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We construct the metric of new multi-black-hole configurations on a d-dimensional cylinder Rd�1 �
S1, in the limit of small total mass (or equivalently in the limit of a large cylinder). These solutions are
valid to first order in the total mass and describe configurations with several small black holes located at
different points along the circle direction of the cylinder. We explain that a static configuration of black
holes is required to be in equilibrium such that the external force on each black hole is zero, and we
examine the resulting conditions. The first-order corrected thermodynamics of the solutions is obtained
and a Newtonian interpretation of it is given. We then study the consequences of the multi-black-hole
configurations for the phase structure of static Kaluza-Klein black holes and show that our new solutions
imply continuous nonuniqueness in the phase diagram. The new multi-black-hole configurations raise the
question of existence of new nonuniform black strings. Finally, a further analysis of the three-black-hole
configuration suggests the possibility of a new class of static lumpy black holes in Kaluza-Klein space.
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I. INTRODUCTION

Black holes in four-dimensional general relativity have a
very simple phase structure. The uniqueness theorems for
pure gravity assert that the only possible stationary black-
hole solution for a given mass and angular momentum is
the Kerr black hole.

For higher-dimensional general relativity, the situation
is vastly different. In particular, if we imagine that we live
in a world which is five dimensional with the extra dimen-
sion curled up on a circle, the relevant black-hole solutions
are those which asymptotically become four-dimensional
Minkowski space times a circle (M4 � S1), i.e. the five-
dimensional Kaluza-Klein space-times. The phase struc-
ture of such black holes has been shown to be very rich and
contains phases with event horizons of different topology
and even phases where Kaluza-Klein bubbles are attached
to black holes [1–3]. More generally, we get a similarly
rich phase structure for the case of black holes asymptoting
to d-dimensional Minkowski-space times a circle (Md �
S1) with d � 4.1 The spatial part of this space-time is a
d-dimensional cylinder Rd�1 � S1.

The two static black-hole phases which most obviously
should appear for Md � S1 are the localized black-hole
phase, which for small mass behaves as a d� 1 dimen-
sional Schwarzschild black hole, and the uniform black

string corresponding to a d-dimensional Schwarzschild
black hole times a circle. For the uniform string phase,
the metric is known exactly. The most interesting feature of
the uniform string is the Gregory-Laflamme (GL) instabil-
ity [8,9] which is a long wavelength gravitational instabil-
ity of the solution (see [3] for a review). From this
instability, it follows that the uniform string for a certain
mass has a marginal mode. From this marginal mode
emanates a new branch of solutions which are nonuniform
strings, i.e. solutions with the same topology of the event
horizons as the uniform strings but without translational
symmetry around the circle. These new solutions have
been studied numerically in [10–15].

For the localized black-hole phase, here dubbed the
black hole on the cylinder phase, the metric is not known
analytically. However, for small black holes on the cylinder
the first-order part of the metric has been found [16–19]
and also the second-order solution has been studied
[20,21]. Finite-size black holes on the cylinder have in-
stead been studied numerically [22–24]. This study has
revealed the interesting result that the black hole on the
cylinder phase meets the nonuniform string phase in a
topology-changing transition point [15,25–27].

In this paper, we find and study new solutions for multi-
black-hole configurations on the cylinder. These solutions
describe configurations with several small black holes
located at different points along the circle direction of
the cylinder Rd�1 � S1. The locations of each black hole
are such that the total force on each of them is zero,
ensuring that they are in equilibrium. It is moreover neces-
sary for being in equilibrium that the black holes are all
located in the same point in the Rd�1 part of the cylinder.
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The metrics that we find are solutions to the Einstein
equations to first order in the mass. More precisely, we
work in a regime where the gravitational interaction be-
tween any one of the black holes and the others (and their
images on the circle) is small. Thus, our solutions describe
the small mass limit of these multi-black-hole configura-
tions on the cylinder, or equivalently they can be said to
describe the situation where the black holes are far apart.
The technique used for solving the Einstein equations is the
one developed in [17] for small black holes on the cylinder
based on an ansatz for the metric found in [16].

A subset of the multi-black-hole configurations has al-
ready been studied in the literature. These are the so-called
copies of the black hole on the cylinder solutions
[17,28,29]. This class of solutions corresponds to the spe-
cial situation in which a number of black holes of the same
size are spread with equal distance from each other on the
circle.

The existence of these new solutions has striking con-
sequences for the phase structure of black-hole solutions
on Md � S1. It means that one can, for example, start from
a solution with two equal size black holes, placed oppo-
sitely to each other on the cylinder, and then continuously
deform the solution to be arbitrarily close to a solution with
only one black hole (the other black hole being arbitrarily
small in comparison). Thus, we get a continuous span of
classical static solutions for a given total mass. This means
that for static black-hole solutions on Md � S1 we have in
fact a continuous nonuniqueness of solutions. Continuous
nonuniqueness for black holes has also been found when
one attaches Kaluza-Klein bubbles to black holes [30], and
has furthermore been found for other classes of black-hole
solutions [31–34]. In particular, this has the consequence
that if we would live on M4 � S1 then from a four-
dimensional point of view one would have an infinite
nonuniqueness for static black holes of size similar to the
size of the extra dimension, thus severely breaking the
uniqueness of the Schwarzschild black hole.

Another consequence of the new multi-black-hole con-
figurations of this paper is for the connection to uniform
and nonuniforms strings on the cylinder. As mentioned
above, there is evidence that the black hole on the cylinder
phase merges with the nonuniform black-string phase in a
topology-changing transition point. It follows from this
that the copies of the black hole on the cylinder solution
merge with the copies of nonuniform black strings.
However, with our new solutions, we add a continuous
span of solutions connected to the copies of the black hole
on the cylinder. Therefore, it is natural to ask whether the
new solutions also merge with nonuniform black-string
solutions in a topology-changing transition point. If so, it
probes the question whether there exist, in addition to
having new black hole on the cylinder solutions, also
new nonuniform black-string solutions. Thus, the new
solutions of this paper present a challenge for the current

understanding of the phase diagram for black holes and
strings on the cylinder.

Another connection between strings and black holes on
the cylinder is that a Gregory-Laflamme unstable uniform
black string is believed to decay to a black hole on the
cylinder (when the number of dimensions is less than the
critical one [13]). However, the new solutions of this paper
mean that one can imagine them as intermediate steps in
the decay.

The solutions presented in this paper are clearly in an
unstable equilibrium. Any small change in the position of
one of the black holes on the cylinder will mean that the
black holes will go even further out of balance, and the
endpoint of this instability will presumably be a single
black hole on the cylinder. Nevertheless, one can argue
for their existence, for example, by imagining two equal
size black holes on the cylinder, and then having mass
thrown towards only one of the black holes in the same way
from both sides of the black hole, i.e. that the solutions
keep the inversion symmetry around both of the black
holes. Then the matter will increase the size of one of the
black holes, leaving the other of the same size.

The construction of multi-black-hole solutions also en-
ables us to examine the possibility of further new types of
black-hole solutions in Kaluza-Klein space-times. In par-
ticular, analysis of the three-black-hole configuration sug-
gests the possibility that new static configurations may
exist that consist of a lumpy black hole (i.e. ‘‘peanutlike’’
shaped black objects), where the nonuniformities are sup-
ported by the gravitational stresses imposed by an external
field.

The outline of this paper is as follows. In Sec. II we
construct the new multi-black-hole configurations on the
cylinder to first order in the total mass of the system. In
Sec. III the equilibrium condition for these configurations
is explored, and a copying mechanism is presented that
generates new equilibrium configurations from known
ones. The first-order corrected thermodynamics of the
multi-black-hole solutions is given and analyzed in
Sec. IV. We then present in Sec. V the multi-black-hole
configurations in the phase diagram for Kaluza-Klein black
holes, together with the already known black-hole and
black-string solutions. Section VI contains a more detailed
analysis of the two simplest multi-black-hole configura-
tions, namely, with two and three black holes. Finally,
Sec. VII contains a summary of our results, a discussion
on its implications for possible new black-hole and string
phases and open problems. This concluding section also
discusses in the context of an analogue fluid model a
possible, but more speculative, relation of the multi-
black-hole configurations to configurations observed in
the time evolution of fluid cylinders. The Appendix con-
tains formulas that are used to compute thermodynamic
quantities for the case of two unequal mass black holes on a
cylinder.

DIAS, HARMARK, MYERS, AND OBERS PHYSICAL REVIEW D 76, 104025 (2007)

104025-2



II. CONSTRUCTION OF MULTI-BLACK-HOLE
CONFIGURATIONS ON THE CYLINDER

In this section we construct explicitly new solutions
describing multi-black-hole configurations on the cylinder,
in the limit when the total mass of the black holes is small.

A. General idea and starting point

In the following we shall construct new solutions for
multi-black-hole configurations on the d-dimensional cyl-
inder Rd�1 � S1. The solutions are static and they describe
configurations with several small black holes located at
different points of the cylinder Rd�1 � S1.

We require that all of the black holes are placed in the
same point of the Rd�1 part of the cylinder. This is neces-
sary in order to have equilibrium. Since all the black holes
are placed in the same point of Rd�1 we can require the
solution to be spherically symmetric on Rd�1. Since the
solutions should solve the vacuum Einstein equations, the
spherical symmetry has the consequence that we can write
the metric for the multi-black-hole configuration using the
ansatz [16,26,29]

 ds2 � �fdt2 �
A
f
dR2 �

A

Kd�2
dv2 � KR2d�2

d�2;

f � 1�
Rd�3

0

Rd�3
;

(2.1)

where A�R; v� and K�R; v� are functions of the two coor-
dinates R and v. As we shall see more explicitly below, the
event horizons for the black holes are all placed at R � R0.
For simplicity, we set the radius of the cylinder to be 1.
Thus, the R and v coordinates can be thought of as being
measured in units of the radius of the cylinder. The v
coordinate is periodic with period 2� [16]. For R� 1,
we are in the asymptotic region where the metric asymp-
totes to the flat cylinder metric

 ds2 � �dt2 � dr2 � r2d�2
d�2 � dz

2; (2.2)

where z is periodic with period 2�. Thus, we require that
A�R; v� ! 1 and K�R; v� ! 1 for R! 1, and we see that
R=r! 1 and v=z! 1 for R! 1.

We construct in the following the metric for multi-black-
hole configurations on the cylinder Rd�1 � S1 in the limit
where each of the black holes is small relative to the
distance between them. To this end, we employ the meth-
ods of [17] to find the solution to leading order in the limit
of small total mass. One can equivalently use the methods
of [18,19] to construct the metric.

We proceed in the following to construct the solution in
three steps:

(i) Step 1: We find a metric corresponding to the
Newtonian gravitational potential sourced by a con-
figuration of small black holes on the cylinder. This
metric is valid in the region R� R0.

(ii) Step 2: We consider the Newtonian solution close to

the sources, i.e. in the overlap region R0 	 R	 1.
(iii) Step 3: We find a general solution near a given event

horizon and match this solution to the metric in the
overlap region found in step 2. The resulting solution
is valid in the region R0 
 R	 1.

With all these three steps implemented, we have a com-
plete solution for all of the space-time outside the event
horizon.

Note that the solutions that we find below generalize the
previously studied case of a single black hole on a
d-dimensional cylinder [16–19], i.e. a black hole with
Sd�1 topology in a d� 1-dimensional Kaluza-Klein
space-time Md � S1, Md being d-dimensional
Minkowski space. The solutions furthermore generalize
the so-called copies of the single black hole on the cylinder
solution, corresponding to copying the solution several
times across the cylinder, thus giving a multi-black-hole
solution where each of the black holes has the same mass
and with the black holes placed equidistantly along the
circle direction of the cylinder [28,29].

B. Step 1: The Newtonian region

We construct here the linearized solution for the multi-
black-hole configuration in the region R� R0 away from
the event horizons. We require the black holes to be small
such that they interact through special relativistic gravity
(i.e. a Lorentz-invariant extension of Newtonian gravity).
In such a special relativistic gravity theory we have a
potential for each component of the energy-momentum
tensor that we turn on. For static solutions on the cylinder
it is well known that the two relevant components of the
energy-momentum tensor are the mass density % � T00

and the binding energy (tension) b � �Tzz [12]. These
components source the two gravitational potentials

 r2� � 8�GN
d� 2

d� 1
%; r2B � �

8�GN

d� 1
b; (2.3)

where GN is the �d� 1�-dimensional Newton constant.
From the components of the energy-momentum tensor
one finds the total mass M and the relative binding energy
(also known as the relative tension) n as [12]

 M �
Z
ddx%�x�; n �

1

M

Z
ddxb�x�: (2.4)

In the limit of small total mass, we have that the relative
binding energy goes to zero for a single black hole, i.e. n!
0 for M ! 0 [17]. From this we have that B=�GNM� ! 0
for M ! 0. Since � is proportional to GNM, this means
that we can neglect the binding energy potential B as
compared to the mass density potential �, since B goes
like �GNM�

2 for small masses. With this, we see that we
only need to consider the potential �, and we thus see that
we are considering Newtonian gravity, with the only po-
tential being the potential � sourced by the mass density.
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We now proceed to find the Newtonian gravity potential
�. We consider a configuration of k black holes placed on
the cylinder. We write M as the total mass of all of the
black holes. Define �i as the fraction of mass of the ith
black hole, i.e.

 Mi � �iM;
Xk
i�1

�i � 1; (2.5)

where Mi is the mass of the ith black hole. Note that 0<
�i 
 1. As discussed above, we place the black holes in the
same point of the Rd�1 part of the cylinder. This corre-
sponds to r � 0 in the �r; z� coordinates of the cylinder
(2.2). Now let z�i be the z coordinate for the ith black hole
with mass �iM. We can then solve the equation for � in
(2.3) as

 ��r; z� � �
8�GNM
�d� 1��d�1

F�r; z�; (2.6)

with

 F�r; z� �
Xk
i�1

X1
m��1

�i
�r2 � �z� z�i � 2�m�2�d�2�=2

: (2.7)

The potential (2.6) thus describes the Newtonian gravita-
tional potential sourced by our multi-black-hole configu-
ration. One can also write the function F�r; z� as the
Fourier series

 F�r; z� �
kd
rd�3

�
1� 2

Xk
i�1

�i
X1
m�1

h�mr� cos�m�z� z�i �
�
:

(2.8)

Here the constant kd is defined as

 kd �
1

2�
d� 2

d� 3

�d�1

�d�2
; (2.9)

and h�x� as

 h�x� � 2���d�5�=2 1

��d�3
2 �

x�d�3�=2K�d�3�=2�x�; (2.10)

where h�0� � 1, and Ks�x� is the modified Bessel function
of the second kind (in standard notation [35]). For r! 1
we see that

 F�r; z� ’
kd
rd�3

: (2.11)

Inserting this in (2.6) we verify that the potential � has the
correct asymptotic behavior for r! 1 of a Newtonian
potential on the cylinder describing an object with total
mass M.

We now proceed to find a metric in the form of the ansatz
(2.1) describing the linearized solution of the Einstein
equations corresponding to the potential (2.6). We first
notice that in the ansatz (2.1) we have that gtt � �1�
Rd�3

0 =Rd�3. However, to leading order in GNM we have

that gtt � �1� 2�. Therefore, we get that R�d�3 is pro-
portional to ��r; z�. Demanding furthermore that R=r for
r! 1, we are led to define R as function of r and z as [16]

 R�r; z� �
�

kd
F�r; z�

�
1=�d�3�

: (2.12)

Thus, we see that, in order for the linearized metric to fit
into the ansatz (2.1), we need to define R as (2.12) for the
flat space metric. The choice of R (2.12) is consistent with
having the horizon at R � R0 since we see that defining R
in terms of F�r; z� means that we are defining R to be
constant on the equipotential surfaces of � [16]. Since
(2.12) defines R for the flat space metric, we need also to
find a corresponding v�r; z� for the flat space limit of the
ansatz (2.1). One can check, using the flat space metric
(2.2) in cylinder coordinates r and z, that in order to obtain
a diagonal metric in the R and v coordinates, we need v to
obey the partial differential equations [16]

 @rv �
rd�2

�d� 3�kd
@zF�r; z�;

@zv � �
rd�2

�d� 3�kd
@rF�r; z�:

(2.13)

Using the Fourier expansion (2.8) of F�r; z� we find the
following explicit solution for v�r; z�:

 v � z� 2
Xk
i�1

�i
X�1
m�1

sin�m�z� z�i �
�

1

m
h�mr�

�
1

d� 3
rh0�mr�

�
; (2.14)

where h0�x� � @h�x�=@x. We see that v=z! 1 as required
above. Given the two coordinates R and v defined in (2.12)
and (2.14) in terms of r and z, we can now find the
corresponding flat space metric that can be written in the
ansatz (2.1). We find the flat space metric

 ds2 � �dt2 � A0dR
2 �

A0

Kd�2
0

dv2 � K0R
2d�2

d�2;

(2.15)

with the function A0�r; z� and K0�r; v� given by

 A0�r; z� � �d� 3�2k��2=�d�3�
d

F�r; z�2�d�2�=�d�3�

�@rF�
2 � �@zF�

2 ;

K0�r; z� � r2k��2=�d�3�
d F�r; z�2=�d�3�:

(2.16)

Using now (2.16) together with (2.12) and (2.14), we can
find the two functions A0�R; v� and K0�R; v� and we have
thereby specified completely the flat space metric (2.15).

With the flat space metric (2.15), as found above from
requiring gtt in the ansatz (2.1) to be consistent with the
Newtonian potential (2.6), we are now ready to find the
complete metric to first order in GNM in the Newtonian
regime R� R0. This problem is solved, in general, in [17],
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and we refer to Sec. 4.1 in that paper for the details. The
upshot is that, given the flat space metric (2.15) defined
from the Newtonian potential � in (2.6), we can find the
correction to first order in GNM of the functions A�R;v�
and K�r; v� as

 A �
�

1�
1

�d� 2��d� 3�

Rd�3
0

Rd�3

�
A0 �

R
2�d� 3�

�
Rd�3

0

Rd�3
@RA0;

K �
�
1�

1

�d� 2��d� 3�

Rd�3
0

Rd�3

�
K0 �

R
2�d� 3�

�
Rd�3

0

Rd�3
@RK0:

(2.17)

Thus, given A0�R; v� and K0�R; v�, as found above in
(2.14), (2.12), and (2.16), we can find A�R; v� and
K�R; v� to first order inGNM, or, equivalently, to first order
in Rd�3

0 . Combining this with the ansatz for the metric
(2.1), we have actually found the metric up to first order in
Rd�3

0 (i.e. in M) in the Newtonian region R� R0, for any
given distribution of k small black holes on the cylinder.

C. Step 2: The overlap region

In the Sec. II B we found the metric for any given
distribution of k small black holes on the cylinder to first
order in the total mass. This metric is valid for R� R0, i.e.
away from the horizon. In this section we examine now this
solution in the region R0 	 R	 1, which we dub the
overlap region, since this is the region where both the
Newtonian regime and the near-horizon solutions are valid.
As we shall see below, the analysis of the solution in the
overlap region gives in turn a restriction on the configura-
tions of black holes for which we can find a metric.
Namely, the k black holes should be in equilibrium with
each other with respect to the Newtonian gravitational
forces between them.

Before turning to the first-order corrected metric found
in Sec. II B, we first consider how the potential � looks
when going near the sources, and subsequently how the flat
space metric (2.15) behaves. In terms of the flat space
coordinates R and v found in (2.12) and (2.14), this corre-
sponds to having R	 1. Note that since we have k small
black holes we have to specify to which of these we are
close. In line with this, it is useful to define for the ith black
hole the spherical coordinates � and � by

 r � � sin�; z� z�i � � cos�: (2.18)

Notice here that the angle � is defined in the interval �0; �.
We then conclude from (2.18) that going near the ith black
hole corresponds to having �	 1. We begin by examining
the function F�r; z� in (2.7) near the ith black hole. In terms
of the spherical coordinates (2.18) we find that

 

F��; �� � �i�
��d�2� ���i� ���i�1 cos��

���i�2 �dcos2�� 1��2 �O��3�; (2.19)

for �	 1, where
 

��i� ��i
2��d�2�

�2��d�2
�
Xk
j�1
j�i

� �j
zd�2
ij

�
�j

�2��d�2

�
�
�
d�2;1�

zij
2�

�

��
�
d�2;1�

zij
2�

���
; (2.20)

 

��i�1 � �d� 2�
Xk
j�1
j�i

� �j
zd�1
ij

�
�j

�2��d�1

�
�
�
d� 1; 1�

zij
2�

�

� �
�
d� 1; 1�

zij
2�

���
; (2.21)

 

��i�2 ��i
�d�2���d�

�2��d
�
d�2

2

Xk
j�1
j�i

��j
zdij
�

�j
�2��d

�
�
�
d;1�

zij
2�

�

��
�
d;1�

zij
2�

���
: (2.22)

Here

 ��s; 1� a� �
X1
m�1

�m� a��s; m� a � 0; (2.23)

is the generalized Riemann zeta function and zij labels the
distance in the z direction between the jth and ith black
hole as follows:

 zij � z�j � z
�
i if 0 
 z�j � z

�
i < 2�;

zij � 2�� z�j � z
�
i if � 2� 
 z�j � z

�
i < 0:

(2.24)

We see that this definition ensures that 0 
 zij < 2�.
Using now (2.19), (2.20), (2.21), (2.22), (2.23), and

(2.24) with (2.6) one obtains the behavior of the
Newtonian potential � near the ith black hole.

From the potential � for �	 1 obtained by inserting
(2.19) in (2.6), we see that the first term in (2.19) corre-
sponds to the flat space gravitational potential due to the ith
mass Mi � �iM, and the second term is a constant poten-
tial due to its images and the presence of the other masses
and their images.2 Furthermore, the third term in (2.19) is
proportional to � cos� � z� z�i , and therefore this term
gives a nonzero constant term in @z� if we have that ��i�1
given in (2.21) is nonzero. This therefore corresponds to
the external force on the ith black hole, due to the other
k� 1 black holes. In Sec. III we verify this interpretation.

Since ��i�1 is proportional to the external force on the ith
black hole, it is clear that one cannot expect a static

2In particular, the origin of the three terms contributing to ��i�

in (2.20) is as follows. The first term comes from the images of
the ith black hole, the second term from the other k� 1 black
holes, and the third term from the images of these.
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solution to exist if ��i�1 is nonzero, since then the ith black
hole would accelerate along the z axis. Therefore, the only
hope of getting a static solution is if ��i�1 � 0 for all i �
1; 2; . . . ; k, i.e. that the external forces on each of the k
black holes are zero. When constructing our solution, we
therefore assume that ��i�1 � 0 for all i. From (2.21), we see
that this gives conditions on the relation between the
positions z�i and the mass ratios �i. We explore these
conditions further in Sec. III. Note that the equilibrium
established with ��i�1 � 0 for all i is an unstable equilib-
rium; i.e. generic small disturbances in the position of one
of the black holes will disturb the balance of the configu-
ration and result in the merger of all of the black holes into
a single black hole.

We consider now how the flat space metric (2.15) looks
near the black holes. To this end, it is useful to consider the
flat space coordinates R and v found in (2.12) and (2.14)
near the ith black hole. Using (2.19), we see that

 Rd�3 ’ ��1
i kd�

d�2;

v ’ pi � �i
d� 2

d� 3
k�1
d

Z �

x�0
dx�sinx�d�2;

(2.25)

for �	 1, with the number pi defined as

 pi � � for i � 1;

pi � �� 2�
Xi�1

j�1

�j for i � 2; . . . ; k:
(2.26)

Note that � � 0 corresponds to v � pi and � � � corre-
sponds to v � pi � 2��i. So the range of the coordinate v
can belong to one of the k intervals Ii defined as

 Ii � �pi � 2��i; pi with
[k
i�1

Ii � ���;�; (2.27)

where the last condition follows from the fact thatPk
i�1 �i � 1. The physical meaning of the intervals

(2.27) is that each of the intervals corresponds to one of
the black holes. So, being close to the ith black hole in
�R; v� coordinates corresponds to having R	 1 and v 2
Ii. This feature continues to hold also in the first-order
corrected metric.

In order to match the metric in the overlap region to the
metric near the horizons of the black holes, it is natural to
change the ansatz (2.1) into a form which resembles more
the spherical coordinates ��; ��, instead of the cylindrical
coordinates �r; z�. Given a solution in the form of the ansatz
(2.1) with the functions A�R; v� and K�R; v�, we define
therefore, relative to the ith black hole, the new coordinates
~� and ~� by [17]3

 Rd�3 � ��1
i kd ~�d�2;

v � pi � �i
d� 2

d� 3
k�1
d

Z ~�

x�0
dx�sinx�d�2;

(2.28)

where pi is defined in (2.26), and ~� � 0 corresponds to
v � pi while ~� � � corresponds to v � pi � 2��i. The
coordinates �~�; ~�� are defined such that ~� � ~��R� and ~� �
~��v� and such that for the flat space metric we have ~� ’ �
and ~� ’ � for �	 1, as one can see from (2.25). We define
furthermore the two functions ~A�~�; ~�� and ~K�~�; ~�� by

 A �
�d� 3�2

�d� 2�2
���1
i kd ~����2=d�3� ~A;

K � sin2 ~����1
i kd ~����2=d�3� ~K;

(2.29)

and the parameter �0 by

 �d�2
0 � k�1

d Rd�3
0 ; (2.30)

such that we can write the ansatz (2.1) in the alternative
form
 

ds2 � �fdt2 �
~A
f
d~�2 �

~A
~Kd�2

~�2d~�2 � ~K~�2sin2 ~�d�2
d�2;

f � 1�
�i�

d�2
0

~�d�2
: (2.31)

Note that the event horizon for the ith black hole is located
at ~� � �1=�d�2�

i �0.
Turning to the flat space metric, corresponding to the

zero total mass limit of the metric for the multi-black-hole
configuration, we can reformulate the above results for the
�R; v� coordinates in terms of the �~�; ~�� coordinates. We
write the flat space limit of the ansatz (2.31) as

 ds2 � �dt2 � ~A0d~�2 �
~A0

~Kd�2
0

~�2d~�2

� ~K0 ~�2sin2 ~�d�2
d�2: (2.32)

The functions ~A0�~�; ~�� and ~K0�~�; ~�� defining the flat space
metric (2.32) are most easily found using the relations

 

~A 0 � ��@� ~��2 � ~�2 ~K��d�2�
0 �@� ~��2�1;

~K0 �
�2sin2�

~�2sin2 ~�
:

(2.33)

Implementing now the definitions (2.28) and the results
(2.25), we see that for ~�	 1 (which is equivalent to �	
1) we get the expansion4

3The factor �i in the second expression of (2.28) guarantees
that ~� � 0$ v � pi while ~� � �$ v � pi � 2��i. We
choose to include the �i in the first line of (2.28) to have ~�=�!
1 when R! 0; see (2.34).

4We included here for completeness the ��i�1 terms, although
we set ��i�1 � 0 in the actual solutions in order to have a static
solution, as discussed above.
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�� ~�
�

1�
��1
i ��i�

d�2
~�d�2�

��1
i ��i�1

d�2
cos~�~�d�1�O�~�d�

�
;

sin2�� sin2 ~�
�

1�
2��1

i ��i�1

�d�1��d�2�
cos~�~�d�1�O�~�d�

�
:

(2.34)

Using this with (2.33), we find the following expansions for
~A0�~�; ~�� and ~K0�~�; ~��:

 

~A 0 � 1�
2�d� 1���1

i ��i�

d� 2
~�d�2 �O�~�d�;

~K0 � 1�
2��1

i ��i�

d� 2
~�d�2 �O�~�d�;

(2.35)

for ~�	 1. We included here the corrections up to order
~�d�2. Note that the next corrections come in at order ~�d

since here and in the following we have set ��i�1 � 0.
Having understood the flat space metric in the ansatz

(2.31) near the ith black hole, we are now ready to collect
all the results and write down a first-order corrected metric
near the ith black hole. First, we note that using the
definition (2.29) it follows from the general form (2.17)
for the first-order corrected metric in the �R; v� coordinates
that we obtain the general form for the first-order corrected
metric in the �~�; ~�� coordinates,

 

~A � ~A0 �
~�

2�d� 2�

�i�
d�2
0

~�d�2
@~�

~A0;

~K � ~K0 �
~�

2�d� 2�

�i�
d�2
0

~�d�2
@~�

~K0:

(2.36)

Given the full flat space functions ~A0�~�; ~�� and ~K0�~�; ~��,
the functions ~A�~�; ~�� and ~K�~�; ~�� in (2.36) when inserted in
the ansatz (2.31) describe the first-order corrected metric
for a configuration of small black holes in the region ~��
�0. Using now the ~�	 1 expansion of ~A0 and ~K0 found in
(2.35) we get the following explicit expansions of the first-
order corrected metric for �1=�d�2�

i �0 	 ~�	 1:

 

~A ’ 1�
�d� 1���1

i ��i�

d� 2
�2~�d�2 � �i�

d�2
0 ;

~K ’ 1�
��1
i ��i�

d� 2
�2~�d�2 � �i�

d�2
0 :

(2.37)

Thus, the functions (2.37) with the ansatz (2.31) give the
metric of the multi-black-hole configuration in the overlap
region ��1=d�2�

i �0 	 ~�	 1. In Sec. II D, we shall match
this with the metric in the near-horizon region.

Regularity of the solution

We can now address the regularity of the multi-black-
hole solution given the above results for the first-order
correction. We already argued above that we need the
equilibrium condition ��i�1 � 0 to hold for all i �

1; . . . ; k, since otherwise the configuration that we are
describing cannot be static. However, this should also
follow from demanding regularity of the solution, since
with a nonzero Newtonian force present on the black hole
the only way to keep it static is to introduce a counter-
balancing force supported by a singularity. Therefore, it is
important to examine the regularity of the solution corre-
sponding to (2.36) with or without the presence of the ��i�1
terms.

For a metric in the form of the ansatz (2.31), one can
have singularities for ~�! 0,� since the metric component
along the �d� 2� sphere goes to zero there. A necessary
condition to avoid such singularities is that for ~�! 0, �
the ~� part plus the �d� 2�-sphere part of the metric (2.31)
becomes locally like the metric of a �d� 1� sphere d~�2 �

sin2 ~�d�2
d�2 since then ~� � 0, � corresponds to the poles

of the �d� 1� sphere. This is only the case provided that

 

~A
~Kd�1

! 1 for ~�! 0; �: (2.38)

Therefore, we should examine under which conditions the
correction (2.36) obeys Eq. (2.38). First, let us assume that
the flat space functions ~A0, ~K0 obey Eq. (2.38), i.e.
~A0= ~Kd�1

0 ! 1 for ~�! 0, �. From this one can infer that
@~� log ~A0 � �d� 1�@~� log ~K0 ! 0 for ~�! 0,�. Using this,
it is not hard to check that Eq. (2.38) is fulfilled with ~A and
~K given by (2.36). Thus, in order to fulfill (2.38) we only
need to check that it is fulfilled for the flat space metric.
This is indeed found to be the case, both for the ��i� terms
and the ��i�1 terms. Thus, the metric is regular at the poles
~� � 0, � also with the external force on the ith black hole
being present. This is presumably because we cannot see
the irregularity of the solution at this order since we can
neglect the binding energy, which accounts for the self-
interaction of the solution. Thus, we expect singularities to
appear at second order in the total mass for solutions which
do not obey the equilibrium condition ��i�1 � 0.

D. Step 3: The near-horizon region

In Sec. II B we found the metric (to first order in the
mass) for a general multi-black-hole configuration in the
Newtonian region R� R0. We now complete the metric
for the multi-black-hole configuration by finding the metric
near the horizon. This is done by matching with the metric
in the overlap region R0 	 R	 1, as found in Sec. II C.

Take the metric (2.31) with (2.37) which describes the
geometry near the ith black hole, i.e. in the overlap region
�1=�d�2�
i �0 	 ~�	 1. We notice here the key point that ~A

and ~K are independent of ~�. This means that we can
assume that ~A and ~K are independent of ~� for �1=�d�2�

i �0 

~�	 1. The next step is therefore to find the most general
solution of the vacuum Einstein equations for a metric of
the form (2.31) with ~A � ~A�~�� and ~K � ~K�~��, i.e. without
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any ~� dependence. This gives the result [17]

 

~A���d�2�=2�d�1� � ~K���d�2�=2 �
1� w2

w
~�d�2

�i�
d�2
0

� w;

(2.39)

where w is an arbitrary constant. Note that, setting w � 1,
the ansatz (2.31) with (2.39) describes the �d�
1�-dimensional Schwarzschild black-hole solution.

We can now fix this constant w by matching the func-
tions (2.39) to the behavior of ~A and ~K in the overlap region
(2.37). This yields

 w � 1�
��i�

2
�d�2

0 �O��2�d�2�
0 �: (2.40)

Thus, using (2.39) with (2.40) in the ansatz (2.31), we have
obtained the metric for a general multi-black-hole configu-
ration, in the limit of small total mass, in the near-horizon
region ��1=d�2�

i �0 
 ~�	 1. Supplementing this with the
metric in the Newtonian region R� R0 found in Sec. II B,
we see that we have obtained the full metric for the general
multi-black-hole configuration to first order in the mass in
the limit of small total mass.

Inserting (2.39) and (2.40) in the ansatz (2.31), we can
write the near-horizon metric near the ith black holes
located at �r; z� � �0; z�i � as

 ds2 � �fdt2 � f�1G��2�d�1�=�d�2�d~�2

�G��2=�d�2� ~�2�d~�2 � sin2 ~�d�2
d�2�; (2.41)

where (up to first order in �d�2
0 )

 

f � 1�
�i�

d�2
0

~�d�2
; G�~�� �

1� w2

w
~�d�2

�i�
d�2
0

� w;

w � 1�
��i�

2
�d�2

0 �O��2�d�2�
0 �: (2.42)

The horizon is located at ~� � ��1=d�2�
i �0 and the range of ~�

is from 0 to �.

III. EQUILIBRIUM CONFIGURATIONS

From the results of Sec. II we have that near the ith black
hole the gradient of the gravitational potential along the z
direction is

 @z� �
8�GNM
�d� 1��d�1

�
�d� 2�

z� z�i
�d

���i�1 �O���
�
;

(3.1)

for �	 1. The first term is evidently the gravitational
attraction due to the mass of the ith black hole, while the
second term is a net force on the ith black hole, which
originates from the other k� 1 black holes and their
images in the configuration.5 Having such a force on the

ith black hole is clearly not consistent with having a static
solution. Therefore, as already discussed in Sec. II C, we
require that the solutions fulfill the equilibrium condition

 ��i�1 � 0 for i � 1; . . . ; k: (3.2)

In Sec. III A we explore this condition further, and we
describe a method of how to find configurations, i.e. a set
of masses �i and positions z�i , such that the equilibrium
condition (3.2) is fulfilled. We furthermore describe in
Sec. III B how to generate new equilibrium configurations
from known ones by copying.

As already discussed in Sec. II C, the equilibrium of the
k black holes is unstable towards perturbations in the
positions of the black holes. We compare this physical
intuition with the results for the two-black-hole solution
in Sec. VI A.

A. Construction of equilibrium configurations

In the following we describe a construction method that
allows one to find equilibrium configurations fulfilling
(3.2). While doing so we further clarify the equilibrium
conditions.

Condition (3.2) per se is not, in general, sufficient to
identify specific parameters of configurations that are in
equilibrium. In the following we describe a procedure from
which we can obtain an equilibrium configuration given a
set of black-hole positions (with some restrictions).

We first note that we can write ��i�1 as a sum of the
potential gradients corresponding to the gravitational force
due to each of the k� 1 other black holes on the ith black
hole as6

 ��i�1 �
Xk

j�1;j�i

�jVij; (3.3)

where Vij corresponds to the gravitational field on the ith
black hole from the jth black hole, given by

 

Vij � �d� 2�
�

1

zd�1
ij

�
1

�2��d�1

�
�
�
d� 1; 1�

zij
2�

�

� �
�
d� 1; 1�

zij
2�

���
; (3.4)

for j � i. We can now furthermore define Fij � �i�jVij as
the Newtonian force on the ith mass due to the jth mass
(and its images as seen in the covering space of the circle).
Of course, to obtain the actual Newtonian force we have to
multiply Fij by 8�GNM2=��d� 1��d�1�. With this, we
can write (3.3) as the condition of zero external force on
each of the k masses,

5The images of the ith black hole only contribute in Eq. (3.1) in
the terms of O���.

6Note that the force on the ith black hole is ��i�1 8�GNM=��d�
1��d�1�.
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Xk
j�1;j�i

Fij � 0; (3.5)

for i � 1; . . . ; k. We can now verify an important property,
namely, that Newton’s law Fij � �Fji is satisfied. Clearly
this is equivalent to Vij � �Vji. From (3.4) and the defi-
nition (2.24) of zij for the ith black hole, we see that Vij �
�Vji follows from the following identify for the general-
ized zeta function (2.23):

 

�
2�

2�� z

�
s
� �

�
s;
z

2�

�
� �

�
s; 2�

z
2�

�

� �

�
2�
z

�
s
� �

�
s; 1�

z
2�

�
� �

�
s; 1�

z
2�

�
: (3.6)

We now illustrate our procedure of finding equilibrium
configurations by considering the k � 3 black-hole case.
The generalization to an arbitrary number of black holes is
easily done. First, consider a given set of positions of the
black holes �z�1; z

�
2; z
�
3�. From these positions we get Vij

from (3.4). We now want to find �1, �2, and �3 such that we
get an equilibrium configuration. From (3.5) we see using
Fij � �Fji that there are only two independent equations,
which we can write as �2V12 � �3V13 � 0 and ��1V12 �
�3V23 � 0. Using now that �3 � 1� �1 � �2, we get the
following result for �1, �2, and �3:
 

�1 �
V23

V12 � V13 � V23
; �2 � �

V13

V12 � V13 � V23
;

�3 �
V12

V12 � V13 � V23
: (3.7)

Thus, we see that choosing the positions of the three black
holes gives us Vij which again gives us �1 and �2 from
(3.7), implementing the zero force condition (3.5).

However, it is important to note that we need to impose
the physical requirement of having only positive masses,
i.e. 0 
 �i 
 1 for all i. This again gives restrictions on the
positions that one can choose. For k � 3 one can check that
these restrictions are satisfied under the fairly mild con-
ditions z�1 � 0< z�2 <�< z�3 < 2� and z�3 � z

�
2 <�.

The above construction method that we described for
k � 3 can be extended to configurations with any number
of black holes subjected to some constraints on their rela-
tive positions. One then solves the k� 1 independent zero
force conditions from (3.5) for the k� 1 independent mass
parameters �i. Note that one can infer from this way of
solving the equilibrium condition (3.2) that, in general, a k
black-hole configuration has k independent parameters,
e.g. the rescaled mass and the k� 1 positions.7 Another

way to see that we have k independent parameters for a
configuration with k black holes is to note that by specify-
ing that z�1 < z�2 < . . .< z�k and by giving the k absolute
masses �iM (or alternatively the rescaled total mass and
k� 1 of the mass parameters �i) we can determine an
equilibrium configuration using the analysis above.

B. New equilibrium configurations by copying

We described above a general method to build equilib-
rium configurations. In this section we consider a way to
generate new equilibrium configurations using already
known ones. This is done by copying the configurations a
number of times around the circle. This generalizes the
copies of the single-black-hole solution [17,28,29].

We imagine a configuration given with k black holes,
specified with the positions z�i and masses �i, i � 1; . . . ; k.
We assume this configuration is in equilibrium, i.e. that
(3.2) is satisfied. We also assume that the positions are
ordered such that 0 
 z�i < z�i�1 < 2� for i � 1; . . . ; k�
1. Given now an integer q, we can copy this configuration q
times, to obtain a new equilibrium configuration as fol-
lows. We define8

 ẑ �i�nk �
1

q
�z�i � 2�n�; �̂i�nk �

1

q
�i; (3.8)

for i � 1; . . . ; k and n � 0; . . . ; q� 1. Then ẑ1; . . . ; ẑkq and
�̂1; . . . ; �̂kq define a new configuration with kq black holes.

In particular, we have that
Pkq
a�1 �̂a � 1 and that 0 
 ẑ�a <

ẑ�a�1 < 2� for a � 1; . . . ; kq� 1.
We first verify that the new configuration of kq black

holes obeys the equilibrium conditions (3.2). Note that this
check is needed only for the first k black holes (out of the
kq black holes) since the black-hole configuration is sym-
metric under the transformation ẑ�a ! ẑ�a�k, �̂a ! �̂a�k if
we furthermore make the displacement z! z� 2�=q.
Consider therefore the zero force condition on the ith black
hole, with i � 1; . . . ; k. Using (3.3) we can write this as

 

Xq�1

n�1

�̂i�nkV̂i;i�nk �
Xq�1

n�0

Xk
j�1;j�i

�̂j�nkV̂i;j�nk � 0; (3.9)

with V̂ab given by (3.4). Here we have split up the con-
tributions such that the first term corresponds to the copies
of the ith black hole, while the second term corresponds to
the other k� 1 black holes and their copies. Using now
that ẑi;i�nk �

2�n
q and ẑi;j�nk �

zij
q �

2�n
q , as one can infer

from the definition (2.24), it is straightforward to verify,
with the aid of the definition of the generalized zeta func-
tion (2.23), that we have

7Note that there are special configurations with a high amount
of symmetry where the mass ratios �i are not fixed given the
positions z�i . An example of this is the two-black-hole case with
z�1 � 0 and z�2 � �. However, the number of independent pa-
rameters is always k for a k black-hole configuration; i.e. for the
two-black-hole case the two parameters can be taken to be � and
�1.

8Note that here and in the following we put a hat symbol on all
the functions, parameters, and quantities that correspond to the
new configuration that we copied q times.
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Xq�1

n�1

V̂i;i�nk � 0;
Xq�1

n�0

V̂i;j�nk � qd�1Vij: (3.10)

Using this, we see that it follows from the equilibrium
condition

Pk
j�1;j�i �jVij � 0 for the k black-hole configu-

ration that the equilibrium condition (3.9) is satisfied for
the kq black-hole configuration.

It is useful to consider how one can express the metric
for the q copied configuration in terms of the metric for the
k black-hole configuration. To this end, we note that one
easily sees from (2.7) that

 F̂�r; z� � qd�3F�qr; qz�: (3.11)

This gives, in turn, that Â0�r; z� � A0�qr; qz� and
K̂0�r; z� � K0�qr; qz�. By carefully using these relations,
we infer that Â0�R; v� � A0�qR; qv� and K̂0�R; v� �
K0�qR; qv�. Therefore, we have from (2.17) that

 Â�R;v� � A�qR; qv�; K̂�R;v� � K�qR; qv�:

(3.12)

From this we can read off the metric for the q copied
configuration in terms of the metric for the k black-hole
configuration. Notice that this relation precisely corre-
sponds to the one found in [29] from a more general point
of view.

IV. THERMODYNAMICS OF THE MULTI-BLACK-
HOLE CONFIGURATION

In this section we begin by determining the thermody-
namic properties of the multi-black-hole configurations.
This is accomplished in Sec. IVA. We subsequently find
in Sec. IV B that the obtained thermodynamics is consis-
tent with a simple Newtonian interpretation.

A. Thermodynamic properties

In this section we find the thermodynamic quantities for
multi-black-hole configurations on the cylinder to first
order in the mass in the limit of small total mass.

We begin by considering the quantities that one can read
off from the event horizons. For the ith black hole the
metric near the horizon is given by (2.41) and (2.42). The
temperature is now found in the standard way by comput-
ing the surface gravity, while the entropy is found from
computing the area of the event horizon divided by 4GN.
This yields the following entropy Si and temperature Ti for
the ith black hole:

 Si � ��d�1�=�d�2�
i

�d�1

4GN
�d�1

0

�
1�

d� 1

d� 2

��i�

2
�d�2

0

�O��2�d�2�
0 �

�
; (4.1)

 Ti � ���1=�d�2�
i

d� 2

4��0

�
1�

d� 1

d� 2

��i�

2
�d�2

0

�O��2�d�2�
0 �

�
; (4.2)

with ��i� as defined in (2.20).
Turning to the asymptotic quantities, we need to deter-

mine the total mass M and the relative tension (binding
energy) n. To determine M and n, we first notice the fact
that the multi-black-hole solution obeys the first law of
thermodynamics [29],

 �M �
Xk
i�1

Ti�Si: (4.3)

This is derived in [29] using the ansatz (2.1) for a single
connected horizon, but the argument there is easily gener-
alized to k connected horizons. Note that in (4.3) we do not
have the variation of the circumference of the cylinder
since we have fixed the circumference to be 2�. This
term is however easily added (see Ref. [29] and below).

It is a general property of the ansatz (2.1) that R0,M, and
n are related as [29]

 M �
�d�2

8GN
Rd�3

0

�d� 1��d� 3�

d� 2� n
: (4.4)

This is easily seen from considering the metric (2.1) for
R! 1. Using the definition of �0 in (2.30) we can write
this as

 M �
�d�1

16�GN
�d�2

0

�d� 1��d� 2�

d� 2� n
: (4.5)

We can now insert (4.1), (4.2), and (4.5), into the first law
(4.3) for a given variation of �0, which yields the following
result,

 n�
�0

d� 2

�n
��0
�
d� 2

2

Xk
i�1

�i��i��
d�2
0 ; (4.6)

to first order in �d�2
0 . We used here that n! 0 for �0 ! 0.

From (4.5) and (4.6) we then conclude thatM and n, to first
order in �d�2

0 , are

 M �
�d� 1��d�1

16�GN
�d�2

0

�
1�

1

4

Xk
i�1

�i�
�i��d�2

0

�O��2�d�2�
0 �

�
; (4.7)

 n �
d� 2

4

Xk
i�1

�i��i��
d�2
0 �O��2�d�2�

0 �: (4.8)

Thus, the physical quantities relevant for the thermody-
namics of the k black-hole configuration are given by (4.1),
(4.2), (4.7), and (4.8).
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We consider now how the relative tension n and the
entropies Si, as given above, behave as a function of the
total mass M. To this end, it is useful to define the rescaled
mass � as [2,3,17]

 � �
16�GNM

Ld�2
�

16�GNM

�2��d�2
; (4.9)

where we used that the circumference L � 2�. Using now
(4.7) and (4.8), we get that n as a function of � is given by

 n��� �
�d� 2��2��d�2

4�d� 1��d�1

Xk
i�1

�i��i���O��2�: (4.10)

We use this expression in Sec. V since it gives the linear
slope of the multi-black-hole configuration in the ��; n�
phase diagram. There we also provide a rough estimate of
the range of � for which (4.10) is a good approximation.

Turning to the entropies, we have that the entropy of the
ith black hole, in terms of the rescaled total mass �, is
 

Si��� �
�2��d�1��i���d�1�=�d�2�

4�1=�d�2�
d�1 �d� 1��d�1�=�d�2�GN

�

�
1�

�2��d�2

2�d� 2��d�1

�
��i� �

1

2

Xk
i�1

�i��i�
�
�

�O��2�

�
: (4.11)

One can now compute the total entropy Stotal��� as the sum
of the entropies (4.11) for each of the k black holes.

As already mentioned, the k black-hole configurations
are unstable with respect to small changes in the positions
of the black holes. Generic disturbances will destabilize the
configuration, and presumably the k black holes will merge
into a single black hole. Therefore, we expect, in general,
that the entropy for a single black hole is always greater
than the total entropy of the k black holes, for same total
mass �, i.e. Stotal���< S1BH���. This can indeed be veri-
fied from Eq. (4.11), for sufficiently small �. We examine
these questions in detail in Sec. VI A for the two-black-
hole case.

It is important to note that from the temperatures (4.2)
one can see that they, in general, are not equal for the black
holes in the configuration. This means that generically the
multi-black-hole configurations are not in thermal equilib-
rium. In fact, it is easy to see from (4.2) that the only
configurations at this order that are in thermal equilibrium
are the copies of the single-black-hole solution studied
previously in [17,28,29].

B. Newtonian interpretation of the thermodynamics

The variable �0 was useful to construct the multi-black-
hole solution but is not the most appropriate one for the
physical interpretation of the solution and its thermody-
namic quantities (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7),
and (4.8), since it does not have an invariant meaning. A

more natural variable for the physical interpretation, as will
be confirmed below, is the ‘‘areal’’ radius. We define a set
of k areal radii �̂0�i�, i � 1; . . . ; k, by

 �̂ 0�i� � �1=�d�2�
i �0

�
1�

��i�

2�d� 2�
�d�2

0

�
: (4.12)

Using this definition the first-order corrected horizon area
of the ith black hole takes the appropriate form

 A �i�
h � �d�1�̂

d�1
0�i� ; (4.13)

for a �d� 1� sphere of radius �̂0�i�. We can now rewrite, to
leading order, the corrected thermodynamic quantities
(4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), and (4.8) in terms
of these areal radii.

The corrected entropy (4.1) and temperature (4.2) of the
ith black hole take the form

 Si �
�d�1�̂

d�1
0�i�

4GN
; Ti � T0�i��1��i�;

T0�i� �
d� 2

4��̂0�i�
;

(4.14)

where we have defined the potential

 �i � �
��i�

2
�d�2

0 : (4.15)

From the form of ��i� in Eq. (2.20) we see that �i is
precisely the Newtonian potential created by all images
of the ith black hole as well as all other k� 1 masses (and
their images) as seen from the location of the ith black
hole. The interpretation of the form for the temperature in
(4.14) is that T0�i� is the intrinsic temperature of the ith
black hole, i.e. when it would be isolated in flat, empty
�d� 1�-dimensional space. The second term is the redshift
contribution coming from the gravitational potential �i.

Similarly, the total mass (4.7) of the configuration can be
written to leading order as

 M �
Xk
i�1

�
M0�i� �

1

2
M0�i��i

�
;

M0�i� �
�d� 1��d�1

16�GN
�̂d�2

0�i� ;

(4.16)

where �i is defined in (4.15). Again, the physical inter-
pretation can be clarified as follows: The first term,

 M0 �
Xk
i�1

M0�i�; (4.17)

is the sum of the individual masses M0�i� when they would
be isolated, while the second term,

 UNewton �
1

2

Xk
i�1

M0�i��i; (4.18)
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is precisely the negative gravitational (Newtonian) poten-
tial energy that appears as a consequence of the black holes
and their images.

From the above results it follows that one can derive the
formula for the relative tension in (4.8) by a purely
Newtonian argument, as was first done for the single-
black-hole case in Ref. [19]. To see this, note that when
we also allow for the length L of the circle to vary, the
generalized first law of thermodynamics (4.3) reads

 �M �
Xk
i�1

Ti�Si �
nM
L
�L; (4.19)

since T � nM=L is the tension in the circle direction. The
relative tension can thus be computed from

 n �
L
M

�
@M
@L

�
Si

: (4.20)

As described above, from a purely Newtonian analysis one
knows that the total massM � M0 �UNewton is the sum of
the intrinsic mass plus the gravitational potential energy
given in (4.18). Furthermore, the condition of keeping Si
fixed means that we should keep fixed the mass M0�i� of
each black hole, and hence also M0. It thus follows from
(4.20) that to leading order

 n �
L
M0

�
@UNewton

@L

�
M0�i�

� �
�d�2

0

4M0

Xk
i�1

M0�i�L
@��i�

@L
;

(4.21)

where we used (4.15) and (4.18) in the second step. To
compute the derivative we need to know how ��i� scales
with L. While the expression for ��i� in (2.20) is for our
choice L � 2�, it is not difficult to see that keeping L
arbitrary amounts to the rescaling ��i� ! �2�=L�d�2��i�.
Using this in (4.21) along withM0�i�=M0 � �i immediately
shows that we recover our result (4.8) for the relative
tension.

As a consequence, we conclude that the entire thermo-
dynamics of the first-order corrected multi-black-hole so-
lutions can be appropriately interpreted from a Newtonian
point of view.

V. PHASE DIAGRAM FOR THE MULTI-BLACK-
HOLE CONFIGURATIONS

As mentioned in the Introduction, the whole set of
different multi-black-hole configurations is part of a larger
set of black holes, black strings, and other black objects
which are asymptotically Md � S1 [2,3]. For this reason,
it is very useful to depict the multi-black-hole configura-
tions in a ��; n� phase diagram [12,29] in order to under-
stand the phase structure of all the solutions asymptoting to
Md � S1.

A multi-black-hole configuration corresponds to a point
in the ��; n� phase diagram. The coordinates of this point

are given by (4.7), (4.8), and (4.9). However, since we look
at the limit of small gravitational interactions, it is useful to
have n as a function of �. This is given by (4.10).
Therefore, n��� as given in (4.10) is valid for small �.
For a fixed �, one can then consider the range of n for a
configuration with k black holes. This can be seen using the
following inequality for a k black-hole configuration,

 

2��d� 2�

�2��d�2
<
Xk
i�1

�i��i� 
 kd�3 2��d� 2�

�2��d�2
; (5.1)

where ��i� is defined in (2.20). The lower bound corre-
sponds here to the single-black-hole case (k � 1), while
the upper bound corresponds to the case of k black holes of
equal mass, distributed equidistantly around the cylinder.
These are the so-called copies of the single black hole on
the cylinder considered in [17,28,29]. Now, using the in-
equality (5.1) with (4.10) we see that in the ��; n� phase
diagram the k black-hole configurations correspond to the
points lying above the single-black-hole phase and below
the k copied phase. We have depicted this for d � 5 in
Fig. 1 in the case of two black holes on the cylinder (k �
2). We see that the phases with two unequal black holes lie
in between the single localized black-hole phase (LBH)
and the phase with two equal size black holes (LBH2). We
have depicted here the phases using the numerical data
found in [24] for the single localized black-hole phase
(LBH). Note that it is not clear that the phases of the
two-black-hole configurations will stay in between the

76543210
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0.2
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0.05

0

n
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NUBS2
NUBS

LBH2

LBH

FIG. 1 (color online). Phase diagram for d � 5 with n versus
� for the two-black-hole configurations spanning the area in
between the single black hole (LBH) and two equal size black
holes (LBH2). Moreover, we have drawn the UBS phase, the
NUBS and its two-copied phase (NUBS2).
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LBH and LBH2 phases when we go beyond our perturba-
tive solution (see discussion in Sec. VII B). In Fig. 1 we
have furthermore depicted the uniform black-string phase
(UBS), which has n � 1=�d� 2�, and the nonuniform
black-string phase (NUBS), along with the two-copied
nonuniform black-string phase (NUBS2).9

From (4.10) and the inequality (5.1) we see that for a
given mass � we have a continuously infinite nonunique-
ness of solutions with k black holes. However, the non-
uniqueness of solutions is even worse than this. If we
consider a k black-hole solution it is described by k pa-
rameters, as explained in Sec. III A. Thus, since the solu-
tions with k black holes span a two-dimensional area in the
��; n� diagram, we need k� 2 extra parameters, beyond�
and n, to point to a specific solution with k black holes.
Therefore, there is a continuous infinite nonuniqueness of
solutions for certain points in the phase diagram, when k �
3. Moreover, if we do not specify k but instead consider all
possible multi-black-hole configurations, we have an infi-
nite layer of solutions in the phase diagram, since one can
always consider adding a small black hole to a given multi-
black-hole configuration.

Hence our results show a continuous nonuniqueness for
solutions with fixed M. Such nonuniqueness was also
observed in Ref. [30] for bubble-black-hole sequences,
which are not spherically symmetric on Rd�1 and lie in
the region 1

d�2 
 n 
 d� 2 of the ��; n� phase diagram.
The multi-black-hole configurations of this paper are there-
fore the first example of continuous nonuniqueness for
solutions that are spherically symmetric on Rd�1.

Considering the phase diagram for the two-black-hole
configurations depicted in Fig. 1, it is interesting to con-
sider what happens when moving up in n. One way to do
this is to increase � such that the ratios �i are fixed. In this
case the two black holes are growing and eventually their
horizons will meet. Thus, the natural question is then what
happens when approaching this point. There seems to be
two possibilities:

(1) When the horizons of the two black holes meet, their
temperatures are not equal, and the solution will be
singular in the meeting point.

(2) The temperatures of the two black holes will ap-
proach each other and when the two black holes
meet they will merge into a new nonuniform black-
string phase different from both the original nonuni-
form black-string phase emanating from the
Gregory-Laflamme point, and the two-copied non-
uniform black-string phase.

We explore these scenarios further in Sec. VI A. In Sec. VII
we discuss the possible implications for the Gregory-
Laflamme instability if there should exist new nonuniform
string phases.

Finally, we note that it is useful to give a rough estimate
of the validity of the perturbative k black-hole solutions
found in Sec. II. For this purpose we can employ the
estimate made for the single-black-hole solution in [17].
A lower estimate can be found by considering the k copied
phase, since we expect this to be the first solution for which
the first-order correction becomes invalid, as one increases
�. We therefore take the function F��; �� in (2.19) and
consider when the contribution from the term with ��i�2 is
equal to the one with ��i�. This happens for �2’8�2��d�
2�=�k2�d�1��d�2���d��. This can be used to get an upper
bound for the Schwarzschild radius k�1=�d�2��0. Plugging
that into� in terms of �0, one obtains a rough upper bound
on�. For k black holes, this means that the method is valid
in the regime �	��, with �� �30=k;9=k2;1:8=k3;
0:2=k4;0:02=k5;0:002=k6 for d�4, 5, 6, 7, 8, 9.
Therefore, for k � 2 and d � 5 we get that our perturba-
tive solutions describing two black holes on the cylinder
are valid for �	 2:2, in accordance with Fig. 1. The
values �� for k � 2 black-hole copies in 4 
 d 
 9 will
be given in Table I in Sec. VI A.

VI. FURTHER ANALYSIS OF SPECIFIC
SOLUTIONS

In this section we analyze in more detail the two sim-
plest multi-black-hole configurations, namely, two- and
three-black-hole solutions. This serves as an illustration
of the general solution and its physical properties, but will
also provide us with further insights into the structure of
the phase diagram discussed in the previous section, in-
cluding the possibility of the existence of new lumpy black
holes in Kaluza-Klein spaces.

A. Two black holes on the cylinder

We start by examining the case of the two-black-hole
solution; i.e. we take a configuration of two black holes
with mass fractions �1 �

1
2� � and �2 �

1
2� �, where

0 
 � 
 1=2 so that by conventionM1 � M2. Hence, � �
0 corresponds to a configuration with two black holes of
equal mass, while the limiting case � � 1=2 is the single-
black-hole solution. The locations of the black holes are
chosen as z�1 � 0 and the location of the second black hole
is denoted as z�2. For the equilibrium configuration we

TABLE I. The upper bound �c, imposed by entropy argu-
ments, on the mass for the validity of the perturbative two-
black-hole results. For comparison, the bound �� (see the end of
Sec. V) is shown along with the Gregory-Laflamme masses �GL

(see e.g. [12]).

d 4 5 6 7 8 9

�c 14.4 7.1 3.9 2.0 0.97 0.44
�� 15 2.2 0.2 1� 10�2 8� 10�4 3� 10�5

�GL 3.52 2.31 1.74 1.19 0.79 0.55

9For the d � 5 nonuniform black string we have used the data
given in [11,12]. The map to the two-copied solution is given in
[29].
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clearly have z�2 � � so that the two black holes are on
opposite points on the circle.

We first focus on the equilibrium configuration. To
compute the various thermodynamic quantities we need
��1;2� defined in (2.20), which are given explicitly for the
two-black-hole case in Eq. (A1). Furthermore, the expres-
sion for the sum

P2
i�1 �i�

�i� is given in (A10). The curve
(4.9) in the phase diagram is thus given by
 

n��;�� �
�d� 2���d� 2�

�d� 1��d�1
2d�4�1� 4�2�1� 23�d��

�O��2�: (6.1)

Since the constant of proportionality is a monotonically
increasing function of �, one sees here explicitly that the
inequality (5.1) at k � 2 is obeyed, so that the slope in the
��; n� phase diagram is bounded by that of a single black
hole and two equal mass black holes.

From (4.11) and (A9) we find the total entropy is given
by

 S��;�� � S1��;�� � S1��;���; (6.2)

 

S1��;�� �
�2��d�1

4�1=�d�2�
d�1 �d� 1��d�1�=�d�2�GN

�

��
1

2
� �

�
�
�
�d�1�=�d�2�

�

�
1�

��d� 2�

�d� 2��d�1
�2d�4 � 2��1� ��

� �1� 2d�3����O��2�

�
; (6.3)

where we used that S2��;�� � S1��;���. In particular,
we find from this the corrected entropy of one black hole
on a circle S1BH��� � S��; 1=2� and that of two equal
mass black holes S2eBH��� � S��; 0�. We can now con-
sider S��;�� for fixed total (rescaled) mass � as � ranges
from 0 to 1=2. Physically, we expect that this is a mono-
tonically increasing function of � since it should be en-
tropically favored to have all the mass concentrated in one
black hole, and the solution with two black holes is in an
unstable equilibrium. As shown in Fig. 2, this is indeed the
behavior we find when the mass of the system is not too
large.

We can in fact use the physical criterion that S��;�� be a
monotonically increasing function of � to get an upper
bound �c on the mass, in order for our perturbative ap-
proach to be valid. By examining the function (6.2) in
detail, we find that a condition that can be used to deter-
mine the critical mass is

 

@2S�� � �c;��

@�2

����������0
� 0; (6.4)

where above we also used that �@S��; ��=@��j��0 � 0 for
all �. Using the explicit expression (6.2) we have analyzed

this equation for 4 
 d 
 9, and the results for �c are
listed in Table I. A necessary condition for our method to
be valid is thus � & �c. We expect that for �	 �c our
perturbative solution for the two-black-hole configuration
is valid. As illustrated in Table I, this is a less restrictive
bound than the one found in the end of Sec. V based on a
less precise consideration.

It is also useful to examine the temperatures of each of
the black holes as we increase the mass. Clearly, for two
black holes of unequal mass the zeroth order temperatures
are different, and the system is not in thermal equilibrium.
However, we can calculate the effect of the redshift on the
ratio of temperatures, and examine whether this effect
tends to equilibrate the black holes as we increase the total
mass of the system. Using the first-order corrected tem-
peratures (4.2) and the expressions (A9) for ��1;2�, one
finds
 

T2

T1
�

�
1� 2�
1� 2�

�
1=�d�2�

�
1�

4���d� 2�

�d� 2��d�1
�2d�3 � 1��

�O��2�

�
; (6.5)

where we eliminated �0 in favor of� using (4.7) and (4.9).
For two unequal mass black holes (with M1 >M2) we

have 0< �< 1=2 so the prefactor in (6.5) is greater than 1.
We now observe that as one increases the total mass � the
linear factor in � will be smaller than 1, causing the ratio
T2=T1 to decrease towards 1. We thus conclude that the
first-order redshifts combine in such a way that increasing
the total mass of two unequal mass black holes causes the
temperatures of the two black holes to approach each other.
This indicates that it may be possible that in the full non-
perturbative regime the temperatures converge to a com-
mon value at the merger.

Finally, we study the entropy of the more general con-
figuration of two black holes without requiring the system
to be in mechanical equilibrium. The total entropy
S��;�; z�2� is obtained by using again (4.11) to compute
the individual entropies S1;2, but now substituting the z�2
dependent functions ��1;2��z�2� given in Eq. (A8). We con-

S

κ1/20

S2eBH

S1BH

FIG. 2. Plot of the total entropy S of an equilibrium two-black-
hole configuration as a function of its mass distribution �, for a
fixed total mass �. This is a schematic plot for �<�c.
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sider then a fixed total mass� and mass distribution �, and
vary the location z�2 of the second black hole where 0<
z�2 
 �. Physically we expect that S��;�; z�2� is a mono-
tonically decreasing function of z�2, with minimal entropy
when the black holes are farthest apart and maximal en-
tropy when they have merged into a single black hole. This
is indeed the case, as shown in Fig. 3.

We can view the decrease of z�2 as a time evolution
process in which two black holes initially separated by a
distance � on the circle are perturbed and then collapse
into a single black hole. As seen in Fig. 3 the total entropy
increases during this process, but the entropy diverges as
the distance between the black holes goes to zero. This is
expected since fields diverge when we let the distance
between sources go to zero in the point-particle limit,
and indeed ��1;2��z�2� in (A8) diverge as z�2 ! 0.
However, for physical sources, the minimum distance of
approach between the sources is given by their size. In our
case, a good estimate for this critical distance is given by
the horizon size of a �d� 1�-dimensional Schwarzschild
(spherical) black hole with total mass �, given by

 �s � 2�
�

�
�d� 1��d�1

�
1=�d�2�

: (6.6)

On the other hand, we can compute the distance zc at which
the entropy curve S��;�; z�2� crosses the entropy S1BH���
of a single-black-hole configuration (see Fig. 3), i.e.

 S��;�; zc� � S1BH���: (6.7)

Comparison of the two critical distances �s and zc now
provides an important check on the validity of our pertur-
bative method, since we expect these two numbers to be of
the same order. As illustrated in Table II this match indeed
occurs with �s > zc, where for definiteness we have chosen
� � 0.

We thus conclude that also for nonequilibrium configu-
rations the corrected thermodynamics leads to physically
sensible results.

B. Three black holes on the cylinder

In this subsection we discuss some features that can be
addressed when we have three (or more) black holes, and
we skip properties that are already present in the two-
black-hole configuration. In particular, by studying merges
of two black holes we find evidence for new ‘‘lumpy’’
black-hole configurations.

For definiteness, take a symmetric three-black-hole con-
figuration in equilibrium, located at the points z�1 � 0, z�2 �
�� y, and z�3 � �� y. We also adjust the masses Mi �
�iM such that �2 � �3 �

1
2 �1� �1�, i.e. black holes 2 and

3 have equal mass. We now want to increase the total mass
of the system while maintaining equilibrium. The black
holes will thus increase in size and fill more and more of
the free space in between them. The question we want to
address is whether black holes 2 and 3 with the same mass
will merge first, before merging with black hole 1, or
whether black hole 1 will merge with the other two before
2 and 3 can merge.

As in the previous subsection, our answer to this ques-
tion is limited by the fact that our formulas are strictly valid
only for small black holes interacting via Newtonian grav-
ity, while the black-hole merging process we wish to con-
sider is certainly one where the full nonlinearities of
Einstein’s equations are important. However, we expect
that with the available construction we can gain useful
insights into the behavior of the system, so we proceed to
examine this situation keeping in mind potential caveats.

The question above can be addressed by analyzing the
ratio

S

π0 z2*zc

S2eBH

S1BH

FIG. 3. Plot of the total entropy S of a two-black-hole con-
figuration with fixed total mass � and fixed mass distribution
(here � � 0) as a function of the relative distance z�2 between the
two black holes. We use a value of � that lies below the critical
mass �c listed in Table I.

TABLE II. Comparison of the two critical distances zc and �s in the case � � 0 for some
representative values of d and � (taken below the mass �c for which we can trust the
perturbative results; see Table I). zc is the minimum distance imposed by entropic consider-
ations, as illustrated in Fig. 3, and �s is the size of a �d� 1�-dimensional Schwarzschild black
hole with mass �.

d 4 5 6

� 0.01 0.1 1 10 0.01 0.1 1 7 0.01 0.1 1 3
zc 0.055 0.17 0.52 1.26 0.25 0.53 1.13 1.97 0.54 0.95 1.68 2.25
�s 0.081 0.26 0.82 2.58 0.29 0.62 1.33 2.54 0.56 1.00 1.78 2.34
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 X �
�s�1� � �s�2�

z12

z23

�s�2� � �s�3�
; (6.8)

where �s�i� is the Schwarzschild radius of the ith black hole
[defined as in (6.6)] and zij is the distance between the ith
and jth black holes. It is not difficult to see that this ratio is
appropriate. Indeed, if black hole 1 joins 2 (and 3, by
symmetry) first, then at the point they merge, one has

z12

�s�1���s�2�
� 1 and z23

�s�2���s�2�
> 1, so that X > 1. On the other

hand, if 2 and 3 merge first then one has X < 1 at the
merging point.

We can express the ratio X defined in (6.8) as a function
of the distance y between black holes 1 and 2 (and 3) as
follows. First one uses the relation �s�i� / ��iM�1=�d�2�

between the Schwarzschild radius and the black-hole
mass in d� 1 dimensions along with the fact that �2 �

�3, so that

 

�s�1� � �s�2�

�s�2� � �s�3�
�

1

2

�
1�

�
�1

�2

�
1=�d�2�

�

�
1

2

�
1�

�
V23

V12

�
1=�d�2�

�
; (6.9)

where we used the equilibrium conditions (3.7) in the last
step. Finally, we substitute the explicit expressions (3.4) for
Vij where z12 � z�2 � z

�
1 � �� y in V12 and z23 � z�3 �

z�2 � 2y in V23. Note that equilibrium requires z23 <�, so
we only consider 0< y< �=2. Equilibrium also demands
that �2 � �3 < �1=2.

Collecting results, we use (6.9) to write the ratio in (6.8)
as

 X�y� �
y

�� y

�
1�

�
�� y

2y

�
�d�1�=�d�2�

�
�2��d�1 � �2y�d�1���d� 1; 1� y

�� � ��d� 1; 1� y
��

�2��d�1 � ��� y�d�1���d� 1; 1� ��y
2� � � ��d� 1; 1� ��y

2� �

�
1=�d�2�

�
:

(6.10)

We can understand (6.10) as follows. A given value of y
fixes the location and mass distribution of the system in
equilibrium. Now let the total mass of the system increase.
There is a critical value, call it M23, above which 2 and 3
are merged. Similarly, above a critical value M12, 1 is
merged with 2 (and 3). X can then be expressed as the
ratio �M23=M12�

1=�d�2�. Thus, if X < 1, as we increase the
total mass of the distribution, black holes 2 and 3 will
merge before 1 joins them, and vice-versa.

A numerical analysis of (6.10) shows the following
features; see Fig. 4. For �

3 < y< �
2 , one has X > 1; for

y� < y< �
3 , X < 1; and for 0< y< y�, X > 1 again. Here,

y� is a critical value that depends on the dimension of the
space-time. For example, for d � 4 one has y� �

�
3:76 ,

while for d � 9 one has y� �
�

55:56 . More generally, as d
grows y� decreases and the interval where X < 1 grows.

To interpret these results, first note that the case y �
�=2 describes a two-black-hole configuration that is the
limiting case of the three-black-hole configuration where

M1 ! 0, and we have two equal black holes each with
mass M=2 located at z � �=2 and z � 3�=2. The case
y � �=3 corresponds to a symmetric configuration with
three equal black holes equally spaced along the circle. The
case y � 0 yields essentially the single-black-hole limit of
the three-black-hole configuration where M1 � M is cen-
tered at z � 0 while M2 � M3 ! 0. Therefore, as y goes
from 0 to �=2, the masses M2 � M3 increase from 0 up to
M=2, while M1 decreases from M to 0.

Keeping these features in mind, and that �
3 < y< �

2

implies z23 > z12, it follows that as the total mass increases
black holes 2 and 3 will merge with black hole 1 before
they meet each other. We thus expect, as observed above,
that X > 1 for these values of y and X � 1 at the bounda-
ries of the range. To understand the behavior of X for 0<
y< �

3 , it does not suffice to use purely geometrical argu-
ments. Indeed, since M1 >M2 in this branch, black hole 1
seems to approach 2 (and 3) faster than 2 and 3 approach
each other, but since at the same time z23 < z12, we should
use the numerical analysis of X described above to deter-
mine what happens. This tells us that black holes 2 and 3
merge first, at least for y� < y< �

3 where we found X < 1.
However, for y values smaller than y� the numerical results
for X are not reliable anymore, since, in particular, as y!
0 we see that X ! 1 which is due to the fact that our
formulas are strictly valid in the point-particle limit where
fields diverge when the distance between sources vanishes.

The results above suggest that it could be possible that,
after the merging of the two black holes (2 and 3), we end
up with a lumpy black hole (i.e. a ‘‘peanutlike’’ shaped
black object) together with an ellipsoidal black hole (1). It
is conceivable that such a configuration would be a new
static black-hole solution in asymptotically Md � S1

X-1

yy
*0

FIG. 4. A typical plot of X� 1 versus the distance y ranging
from 0 to �=2.
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space-times. Generally if two black holes were to merge in
this way, we expect that the resulting configuration would
be singular. The singularity would arise if the surface
gravities or temperatures of the two black holes differed,
following standard results of [36,37]. In the above con-
struction, however, we choseM2 � M3 to make the surface
gravities identical in the merger.

To discuss this further, note first of all that it is still true
that the area of one spherical black hole of given mass is
bigger than the sum of the areas of two isolated black holes
with the same total mass. Nevertheless, the following argu-
ment suggests the possibility of lumpy objects for d � 4.
In general dimension d� 1, the horizon radius of a
Schwarzschild black hole scales as �s �M

1=�d�2�, so start-
ing from two black holes with �s�1;2� / M

1=�d�2�
1;2 we have at

the merging point a total radius �s�1� � �s�2� / M
1=�d�2�
1 �

M1=�d�2�
2 . On the other hand, a single black hole with mass

M1 �M2 has a radius �s�12� / �M1 �M2�
1=�d�2�. In four

dimensions (d � 3) this scales the same way as the total
radius of the merged object, so we expect the formation of
a spherical black hole [38]. However, for d � 4 the power
in the exponent is less than 1 so that �s�1� � �s�2� > �s�12�.
Hence we should expect that the resulting merger configu-
ration will not be surrounded by a spherical horizon, as
would occur for d � 3.

As a consequence, it seems that for d � 4 this analysis
does not rule out the possibility of having a configuration
of a lumpy black object with ‘‘centers’’ at z � �� y kept
in an unstable equilibrium by a black hole at z � 0 (and the
respective copies). Note also that the argument above
suggests that the higher the dimension, the more likely it
is that lumpy black holes will exist. Finally, we emphasize
that the above analysis should be read within the earlier-
mentioned limitations of our construction.

Note that in asymptotically flat space new stationary
black holes with similar ‘‘rippled’’ horizons of spherical
topology have been argued to exist in Ref. [39] by consid-
ering ultraspinning Myers-Perry black holes in dimensions
greater than 6. While in that case the ripples are supported
by the angular momentum J, in our case they are supported
by the external stress of the other (ellipsoidal) black hole. It
would be interesting to generalize the analysis above to
configurations with more bumps, for example, taking a
symmetric four-black-hole configuration withM2 � M3 �
M4.

VII. CONCLUSIONS AND OUTLOOK

A. Summary

In this paper we constructed solutions of the vacuum
Einstein equations describing multi-black-hole configura-
tions on the cylinder Rd�1 � S1 with d � 4, in the limit of
small total mass, or, equivalently, in the limit of a large
cylinder. These solutions generalize the analytic solutions
found for the single black hole on the cylinder [17–21].

Furthermore, they generalize the so-called copies of the
single-black-hole solutions corresponding to having equal
mass black holes distributed equidistantly around the cyl-
inder [28,29]. The new solutions are valid to first order in
the total mass, and are constructed using the technique of
[17] based on an ansatz for the metric found in [16].

Using the first-order corrected metrics for the multi-
black-hole configurations, we have studied their thermo-
dynamics. Included in this is one of the central results of
this paper: The relative tension (binding energy) n as a
function of the total (rescaled) mass �, as given by
Eq. (4.9). Using this, we have shown how the solutions
appear in the ��; n� phase diagram [12,29], together with
the other known solutions that asymptote to Md � S1. We
observed that a multi-black-hole configuration with k black
holes has k independent parameters. This implies a con-
tinuous nonuniqueness in the ��; n� phase diagram (or for a
given mass), much like the one observed for bubble-black-
hole sequences [30].

The multi-black-hole configurations have to be in me-
chanical equilibrium in order to have a static solution. We
have identified where this requirement appears in the con-
struction of the solution, and we have furthermore exam-
ined how to build such equilibrium configurations.
Moreover, we have described a general copying mecha-
nism that enables us to build new equilibrium configura-
tions by copying any given equilibrium configuration a
number of times around the cylinder.

Finally, we examined in detail configurations with two
and three black holes. For two black holes we verified the
expectation that one maximizes the entropy by transferring
all the mass to one of the black holes, and also that if the
two black holes are not in mechanical equilibrium then the
entropy is increasing as the black holes become closer to
each other. These two facts are both in accordance with the
general argument that the multi-black-hole configurations
are in an unstable equilibrium and generic perturbations of
one of the positions will cause all the black holes to merge
together in a single black hole on the cylinder. For the
three-black-hole solution we examined and found prelimi-
nary evidence for the hypothesis that for certain three-
black-hole configurations two of the black holes can merge
into a lumpy black hole, where the nonuniformities are
supported by the gravitational stresses imposed by an
external field.

From the first-order corrected temperatures one can
show that the multi-black-hole configurations are, in gen-
eral, not in thermal equilibrium. The only configurations
that are in thermal equilibrium to this order are the copies
of the single-black-hole solution studied previously
[17,28,29]. As a further comment we note that Hawking
radiation will seed the mechanical instabilities of the multi-
black-hole configurations. The reason for this is that in a
generic configuration the black holes have different rates of
energy loss and hence the mass ratios required for me-
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chanical equilibrium are not maintained. This happens
even in special configurations, e.g. when the temperatures
are equal, because the thermal radiation is only statistically
uniform. Hence asymmetries in the real time emission
process will introduce disturbances driving these special
configurations away from their equilibrium positions.

B. Discussion of the phase structure

We now examine the appearance of our new multi-
black-hole phases in connection to the known phases of
black holes and black strings on the cylinder (see [1–3] for
reviews). In particular, as mentioned in the Introduction
there is the well-known phase of the UBS as well as the
NUBS, emanating from the uniform phase at the Gregory-
Laflamme point �GL. Recently, numerical investigations
[11,13–15,22–24] confirmed the prediction [25] that the
nonuniform phase connects via a horizon topology-
changing phase transition [15,25–27] to the phase of a
single LBH (see Fig. 1). This point is generally referred
to as the merger point.

Moreover, as reviewed in Sec. III, for any solution that
falls into the SO�d� 1�-symmetric ansatz (2.1) of
Ref. [16], one can obtain a copied solution [17,28,29] by
changing the periodicity of the circle from L to kL with k
an integer. As mentioned above, this includes the localized
black-hole phase, from which one generates in this way the
multi-black-hole solutions with k equal mass black holes,
which we denote by LBHk. It also includes the nonuniform
black-string phase, from which we generate copies which
we denote by NUBSk, emerging from the uniform phase at
critical mass �GL=kd�3. This thus means that the LBHk
phase will connect to the NUBSk phase via a horizon
topology-changing phase transition at the k-copied merger
point (see Fig. 1 for k � 2).

We now turn to the question posed in Sec. V: Where do
all the new multi-black-hole phases end in the phase dia-
gram? For definiteness, let us consider again configurations
with two black holes. The LBH and NUBS phases are
connected via the topology-changing merger point, and
likewise the LBH2 and NUBS2 phases are connected via
the two-copied merger point. As explained in Sec. V all
two-black-hole configurations with unequal mass lie (at
least for small masses) in between these two limiting
phases, and it is not clear where these phases will end up
in the phase diagram. Two scenarios where given in Sec. V,
and we now examine in more detail the possibility of the
second scenario, namely, that the black holes merge into a
new nonuniform string. Recall that this would require the
temperatures of the black holes to approach each other at
the merger point.

First of all, we have seen in Sec. VI A that our first-order
result for the temperatures shows that the temperatures of
the two black holes are redshifted in such a way that they
tend to approach each other. This lends credibility to the
possibility that indeed in the full nonperturbative regime

the temperatures may converge to a common value at the
merger. If this is the case, it seems to suggest that there
would exist new nonuniform black strings beyond the
NUBSk phases, to which the unequal mass black-hole
configurations could connect via new merger points.10

If smooth mergers do occur for different size black-hole
configurations, an important question to consider is
whether this a generic feature, or if it only happens for
particular configurations. Consider for example the case of
two black holes, for which we have two free parameters,
namely, the total mass and the ratio of the individual
masses. Equating their temperatures fixes the mass ratio
as a function of the total mass [see Eq. (6.5)]. Similarly,
achieving a merger of the black holes also fixes the ratio
with another function of the total mass. If we imagine these
two functions of the mass to be independent, it follows that
we only expect these two functions to intersect at discrete
points in the space of parameters defining the configura-
tion. On the other hand, if these two functions are not
independent, due to the interrelation between geometry
and energy in general relativity, one can instead imagine
that the two functions always intersect, so that the smooth
mergers are a generic feature.

As discussed above, smooth mergers for different size
black-hole configurations suggest that new nonuniform
black-string phases exist. If this is the case, there are
certain constraints on such new phases from general argu-
ments. First, it is clearly not possible that there are nonuni-
form black strings emerging from the uniform black string
in the range �GL=2d�3 <�<�GL [8]. Also, it does not
seem possible that one can have other branches than the
known ones coming out of the Gregory-Laflamme point (or
its k copies) of the uniform black string given the higher-
order perturbative analysis of Ref. [10]. Second, it is
impossible to (locally) have a continuum of nonuniform
black-string solutions in the phase diagram. To prove this
assertion imagine that there is a two-dimensional continu-
ous parameter space of solutions and consider two points,
say A and B, in this continuum. It follows from the con-
tinuity that one can always connect these two points by two
different paths of solutions. Imagine now that the two-
dimensional space of solutions projects into a two-
dimensional region in the ��; n� phase diagram. If we
then furthermore take the paths so that n in path 1 is greater
than n in path 2, then we get a contradiction when using the
intersection rule of Ref. [12]. This is because ��S1=S2� �
�n1 � n2�M�M=��d� 1�T1T2S2

2� where the indices on the
quantities refer to the paths. Since n1 > n2, the right-hand
side is strictly positive. Thus, the ratio S1=S2 in point B
should be greater than 1, but that is not possible since the
two paths should go to the same solution. We thus conclude

10Note that the original argument by Kol [1,25] for the merger
transition of the LBH and NUBS phases was based on Morse
theory, which, loosely speaking, implies that the LBH phase
cannot end in ‘‘nothing.’’
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that a locally continuous space of solutions is impossible,11

except in the very special case where the continuous space
of solutions projects onto a one-dimensional subspace in
the ��; n� phase diagram. This provides a further argument
that smooth mergers would only occur at discrete points,
because there could only be a discrete set of nonuniform
string solutions to which the merging black holes could
connect.

Given these two constraints, there is still the possibility
that new nonuniform black strings may exist. Namely, it is
conceivable that the NUBSk phases (k � 1) develop their
own zero modes as one moves a finite distance away from
the GL point (or its k copies). This is a nonperturbative
effect that would not show up in the perturbative analysis
of Gubser. These zero modes on the nonuniform black
string would in fact imply that they have some region in
which they are, respectively, classically unstable or stable,
just as for the uniform black string. Such a bifurcation of
new nonuniform strings from the presently known ones
would also be discrete and thereby evade the second re-
striction presented above. Furthermore, in this scenario one
could imagine a fractal structure of further bifurcations
into new nonuniform strings, all of which eventually end
up in a particular multi-black-hole configuration. If true,
this would fit well with the smooth mergers of different
size black-hole configurations occurring only at discrete
points in the space of configurations. It would be very
interesting to explore this possibility further.

Another point that we already alluded to in Sec. V is that
we do not expect the phases of two-black-hole configura-
tions to stay in between the LBH and LBH2 curves in the
��; n� phase diagram (and similarly for multi-black-hole
configurations with more than two black holes). To see this
consider the LBH curve in Fig. 1. This curve has a point at
which � is maximal, occurring well before the merger
point. Beginning with this maximal mass single-black-
hole configuration we can add a tiny black hole on the
opposite side of the circle and reach a two-black-hole
configuration with greater mass than the original configu-
ration. This clearly implies that the two-black-hole con-
figurations can extend outside the wedge bounded by the
LBH and LBH2 curves. In fact, one can similarly argue by
starting from the extremal point on the LBH2 curve that by
removing a tiny mass from one of the two black holes, one
can reach a two-black-hole configuration to the left of this
curve. Another interesting example comes from adding a
pair of tiny black holes to any LBH2 configuration to
produce a four-black-hole configuration in its neighbor-
hood in the phase diagram, very far away from the wedge

enclosed by the LBH3 and LBH4 curves. The above rea-
soning can be extended by imagining further additions of
tiny masses, in more complicated starting configurations,
leading to an intricate pattern of crossings of lines in the
��; n� phase diagram.

We have also presented evidence in this paper for the
possibility of a new class of static lumpy black holes in
Kaluza-Klein space. Again, it would be interesting to study
this further, and examine how these in turn might connect
to new nonuniform phases.

C. A fluid analogy

It is also interesting, though more speculative, to con-
sider the appearance of the multi-black-hole configurations
in relation to an analogue model for the GL instability,
recently proposed in Ref. [40]. There it was pointed out
that the GL instability of a black string has a natural
analogue description in terms of the Rayleigh-Plateau
(RP) instability of a fluid cylinder. It turns out that many
known properties of the gravitational instability have an
analogous manifestation in the fluid model. These include
the behavior of threshold mode with d, dispersion rela-
tions, the existence of critical dimensions, and the initial
stages of the time evolution12 (see Refs. [40,42,43] for
details).

Since our reasoning below relies on the time evolution of
the system and its endpoint, it is worth mentioning that the
full time evolution of the RP instability is well known (both
numerically and experimentally; see Refs. [44–47] for
details). On the gravity side, only the initial stages of the
GL instability have been numerically studied so far [48].
Comparing with the fluid system there is an interesting
match between the initial stage of the evolution in the two
systems. Starting from a single sinusoidal perturbation
both develop an almost cylindrical thread or neck in be-
tween the two half-rounded boundary regions. This can be
confirmed by comparing Fig. 1 of [46] (which describes the
full RP evolution) and Fig. 2 of [48] (which describes the
initial stage of the GL evolution).

One should be cautious when applying the analogue
model, especially in what concerns the evolution of the
systems. The reason is that the analogy is partly based on
the similarity between the first law of black-hole thermo-
dynamics and the fluid relation dE � TdA where E is the
potential energy associated with surface tension (free en-
ergy), T the effective surface tension, and A the surface
area of the fluid. This means that both systems tend to
extremize the area. However, on the gravity side we know
that a black object evolves such that its horizon area never

11Note that implicit in the above argument is the assumption
that there is only one connected horizon with a given tempera-
ture. Thus, the fact that multi-black-hole configurations cover a
continuous region in the phase diagram is not a contradiction
because they contain disconnected horizons typically at different
temperatures.

12Recently, another feature of these instabilities has been
matched. If rotation is added to the fluid, the strength of the
fluid instability increases because the centrifugal force is bigger
in a crest than in a trough of the configuration. On the gravity
side it was found in Ref. [41] that rotating black strings, even for
large rotation, are indeed also unstable to the GL instability.
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decreases, whereas a fluid evolves toward a configuration
with smaller area, since this decreases its potential energy.
Despite these reversed dynamical features, it is worthwhile
to notice that, just like a multi-black-hole system will
maximize its entropy by merging into one single black
hole containing all the mass, so will an array of fluid
droplets merge into a single drop in order to minimize its
surface area at fixed volume.

Having alerted the reader to these caveats, we proceed
with the analogy in hand, considering the time evolution of
the fluid in further detail. A representative study of par-
ticular interest for our purposes was carried out in [46]. The
main conclusion is that if we start with a single sinusoidal
perturbation in a cylindrical liquid bridge, the higher har-
monics generated by nonlinear effects are responsible for
the development of a long neck that breaks13 in a self-
similar process [44–46]. We end up with an array of
satellite drops with different sizes. Hence, if the correspon-
dence indeed extends to the full evolution, the multi-black
holes would be the natural gravity analogues of the main
drop and satellite droplets array observed in the fluid
analysis.

Furthermore, the analogue model would thus argue in
favor of the scenario in which the neutral black string will
pinch off. Moreover, the multi-black-hole configurations
constructed in this paper would play an important role in
the intermediate stages of the GL instability. It would be
interesting to examine this application of the analogue fluid
model and its consequences more closely.

D. Outlook

The study of Kaluza-Klein black holes and their high
degree of nonuniqueness can be viewed in the broader
context of studying black objects in higher-dimensional
gravity. Here, research in the last years has revealed that
also in asymptotically flat space a very rich phase structure
of stationary black objects is expected. In particular, in
five-dimensional Einstein gravity there exists, beyond the
rotating Myers-Perry black hole, a black-ring solution [49]
(see [50] for a review). Recently, further new stationary
solutions, called ‘‘black saturns’’ [32,33], have been con-
structed explicitly in five-dimensional gravity. These solu-
tions, consisting of a spherical black hole with black rings
around it, are similar to the multi-black-hole configura-
tions, in that the generic solution is not in thermal equilib-
rium, with different temperatures for each connected
component of the event horizon. Furthermore, one may

compare the configurations with highest entropy in the two
systems. It was shown in Ref. [34] that the maximal
entropy configuration for fixed mass and angular momen-
tum consists of a central, close to static, black hole and a
very thin black ring around it. For any value of the angular
momentum, the upper bound on the entropy is then equal to
the entropy of a static black hole of the same total mass.
These maximal entropy black saturns are not in thermal
equilibrium. In some sense the same features are observed
for multi-black-hole configurations. If we restrict ourselves
to the case of two black holes, the highest entropy con-
figuration (see Sec. VI A) is that of an infinitesimally small
black hole together with a large black hole, i.e. far away
from thermal equilibrium. The entropy of that configura-
tion is bounded from above by that of a single black hole of
the same mass.

It is also worth emphasizing that the solution technique
employed in this paper can be applied to other black-hole
systems where one lacks the symmetries or other insights
to construct exact solutions. The general idea is to identify
a suitable perturbation parameter of the putative solution,
and follow similar steps as outlined in Sec. II.

Another open direction to pursue is to apply numerical
techniques to extend the construction of multi-black-hole
configurations into the nonperturbative regime, as was
successfully done for a single black hole on a cylinder in
five and six dimensions [22–24]. Such an analysis could
confirm whether indeed there are multi-black-hole con-
figurations for which the temperatures converge when
approaching the merger points as one increases the mass,
as was discussed in Sec. VI A. Furthermore, it is possible
that in this way one could confirm the existence of the
lumpy black holes conjectured in Sec. VI B, where we
recall that these are most likely for higher dimensions.

A further, but technically complicated, direction to pur-
sue is to extend the solutions of this paper to the next, i.e.
second, order. For the case of a single black hole in five
dimensions, the second-order correction to the metric and
thermodynamics has been studied in [20]. More generally,
the second-order correction to the thermodynamics was
obtained in Ref. [21] for all d using an effective field theory
formalism in which the structure of the black hole is
encoded in the coefficients of operators in an effective
worldline Lagrangian. It would be interesting to obtain
the second-order corrected metric and thermodynamics
for the multi-black-hole case considered in this paper.

There are also potential applications related to string
theory and gauge theory. It is known that the phases of
Kaluza-Klein black holes are related via a boost/U-duality
map [51] (see also [52,53]) to phases of nonextremal and
near-extremal branes on a transverse circle, appearing as
solutions in type II string theory or M theory. Via the
gauge/gravity correspondence [54,55] this has implications
for the phase structure of the dual nongravitational theories
at finite temperature. For instance, it is possible to obtain in

13Note that at the pinch-off there is another similarity that
characterizes both instabilities. On the gravity side, one would
need to use quantum gravity when the pinch-off region reaches
the Planck scale and general relativity is no longer valid.
Likewise, close to the breakup of the fluid, when the radius of
the liquid bridge is of molecular size, the (continuum) hydro-
dynamic theory is no longer a good approximation and simula-
tions of the molecular dynamics are required.
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this way nontrivial predictions [51,53,56] about the strong
coupling dynamics of supersymmetric Yang-Mills theories
on compact spaces and of the thermal behavior of little
string theory.

As an important example, Ref. [53] considered finite
temperature two-dimensional supersymmetric Yang-Mills
theory on a spatial circle, which by the boost/U-duality
map is related to the phase structure of Kaluza-Klein black
holes in ten dimensions. The corresponding phase structure
that is present at strong coupling in the two-dimensional
Yang-Mills theory on the torus S1

	 � S
1 was then qualita-

tively matched to the phase structure in the weakly coupled
gauge theory. In particular, it was found in [53] that the
eigenvalue distribution of the spatial Wilson loop distin-
guishes between the three different phases seen at strong
coupling: The uniform phase corresponds to a uniform
eigenvalue distribution, the nonuniform phase corresponds
to a nonuniform eigenvalue distribution, and the localized
phase maps to a gapped eigenvalue distribution. It would
be interesting to see if there are also multiply gapped
eigenvalue distributions (see e.g. Ref. [57]), corresponding
to the localized phase of multi-black holes found in this
paper. While those would probably be unstable as men-
tioned above, they may still appear as unstable saddle
points.

Finally, we remark on an open direction that is related to
microscopic calculations of the entropy of black holes. In
Ref. [58] (see [59] for a short summary) the boost/U-
duality map of [51] was extended to the case of branes
with more than one charge. One of the results is that by
starting with neutral Kaluza-Klein black holes in five
dimensions one can generate five-dimensional three-
charge black holes on a circle, obtained from correspond-
ing three-charge brane configurations in type II/M theory
via compactification. In particular, when one applies this
map to a single neutral localized black hole, one obtains a
three-charge black hole localized on the transverse circle.
For this case, it was shown that, in a partial extremal limit
with two charges sent to infinity and one finite, the first
correction to the finite entropy is in agreement with the
microscopic entropy.14 By applying the map to the multi-
black-hole solutions of this paper, one will generate three-
charge multi-black holes on a circle. The results of Sec. IV
can then be used to compute the first correction to the finite
entropy of these three-charge multi-black-hole configura-
tions, and it would be interesting to then derive these
expressions from a microscopic calculation as well.
Furthermore, in Ref. [60] a simple microscopic model
was proposed that reproduces most of the features of the
phase diagram of three-charge black holes on a circle,
including the new nonuniform phase. It would be interest-

ing to see if this model can also account for the corre-
sponding localized three-charge multi-black-hole
solutions.
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APPENDIX: DATA FOR TWO UNEQUAL MASS
BLACK HOLES

In this appendix we give some useful explicit expres-
sions for the quantities that are involved in the construction
of the two-black-hole configuration, further discussed in
Sec. VI A.

The mass fractions of the two black holes are taken as
�1 �

1
2� �, �2 �

1
2� �, and the equilibrium configuration

is chosen such that the first black hole is at z�1 � 0 and the
second at z�2 � �, i.e. at opposite points on the circle. The
function (2.7) entering the Newtonian potential is then
given by

 F�r; z� � 2d�3F �2r; 2z� � 2d�2�F̂ �2r; 2z�; (A1)

where we have defined

14The entropy matching for the single three-charge black-hole
case considered in [58] was extended in Ref. [60] to second
order.
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 F �r; z� �
X1

m��1

1

�r2 � �z� 2�m�2�d�2�=2
;

F̂ �r; z� �
X1

m��1

��1�m

�r2 � �z� 2�m�2�d�2�=2
:

(A2)

The function F �r; z� is identical to the one entering the
Newtonian potential for the single-black-hole case, and
details can be found in Appendix B of [16]. Using
Poisson resummation the large r expansions of the two
functions in (A2) are obtained as

 F �r; z� �
kd
rd�3

�
1� 2

X1
m�1

h�mr� cos�mz�
�
; (A3)

 F̂ �r; z� �
2kd
rd�3

X1
m�0

h��m� 1=2r� cos��m� 1=2z�;

(A4)

where kd and h�x� are defined in (2.9) and (2.10),
respectively.

Note that for even d, the relevant Bessel function takes
the form of a polynomial of finite degree. This allows one
to write explicit expressions for F �r; z� and F̂ �r; z� [and
similarly for v�r; z� in (2.14)]. For example, for d � 4 one
has

 F �r; z� �
1

2r
sinhr

coshr� cosz
;

F̂ �r; z� �
1

r
sinh�r=2� cos�z=2�

coshr� cosz
for d � 4:

(A5)

For d � 6 one has
 

F �r;z��
1

4r3

sinhr
coshr�cosz

�
1

2r2

�
sinh2�r=2�cos2�z=2��cosh2�r=2�sin2�z=2�

�coshr�cosz�2
;

F̂ �r;z��
1

2r3

sinh�r=2�cos�z=2�

coshr�cosz
�

1

8r2

�
sinh2�r=4�cos2�z=4��cosh2�r=4�sin2�z=4�

�cosh�r=2��cos�z=2�2

�
1

8r2

cosh2�r=4�cos2�z=4��sinh2�r=4�sin2�z=4�

�cosh�r=2��cos�z=2�2

for d�6: (A6)

For the small � expansion, we first present the results for
the general location z�2 of the second black hole, restricting
to the equilibrium configuration z�2 � � at the end. In the
region near the first or second black hole, respectively, we
have from (2.19) the expansions

 F�r; z� ’
1
2� �

�d�2
���1�; F�r; z� ’

1
2� �

�d�2
���2�;

(A7)

where ��1;2� are computed from (2.20),

 

��1� �
�12� ��2��d� 2�

�2��d�2
�

1
2� �

�z�2�
d�2
�

1
2� �

�2��d�2

�

�
�
�
d� 2; 1�

z�2
2�

�
� �

�
d� 2; 1�

z�2
2�

��
;

��2� �
�12� ��2��d� 2�

�2��d�2
�

1
2� �

�2�� z�2�
d�2
�

1
2� �

�2��d�2

�

�
�
�
d� 2; 2�

z�2
2�

�
� �

�
d� 2;

z�2
2�

��
; (A8)

and we recall the definitions (2.23) and (2.24). In particular,
for the equilibrium configuration z�2 � � these expressions
reduce to

 ��1� � �2d�3 � 2��1� 2d�3�
2��d� 2�

�2��d�2
;

��2� � �2d�3 � 2��1� 2d�3�
2��d� 2�

�2��d�2
:

(A9)

Note that for � � 1=2, the expression for ��1� reduces to
the correct result for a single black hole. Finally, we record
the sum

 

X2

i�1

�i��i� � 2d�3 2��d� 2�

�2��d�2
�1� 25�d�1� 2d�3��2;

(A10)

which is used in the text to compute various thermody-
namic quantities.

[1] B. Kol, Phys. Rep. 422, 119 (2006).
[2] T. Harmark and N. A. Obers, arXiv:hep-th/0503020.
[3] T. Harmark, V. Niarchos, and N. A. Obers, Classical

Quantum Gravity 24, R1 (2007).

[4] R. C. Myers, Phys. Rev. D 35, 455 (1987).
[5] A. R. Bogojevic and L. Perivolaropoulos, Mod. Phys. Lett.

A 6, 369 (1991).
[6] D. Korotkin and H. Nicolai, arXiv:gr-qc/9403029.

DIAS, HARMARK, MYERS, AND OBERS PHYSICAL REVIEW D 76, 104025 (2007)

104025-22



[7] A. V. Frolov and V. P. Frolov, Phys. Rev. D 67, 124025
(2003).

[8] R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837
(1993).

[9] R. Gregory and R. Laflamme, Nucl. Phys. B428, 399
(1994).

[10] S. S. Gubser, Classical Quantum Gravity 19, 4825 (2002).
[11] T. Wiseman, Classical Quantum Gravity 20, 1137 (2003).
[12] T. Harmark and N. A. Obers, Classical Quantum Gravity

21, 1709 (2004).
[13] E. Sorkin, Phys. Rev. Lett. 93, 031601 (2004).
[14] B. Kleihaus, J. Kunz, and E. Radu, J. High Energy Phys.

06 (2006) 016.
[15] E. Sorkin, Phys. Rev. D 74, 104027 (2006).
[16] T. Harmark and N. A. Obers, J. High Energy Phys. 05

(2002) 032.
[17] T. Harmark, Phys. Rev. D 69, 104015 (2004).
[18] D. Gorbonos and B. Kol, J. High Energy Phys. 06 (2004)

053.
[19] D. Gorbonos and B. Kol, Classical Quantum Gravity 22,

3935 (2005).
[20] D. Karasik, C. Sahabandu, P. Suranyi, and L. C. R.

Wijewardhana, Phys. Rev. D 71, 024024 (2005).
[21] Y.-Z. Chu, W. D. Goldberger, and I. Z. Rothstein, J. High

Energy Phys. 03 (2006) 013.
[22] E. Sorkin, B. Kol, and T. Piran, Phys. Rev. D 69, 064032

(2004).
[23] H. Kudoh and T. Wiseman, Prog. Theor. Phys. 111, 475

(2004).
[24] H. Kudoh and T. Wiseman, Phys. Rev. Lett. 94, 161102

(2005).
[25] B. Kol, J. High Energy Phys. 10 (2005) 049.
[26] T. Wiseman, Classical Quantum Gravity 20, 1177 (2003).
[27] B. Kol and T. Wiseman, Classical Quantum Gravity 20,

3493 (2003).
[28] G. T. Horowitz, arXiv:hep-th/0205069.
[29] T. Harmark and N. A. Obers, Nucl. Phys. B684, 183

(2004).
[30] H. Elvang, T. Harmark, and N. A. Obers, J. High Energy

Phys. 01 (2005) 003.
[31] R. Emparan, J. High Energy Phys. 03 (2004) 064.
[32] H. Elvang and P. Figueras, J. High Energy Phys. 05 (2007)

050.
[33] H. Iguchi and T. Mishima, Phys. Rev. D 75, 064018

(2007).
[34] H. Elvang, R. Emparan, and P. Figueras, J. High Energy

Phys. 05 (2007) 056.

[35] M. Abramowitz and A. Stegun, Handbook of Mathe-
matical Functions (Dover Publications, New York, 1970).

[36] J. M. Bardeen, B. Carter, and S. W. Hawking, Commun.
Math. Phys. 31, 161 (1973).

[37] I. Racz and R. M. Wald, Classical Quantum Gravity 9,
2643 (1992).

[38] K. S. Thorne, in Magic without Magic: John Archibald
Wheeler, edited by J. Klauder (Freeman, San Francisco,
1972).

[39] R. Emparan and R. C. Myers, J. High Energy Phys. 09
(2003) 025.

[40] V. Cardoso and O. J. C. Dias, Phys. Rev. Lett. 96, 181601
(2006).

[41] B. Kleihaus, J. Kunz, and E. Radu, J. High Energy Phys.
05 (2007) 058.

[42] V. Cardoso and L. Gualtieri, Classical Quantum Gravity
23, 7151 (2006).

[43] V. Cardoso, O. J. C. Dias, and L. Gualtieri,
arXiv:0705.2777.

[44] A. H. Nayfeh, Phys. Fluids 13, 841 (1970).
[45] F. Shokoohi and H. G. Elrod, J. Comput. Phys. 71, 324

(1987).
[46] H. A. S. M. Tjahjadi and J. M. Ottino, J. Fluid Mech. 243,

297 (1992).
[47] J. Eggers, Rev. Mod. Phys. 69, 865 (1997).
[48] M. W. Choptuik et al., Phys. Rev. D 68, 044001 (2003).
[49] R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101101

(2002).
[50] R. Emparan and H. S. Reall, Classical Quantum Gravity

23, R169 (2006).
[51] T. Harmark and N. A. Obers, J. High Energy Phys. 09

(2004) 022.
[52] P. Bostock and S. F. Ross, Phys. Rev. D 70, 064014 (2004).
[53] O. Aharony, J. Marsano, S. Minwalla, and T. Wiseman,

Classical Quantum Gravity 21, 5169 (2004).
[54] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[55] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y.

Oz, Phys. Rep. 323, 183 (2000).
[56] T. Harmark and N. A. Obers, Nucl. Phys. B742, 41 (2006).
[57] J. Jurkiewicz and K. Zalewski, Nucl. Phys. B220, 167

(1983).
[58] T. Harmark, K. R. Kristjansson, N. A. Obers, and P. B.

Ronne, J. High Energy Phys. 01 (2007) 023.
[59] T. Harmark, K. R. Kristjansson, N. A. Obers, and P. B.

Ronne, Fortschr. Phys. 55, 748 (2007).
[60] B. D. Chowdhury, S. Giusto, and S. D. Mathur, Nucl. Phys.

B762, 301 (2007).

MULTI-BLACK-HOLE CONFIGURATIONS ON THE CYLINDER PHYSICAL REVIEW D 76, 104025 (2007)

104025-23


