
Kaluza-Klein gravity and scalar-tensor theories

Bertrand Chauvineau
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In this paper, we propose a Kaluza-Klein approach to gravity in � � 4� n1 � n2 � . . . dimensions,
where n1; n2; . . . are the dimensions of independent internal spaces. One is interested in the case where
each internal metric depends on the four-dimensional coordinates by a conformal factor. If all these
conformal factors depend on the four-dimensional coordinates through a common scalar function �, the
induced effective four-dimensional gravity theory turns out to be of general scalar-tensor type. One shows
that, if there are at least two internal spaces, the theory is not ruled out by experimental tests on
gravitation, even if there is no massive scalar-potential term in the effective four-dimensional Lagrangian
(contrary to what happens if there is only one internal space, in which case ! is of order unity, whatever
the dimension of this internal space).
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I. INTRODUCTION

While general relativity (GR) currently passes success-
fully all observational and experimental tests on gravity
[1], one observes a surge of interest in scalar-tensor (ST)
gravity theories [2–10], the prototype of which is the
Brans-Dicke (BD) theory [2]. From a phenomenological
point of view, this is related to the facts that (i) ST solutions
are arbitrarily close to GR solutions for arbitrarily large
values of ! (but not necessarily with the same matter
content) [11–18], and (ii) the scalar field is naturally driven
to a value for which ! is infinite by the cosmic expansion
for a large class of ST theories [19,20]. From a fundamen-
tal point of view, this is related to the fact that the (four-
dimensional) gravity theories induced by more fundamen-
tal theories (string theory, multidimensional theories, . . .)
often involve a Brans-Dicke scalar field accompanying the
metric tensor (see, for instance, [9,10] for recent reviews).
This gives to the induced gravity a structure closer to ST
theory (in fact BD in most of the cases) than to GR.

However, if one considers the previous fundamental
motivation, it could be strongly tempered by the fact that
the induced Brans-Dicke parameter is generally of order
unity, a value by far ruled out by present experimental data,
which require !> 4� 104 at present epoch, at least in the
cases where there is no scalar potential with a large effec-
tive mass [1,21]. For instance, the low energy limit of the
string theory leads to a BD theory, with! � �1 [9,10,22–
24]. In modern versions of Kaluza-Klein gravity, the extra-
dimensional part of the metric has a conformal scale factor
depending on the four space-time coordinates. This con-
formal factor results in the presence of a BD scalar field in
the effective four-dimensional action [9,10]. In this case,
the parameter ! is related to the number n of compactified
extra dimensions, in such a way that it is of order unity,
whatever n (! � �1� 1=n). Hence, both string theory
and Kaluza-Klein approaches lead to effective BD gravity,
but in a version which necessitates a sufficiently massive
scalar field in order to survive the current gravitational

tests. In the case of a nonmassive induced scalar field (or
scalar field with weak effective mass), the corresponding
ST theory is ruled out by observations and experiments.

Other examples of theories resulting in effective ST
four-dimensional gravity are presented in [9,10]. These
theories generally lead to the same incompatibility when
confronted to experimental data.

Besides, in both the string theory and Kaluza-Klein
approaches, a coupling of the scalar field with matter
generically appears, resulting in weak equivalence princi-
ple violation [9,10]. Such a violation does not occur in
original BD and ST theories [2–6], since it is explicitly
prescribed from the start that the scalar field does not enter
the matter part of the action (in Jordan’s representation of
the theory) [8].

In this paper, a Kaluza-Klein approach to gravity is
considered, but in which several independent internal
spaces are attached to the four-dimensional space-time. It
is shown that this generalization leads to four-dimensional
gravity of general ST type. Besides, it turns out that the
value of ! derived from this approach is not constrained to
be of order of unity, and (arbitrarily) large values are
allowed. Hence, while current fundamental theories can
pass the experimental gravity tests only if the induced
scalar field is sufficiently massive, the proposed version
of Kaluza-Klein approach to gravity is not ruled out by
observations and experiments, even in the massless or
weakly massive cases.

II. SCALAR CURVATURE AND LAGRANGIAN IN
� � 4� n DIMENSIONS

Let us consider a variety with � � 4� n dimensions,
corresponding to the four usual space-time dimensions,
and n extra spacelike dimensions. This variety is supposed
to have an attached metric tensor gAB on the form

 �gAB� �
g���x�� 0

0 g���x�; x��

� �
(1)
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where the capital Latin indices A;B;C . . . run over the
whole set of values 0; 1; . . . ;�� 1. The Greek indices
�;�; �; . . . run from 0 to 3 (the usual four-dimensional
space-time) while the Greek indices �;�; �; . . . run from 4
to �� 1 (the n extra-dimensions). Since this paper is only
interested in the gravitational sector, there is no g�� com-
ponent in (1). A quantity X computed in the whole space-
time will be noted ���X, while �4�X and �n�X denote the
analogous quantities, computed in the four-dimensional
space-time and in the extra-dimensional space, respec-
tively. In order to simplify notations, when X contains
indices (tensors, connection, . . .), we will sometimes use
the following conventions:

(i) If at least one of the indices is A;B;C; . . . , the super-
script ��� is suppressed (�CAB �

����CAB, R�A �
���R�A);

(ii) If all the indices are �;�; �; . . . , the superscript �4�
is suppressed if and only if the four-dimensional
quantity is considered (R�� � �4�R��, but

� ���R��);
(iii) If all the indices are �;�; �; . . . , the superscript �n�

is suppressed if and only if the extra-dimensional
quantity is considered (R�� � �n�R��, but
� ���R��);

(iv) Since it is not necessary, no superscript is written
for the covariant components of the metric tensor.
The block diagonal form (1) allows one to use the
same convention for the contravariant components.

One finds:

 

������� � ����
������� � �

1
2g
��@�g��

������� �
1
2g
��@�g�� ������� � ����

(2)

all the other connection components being zero. Defining

 �A � �BAB HA � gBC�ABC (3)

it turns out that

 

����� � �� �
1
2@� ln��n�g� ����� � ��

���H� � H� � 1
2g
��@� ln��n�g� ���H� � H�

(4)

where, as usual, g stands for the determinant of the cova-
riant components of the metric tensor.

The scalar curvature

 

���R � gAB@C�CAB � g
AB@B�A �H

A�A � g
AB�DAC�CBD

(5)

turns out to write

 

���R � �4�R� 1
4g
��@�g��@�g�� �

1
4�@ ln�n�g�2

� �4�� ln�n�g� �n�R (6)

where �4�� stands for the four-dimensional Dalembertian
operator [�4�� ln�n�g � g���@�@� ln�n�g� ����@� ln�n�g�].

�@ ln�n�g�2 stands for g��@� ln�n�g@� ln�n�g. Let us point
out that �n�R ( � g���n�R��) depends explicitly on four-
dimensional coordinates. Equation (6) can be equivalently
rewritten

 

���R � �4�R�
1

4
g��@�g��@�g�� �

1
�n�g
�@

��������
�n�g

q
�2

�
2��������
�n�g

q �4��

��������
�n�g

q
� �n�R: (7)

The related �-dimensional Lagrangian density writes

 

���L � ���R
�����������
j���gj

q
� ���R

������������
��4�g

q ��������
�n�g

q
(8)

which gives, using (7)
 

���L������������
��4�g

q �
��������
�n�g

q
�4�R�

1

4

��������
�n�g

q
g��@�g��@�g��

�
1��������
�n�g

q �@
��������
�n�g

q
�2 � 2�4��

��������
�n�g

q
�

��������
�n�g

q
�n�R:

(9)

III. CASE OF SEVERAL INDEPENDENT
INTERNAL SPACES

Let us consider the case where the extra-dimensional
space is composed by a (finite) number of different inde-
pendent ’’internal spaces,’’ and where each internal metric
depends on the four-dimensional space-time coordinates
through a conformal factor. This means that the extra-
dimensional part of the metric in (1) has the block diagonal
form

 �g���x
�; x��� �

A1�x��~g�1�1
�x�1� 0 0

0 A2�x
��~g�2�2

�x�2� 0
0 0 . . .

0
B@

1
CA (10)

with obvious notations for the indices. The dimension of
the kth internal space is noted nk, in such a way that

 n1 � n2 � . . . � n: (11)

Let us define ��x�� (> 0) by

 �2 � An1
1 A

n2
2 . . . : (12)
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The Lagrangian (9) can be rewritten
 

���L������������
��4�g

q �

�
��4�R�

�

4

�
n1
�@A1�

2

A2
1

� . . .
�
�

1

�
�@��2

� 2�4���
� ���

~g
p
��

���
~g

p ��n1� ~R
A1
� . . .

�
(13)

where �nk� ~R is the scalar curvature of the kth internal space,
computed using the metric ~g�k�k , and ~g stands for
�n1�~g�n2�~g . . . .

IV. EFFECTIVE FOUR-DIMENSIONAL
LAGRANGIAN AND ST GRAVITY

A. Effective four-dimensional Lagrangian

As usual (see, for instance, [9]), let us define the effec-
tive four-dimensional Lagrangian �4�L by

 

Z
dnx����L � �4�L

Z
dnx�:

���
~g

p
: (14)

Let us also define the scalar constants �k, one per internal
space, by

 �k �

R ���������
�nk�~g

q
�nk� ~Rdnkx�k

R ���������
�nk�~g

q
dnkx�k

: (15)

One obtains
 

�4�L �
������������
��4�g

q �
��4�R�

�

4

�
n1
�@A1�

2

A2
1

� . . .
�
�

1

�
�@��2

�

��
������������
��4�g

q �
�1

A1
� . . .

�
(16)

up to a four-dimensional divergence term.

B. ST gravity

Let us now consider the case where the scalar factors
Ak�x�� depend on the four-dimensional space-time coor-
dinates through a common scalar function ��x��. This
means that there are one-variable functions Fk such that

 Ak�x
�� � Fk���x

���: (17)

At this level, there are no obvious fundamental motivations
for such a choice. But let us adopt a phenomenological
point of view, and examine the consequences of this hy-
pothesis. In this case, � also depends on �, and (16) writes
 

�4�L �
������������
��4�g

q �
��4�R�

!���
�
�@��2

�

��
������������
��4�g

q �
�1

F1
� . . .

�
(18)

with

 !��� �
�2

4

�
d�

d�

�
2
�
n1
F021
F2

1

� . . .
�
� 1 (19)

where F0k � dFk=d�. Since all the Fk depend on a same
scalar field �, one can take for � one of the functions Fk,
the field � or any well-suited function of the Fk. One does
not make an explicit choice for the moment.

It turns out that the Lagrangian (18) has the formal
structure of the general ST gravity theories Lagrangian,
with a scalar dependent potential ���� [8]

 L �
�������
�g
p

�
�R�

!���
�
�@��2 � 2�����

�
(20)

since the Fk in (18) depends on �, hence on �. Let us also
point out that the resulting !��� is necessarily 	 �1,
which excludes values <� 3=2 from the start (recall that
!<�3=2 leads to unstable solutions [25,26]).

V. DISCUSSION

As a particular case, let us first reconsider the case where
there is only one internal space, i.e. n1 � n and n2 � n3 �
. . . � 0. One recovers that !��� is a constant term, written
!BD, and that the effective Lagrangian (18) takes the well-
known form (setting � � �1)

 

�4�L �
������������
��4�g

q �
��4�R�

!BD

�
�@��2

�
���1�2=n

������������
��4�g

q

(21)

with

 !BD �
1

n
� 1: (22)

This is the Brans-Dicke theory Lagrangian, plus a cosmo-
logical potential term. In the case n � 2, one recovers that
the parameter !BD takes the value �1=2, while the poten-
tial term reduces to a cosmological constant term [9].

Let us now consider the case of two independent
extra dimensions. In this case, n1 � n2 � 1 and n3 �
. . . � 0. Since a one-dimensional variety has no intrinsic
curvature, it is not restrictive to set

 

~g 44 � ~g55 � 1 (23)

and one has �k � 0. Let us remark that these one-
dimensional spaces, while locally flat in the geometrical
sense, can be compactified in the sense that they can have
the topology of the circle, with arbitrarily small ’’radius.’’
As remarked before, it is not restrictive to put � � F2.
Making this choice in this case, one has (setting F � F1)

 �2 � �F��� (24)

and the Lagrangian (18) takes the classical ST form (with-
out potential)

 

�4�L �
������������
��4�g

q �
��4�R�

!���
�
�@��2

�
(25)
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where the function !��� writes

 !��� � �2
X

�X� 1�2
where X �

d lnF
d ln�

: (26)

The Brans-Dicke case (! constant, noted !BD) is recov-
ered if and only if F is a power law function

 F��� / �m (27)

where m is any constant. In this case, the relation between
!BD and m writes

 !BD � �2
m

�m� 1�2
: (28)

If m � 1, i.e. F1 � F2, the value !BD � �1=2 is recov-
ered [one (flat) internal space with two dimensions]. On the
other hand, if m is (arbitrarily) close to the value �1, !BD

is positive and arbitrarily large. Consequently, it is always
possible to choosem in such a way that the resulting!BD is
larger than any a priori fixed real number, hence in such a
way that it satisfies the experimental gravitational tests
constraint. From (24), the value m � �1 leads to a con-
stant scalar field � (and reciprocally), in accordance with
!BD � 1.

Considering the general case, Eq. (19) shows that this
property extends to the general ST case, since

 �!! 1� ,
�
d�

d�
! 0

�
: (29)

This is realized if, for instance, the function ���� pos-
sesses a local extremum. From Eq. (12), this means that the
product An1

1 A
n2
2 . . . : � Fn1

1 F
n2
2 . . . . possesses an extremum

for the value of the scalar field �. If it is the case, this limit
is naturally reached for a large class of ST theories as a
consequence of the cosmic expansion. A ST theory (18)
and (19) belongs to this class if the functions Fk and the
dimensions nk give to the resulting coupling function!���
well-suited properties. These properties are discussed in

[19,20] if there is no cosmological potential. In particular,
!��� has to exhibit a local extremum (note that this is not
the case for BD theory). An effective cosmological poten-
tial is (generically) present in (18) if the internal spaces
have more than one dimension and have intrinsic curva-
tures. The attractor mechanism has been investigated in the
potential case by some authors [27–29]. In particular, a
noticeable result obtained by some authors is that the
presence of a potential makes the attractor mechanism
more efficient, for both a flat and an open universe [29].

The property (17), which results in an effective four-
dimensional gravity theory of ST type, is a more constrain-
ing property. It requires the conformal factors to depend on
a common four-dimensional space-time coordinates func-
tion. Let us point out that this property is naturally fulfilled
if these conformal factors are depending on time only, a
property which is coherent with the presupposed space
homogeneity in Robertson-Walker cosmology.

VI. CONCLUSION

One has shown that the modern approach of Kaluza-
Klein gravity results in general scalar-tensor effective four-
dimensional gravity, as soon as at least two independent
internal spaces are considered, and when a specific as-
sumption for the internal metrics is made. When matter
is included, the scalar field couples with matter, generically
leading to weak equivalence principle violation, as in the
currently known case where only one internal space is
present. However, as far as the purely gravitational sector
is concerned, it appears that it is possible to choose the
conformal factors in such a way that the resulting scalar-
tensor theory agrees with experimental and observational
data, even in the case of a massless or light scalar field. In
the cosmological context, this choice could be naturally
reached for a large class of induced scalar-tensor theories
by the cosmic expansion.
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