indicates derivative with respect to �.
Modified dispersion relations (4) naturally appear if one

considers the Klein-Gordon equation

 �r2 �m2 � �2r̂4���x� � 0; (24)

for which the associate Green’s functions satisfies the
equation

 �r2 �m2 � �2r̂4�G�x; x0� � �g�1=2��n�1��x� x0�:

(25)

Here, and from now on, we denote g�q�  detjg�q�j.
Because of the MDR, the function G is no longer
Lorentz invariant, but, since the modification is a quartic
spatial operator, the O�n� rotational invariance holds. It is
therefore convenient to express Green’s functions as

 G �x; x0� �
Z d!

2�
ei!����

0�G�xj; x0j; !�; (26)

where G�xj; x0j; !� depends on spatial coordinates and !
only. With the help of the identities (22) and (23), one can
easily show that G must satisfy the equation

 �r̂2 �m2 �!2 � �2r̂4�G�xj; x0j; !�

� �q�1=2��n��xj � x0j�; (27)

provided the metric (21) is assumed.
This equation describes Green’s functions associated to

a scalar field, which propagates on the spatial sections of
the metric (21), as seen by a free-falling observer comov-
ing with u�. From the mathematical point of view, we can
construct the heat-kernel functional H�s;�xj�, formally
defined as

 G��xj; !� �
Z 1

0
H�s;�xj�ds: (28)

Then, H must satisfy the heat equation

 

@H
@s
� �ẐH; (29)

where Ẑ is an elliptic operator. In our case, Ẑ �
r̂2 �m2 �!2 � �2r̂4.

In the relativistic case, � � 0, one can show that the heat
kernel has the form [10]
 

H�s;�xj; � � 0� � �4�s��n=2e��x2=4s�s�!2�m2�

�
X1
l�0

âl�x
j; x0j�sl; (30)

where n is the number of spacelike dimensions and the â0s
are geometric coefficients built on the Riemann tensor

associated to q��, which can be found by a recursion
procedure (see [9]). Finally, by integrating over !, one
finds the full Green’s functions expansion
 

G�x; x0� � i
Z 1

0
ids�4�is���n�1�=2e�	=2is�ism2

�
X1
l�0

âl�xj; x0j��is�l; (31)

where we changed s! is, and set 	 � 1
2 �x

� � x0��2.
A crucial remark is in order here. Despite the fact that

the above formula looks identical to the usual DeWitt-
Schwinger expansion, there are major differences. First,
the â’s depend on geometrical quantities built on q��, not
g��. This is due to the fact that the metric (21) is not the
most general one, as the space-time under consideration is
static with respect to the free-falling time �. As a conse-
quence, the frequency ! is not a generic one, but it is the
one measured by the free-falling observer only.

To obtain the DeWitt-Schwinger expansion in terms of
geometrical quantities related to g��, some extra work is
required. As an example, consider the expansion up to the
second order only. The only nontrivial coefficient reads
[10]

 â 1 �
1
6R̂; (32)

where R̂ is the n-dimensional Ricci scalar built on q��. By
contracting the Gauss-Codacci identity [17]

 R̂ 

��� � R	��q
	q��q

�
�q� � K



�K�� � K


�K��;

(33)

where K
� � q�
q
�
�r�u� is the extrinsic curvature of

the spatial sections orthogonal to u�, and R	�� is the
Riemann tensor constructed with g��, we can relate R̂ to
the curvature of the full space-time, as

 R̂ � R� 2R
�u

u� � �K



�
2 � K
�K
�: (34)

Thus, Eq. (31) contains extra terms with respect to the
usual expression [9]
 

G�x; x0� � i
Z 1

0
ids�4�is���n�1�=2e�	=2is�ism2

�
X1
l�0

al�x; x
0��is�l: (35)

We now turn to the dispersive case. When � � 0, the
ansatz (30) simply does not work, and the reason will be
clear at the end of the next section (see also [10]). As our
n-dimensional problem can be seen as the Euclidean con-
tinuation of a n-dimensional theory with a �2 term, one
can find the heat kernel by the method presented in [18].
However, as we will see in the next section, there is an
alternative route, which simplifies the calculations and we
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keep track closely of the physics behind the mathematical
structure.

V. MOMENTUM SPACE REPRESENTATION

In this section, we find a momentum-space representa-
tion of Green’s functions, which, in principle, can work for
any analytic dispersion relation F �k2�. For the moment, we
restrict ourself to the quartic case (4), and discuss further
generalizations in the last section. The method that we are
going to use is due to Bunch and Parker [5,13], and it
essentially makes use of a local Taylor’s expansion of the
metric tensor expressed in Riemann normal coordinates
[9,19]. In turn, this leads to a similar expansion of the
various differential operators in terms of ordinary partial
derivatives and geometrical coefficients. To begin with, we
define the function �G such that

 G�x; x0; !� � q�1=4�x� �G�x; x0; !�q�1=4�x0�; (36)

and write

 q�1=2�x���x� x0� � q�1=4�x���x� x0�q�1=4�x0�: (37)

These functions behave as biscalars at x and x0. For nota-
tional convenience, we drop the indices, and x and x0 are
considered as separate points on the same spatial slice � �
const. Next, we introduce the Riemann normal coordinates
y with origin at x0. Thus, q�x0� � 1 and Green’s function �G
satisfies (from now on, the dependence ofG from!will be
understood)

 q1=4�!2 �m2 � r̂2 � �2r̂4��q�1=4 �G�y�� � ��y�: (38)

In a neighborhood of x0, we can expand the induced metric
as [13]

 qmn � �mn �
1

3
R̂manbyayb �

1

6
R̂manb;pyaybyp

�

�
�

1

20
R̂manb;pq �

2

45
R̂amblR̂

l
pnq

�
yaybypyq;

(39)

from which it follows that

 

q� 1�
1

3
R̂aby

ayb�
1

6
R̂ab;cy

aybyc

�

�
1

18
R̂abR̂cd�

1

90
R̂pab

qR̂pcdq�
1

20
R̂ab;cd

�
yaybycyd:

(40)

All coefficients are evaluated at x0 (i.e., at y � 0) and
contain up to four derivatives of the metric qij. If we write

 q1=4r̂2�q�1=4 �G�y�� � qij@i@j �G� @iqij@j �G

��

�
1

16
qij@i�lnq�@j�lnq�

�
1

4
qij@i@j�lnq�

�
1

4
@iq

ij@j�lnq�
�

�G; (41)

we can evaluate all the coefficients and find, up to fourth
order,

 q1=4r̂2�q�1=4 �G�y�� ’ �ij@i@j �G� 1
6R̂

�G�1
6R̂;jyj �G

� Ĥijyiyj �G; (42)

where
 

Ĥij � �
1

30
R̂piR̂pj �

1

60
R̂pi

q
jR̂pq �

1

60
R̂pqliR̂pqlj

�
3

40
R̂;ij �

1

40
R̂ij;p

p: (43)

The expansion above is also obtained by using the fact that
�G depends on y2 being rotationally invariant. To find the

expansion for the quartic operator, we can proceed by
iteration, but first it is convenient to move into momentum
space. Hence, we define the local Fourier transform of �G as

 

�G�y� �
Z dnk
�2��n

eik�y ~G�k�: (44)

Now, let

  � q1=4r̂2�q�1=4 �G�y��: (45)

In momentum space, this corresponds to

 

~ � �k2 ~G�
1

6
R̂ ~G�

i
3
R̂;jkjD ~G� 2ĤD ~G

��4ĤijkikjD2 ~G; (46)

where we defined the operator D such that

 

@
@kj
� 2kj

@

@k2  2kjD: (47)

In coordinate space, r̂2�q�1=4 �G�y�� � q�1=4 and

 q1=4r̂4�q�1=4 �G� � q1=4r̂2�q�1=4 �: (48)

As also q�1=4 is rotationally invariant, all we need to do is
to insert the expansion (46) into itself to find that the
Fourier transform of q1=4r̂4�q�1=4 �G� is given by

 

~ �2� � k4 ~G�
k2

3
R̂ ~G�

1

3
R̂jk

j� ~G� 2k2D ~G� �
1

36
R̂2 ~G

� 2Ĥ� ~G� 2k2D ~G� � 8Ĥijk
ikj�k2D2 ~G�D ~G�;

(49)

where Ĥ  �ijĤij. Note that this iterative procedure can
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be used to find the expansion, in momentum space, of r̂2p

for any integer p.
With these elements, we can expand Eq. (38) in mo-

mentum space up to four derivatives of the metric as
 

�k2 � �2k4 �m2 �!2� ~G�
1

6
R̂ ~G�1� 2�2k2�

�
i
3
R̂;jk

j�D ~G� �2 ~G� 2�2k2D ~G� �
�2

36
R̂2 ~G

� 2Ĥ�D ~G� �2 ~G� 2�2k2D ~G�

� 4Ĥijk
ikj�D2 ~G� 2�2k2D2 ~G� 2�2D ~G� � 1:

At the zeroth order, this equation yields

 

~G 0 �
1

k2 � �2k4 �m2 �!2 ; (50)

while the following orders can be found by recursion,
yielding

 

~G 2 �
1
6R̂�1� 2�2k2� ~G2

0; (51)

 

~G 3 �
1
3R̂;jk

j ~G0� ~G� 2k2D ~G0�; (52)

 

~G4 �
1

36
R̂2�1� 2�2k2�2 ~G3

0 �
�2

36
R̂2 ~G2

0

� 2Ĥ ~G0�D ~G0 � 2�2k2D ~G0 � �2 ~G0�

� 4Ĥijk
ikj ~G0�D

2 ~G0 � 2�2k2D2 ~G0 � 2�2D ~G0�:

(53)

Therefore, as ~G � ~G0 � ~G2 � � � � , we finally have
 

~G � ~G0 �
1

6
R̂D ~G0 �

i
12
R̂;j

~@jD ~G0

�

�
1

72
R̂2 �

1

3
Ĥ
�
D2 ~G0 �

1

3
Ĥij

~@i ~@jD ~G0; (54)

where, tilded derivatives are with respect to ki, and where
many cancellations occur by using the identities

 D ~G0 � ��1� 2�2k2� ~G2
0; (55)

 �1� 2�2k2�D2 ~G2
0 � �4�2D ~G2

0 �D
3 ~G0; (56)

 

~G 0D2 ~G0 �
1
3D

2 ~G2
0 �

2
3�

2 ~G3
0: (57)

The expansion (54) is our main result. We conclude this
section, by connecting the above expansion with the
proper-time formalism of DeWitt-Schwinger. By using
Eqs. (26) and (44), by setting ! � k0, and by integrating
by parts, we find the full �n� 1�-dimensional Green’s
function, expressed as

 G �x�; x0�� �
Z dn�1k

�2��n�1 e
ik�y��1� f1D� f2D

2	 ~G0;

(58)

where

 f1 �
1

6
R̂�

1

36
R̂;jy

j �
1

3
Ĥijy

iyj; (59)

 f2 �
1

72
R̂2 �

1

3
Ĥ (60)

are built on qij. These coefficients are formally identical to
the ones found by Bunch and Parker in [13], but, in that
case, they were built on the full metric g��. It is interesting
to note that, when �2 � 0, we have

 D��0 
@

@m2 ; (61)

and the above expression becomes identical to the Bunch
and Parker one, except, again, for the geometrical coeffi-
cients. As mentioned above, this is due to the fact that we
are working with the metric (21), which is not the most
general one.

At ! fixed (i.e., on a given spatial slice), we define

 

~G 0 � i
Z 1

0
dse�is�k

2��2k4�m2�!2�; (62)

and replace into (54). By swapping integrals, we find

 G�y� � i
Z 1

0
dse�is�m

2�!2��1� �is��1� 2�2@2�f1

� 2�is�2�2f2 � �is�2�1� 2�2@2�2f2	I��y; s�;

(63)

where the partial derivatives are with respect to y, and

 I��y; s� �
Z dnk
�2��n

e�is�k
2��2k4��ik�y: (64)

This integral can be evaluated in the form of a sum of
Hermite polynomials H �l	 (see the Appendix); namely,

 I��y; s� �
e�iy

2=4s�

�4is��n=2

X1
��0

1

�!

�
i�2

16s

�
�
H �4�	

�
~y�������
4is
p

�
: (65)

It is clear that the DeWitt-Schwinger expansion in proper
time (63) becomes a very complicated sum of Hermite
polynomials and their derivatives, which does not appear
to converge to any known function. In the Lorentz invariant
case instead, the sum is trivial and the integral over s
converges to Hankel functions of second kind [8,9]. It is
now clear why the heat-kernel ansatz (30) cannot work.

VI. DISCUSSION

In this work we present our first results concerning
quantum field theory on curved backgrounds, with modi-
fied dispersion relations. In particular, we carefully analyze
the Klein-Gordon equation associated to a scalar field
propagating on a ultrastatic space-time, as a first step
towards the physically relevant case of stationary metrics.
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In the simplest case, superluminal propagation of high
frequency modes can be achieved by adding a quartic
spatial derivative to the Klein-Gordon operator. An impor-
tant side effect of these higher order operators is the
breaking of Lorentz invariance. On physical grounds, this
leads to important modifications to Green’s functions, even
in flat space. As an example, we considered the 2-
dimensional flat space, and we proved that the two-point
function becomes finite in the coincidence limit.

Motivated by this, and also by the results achieved in the
context of cosmology, we decided to consider the problem
in a nonhomogeneous curved space. The problem becomes
much more difficult, as in the Klein-Gordon equation we
now have higher-derivative spatial operators, in contrast to
the cosmological case, which prevent the usual DeWitt-
Schwinger expansion of Green’s functions from working
properly. We turned around this problem by assuming the
existence of a preferred frame, encoded by the unit time-
like vector u�, associated to the free-falling observer. In
this way, despite the breaking of local Lorentz invariance,
we still have general covariance and, above all, rotational
invariance over slices of constant time. In the case of a
ultrastatic space-time, this fact allows for a dimensional
reduction of the Klein-Gordon equation, so that one can
consider unambiguously Green’s functions at a fixed fre-
quency, as measured by the free-falling observer. As a
result, one deals with elliptic operators at constant time.
Despite this simplification, the usual heat-kernel ansatz
does not work yet because of the higher-derivative opera-
tors responsible for the modified dispersion relation.
Therefore, it turned out to be much easier to work in
momentum space, following the method of Bunch and
Parker. Thus, we obtained an expansion of Green’s func-
tions up to four derivatives of the metric in momentum
space. We also showed that the proper-time formulation of
our expansion leads to a very complicated expression,
which might render very difficult to renormalize the theory
in coordinate space.

We wish to conclude with a remark. In this work, we
displayed our method for the simplest case, namely, a k4

term in the dispersion relation. However, it looks quite easy
to include higher order derivatives. In order to do that, one

should compute terms like ~ �2p�, for p integer, by recursion
and by exploiting theO�n� invariance of Green’s functions,
in the same way as we calculated Eq. (49). In the case p �
3, we obtain a few more terms which can be absorbed by a
redefinition of the operator D. Therefore, the formal ex-
pression (54) does not change. A generic dispersion rela-
tion of the form F �k2�, such that F is analytic, can always
be expanded as a power series in k2. Therefore, it is
reasonable to expect that Eq. (54) does not change, pro-
vided D is adequately defined. We hope to prove this
conjecture in a future work.
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APPENDIX: EVALUATION OF I��y; s�

To evaluate I��y; s�, we first write it as

 I��y; s� �
Z dnk
�2��n

e�isk
2�ikye��k

4
; � � is�2: (A1)

By expanding the second exponential, we can write

 I��y; s� �
X1
�

�����

�!

�
@
@~y

�
4� Z dnk

�2��n
e�isk

2�iky: (A2)

The integral is now a product of n Gaussian integrals;
hence,

 I��y; s� � �4is��
�n=2

X1
�

�����

�!

�
@
@~y

�
4�

exp
�
iy2

4s

�
: (A3)

By recalling the definition of Hermite polynomials

 H �l	 � ��1�lex
2 @l

@xl
e�x

2
; (A4)

and by changing variable, we finally find Eq. (65).
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