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A general analytic procedure is developed to deal with the Newtonian limit of f�R� gravity. A
discussion comparing the Newtonian and the post-Newtonian limit of these models is proposed in order
to point out the differences between the two approaches. We calculate the post-Newtonian parameters of
such theories without any redefinition of the degrees of freedom, in particular, without adopting some
scalar fields and without any change from Jordan to Einstein frame. Considering the Taylor expansion of a
generic f�R� theory, it is possible to obtain general solutions in terms of the metric coefficients up to the
third order of approximation. In particular, the solution relative to the gtt component gives a gravitational
potential always corrected with respect to the Newtonian one of the linear theory f�R� � R. Furthermore,
we show that the Birkhoff theorem is not a general result for f�R� gravity since time-dependent evolution
for spherically symmetric solutions can be achieved depending on the order of perturbations. Finally, we
discuss the post-Minkowskian limit and the emergence of massive gravitational wave solutions.
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I. INTRODUCTION

In recent years, the effort to give a physical explanation
to the today observed cosmic acceleration [1–3] has at-
tracted a good amount of interest in f�R� gravity, consid-
ered as a viable mechanism to explain the cosmic
acceleration by extending the geometric sector of field
equations [4–6]. There are several physical and mathe-
matical motivations to enlarge general relativity (GR) by
these theories. For a comprehensive review, see [7–9].

Specifically, cosmological models coming from f�R�
gravity were first introduced by Starobinsky [10] in the
early 1980s to build up a feasible inflationary model where
geometric degrees of freedom had the role of the scalar
field ruling the inflation and the structure formation.

On the other side, dealing with such extended gravity
models at shorter astrophysical scales (Galaxy and Solar
System), one faces the emergence of corrected gravita-
tional potentials with respect to the Newton one coming
out from GR. This result has been well known for a long
time [11], and recently it has been pursued to carry out the
possibility of explaining the flatness of spiral galaxies
rotation curves without the addition of a huge amount of
dark matter. In particular, the rotation curves of a wide
sample of low-surface-brightness spiral galaxies have been
successfully fitted by these corrected potentials [12], and
reliable results are also expected for other galaxy types
[13].

Other issues as, for example, the observed Pioneer
anomaly problem [14] can be framed into the same ap-
proach [15] and then, apart from the cosmological dynam-

ics, a systematic analysis of such theories urges at short
scale and in the low-energy limit.

In this paper, we are going to discuss, without specifying
the form of the theory, the Newtonian limit of f�R� gravity
pointing out the differences and the relations with respect
to the post-Newtonian and the post-Minkowskian limits. In
literature, there are several definitions and several claims in
this direction but clear statements and discussion on these
approaches are in order to find out definite results to be
tested by experiments [16].

The discussion about the short-scale behavior of higher-
order gravity has been quite vivacious in the last years
since GR shows its best predictions just at the Solar System
level. As matter of fact, measurements coming from weak
field limit tests like the bending of light, the perihelion shift
of planets, and frame dragging experiments represent in-
escapable tests for whatever theory of gravity. Actually, in
our opinion, there are sufficient theoretical predictions to
state that higher-order theories of gravity can be compat-
ible with Newtonian and post-Newtonian prescriptions. In
other papers [17] we have shown that this result can be
achieved by means of the analogy of f�R� models with
scalar-tensor gravity.

Nevertheless, up to now, the discussion on the weak field
limit of f�R� theories is far from definitive and there are
several papers claiming opposite results [18,19], or stating
that no progress has been reached in the last 40 due to
several common misconceptions in the various theories of
gravity [16].

In particular, people approached the weak limit issue
following different schemes and developing different pa-
rametrizations which, in some cases, turn out to be not
necessarily correct.

The purpose is to take part in the debate, building up a
rigorous formalism which deals with the formal definition
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of weak field and small velocities limit applied to fourth-
order gravity. In a series of papers, our aim is to pursue a
systematic discussion involving: i) the Newtonian limit of
f�R� gravity (the present paper); ii) spherically symmetric
solutions versus the weak field limit in f�R� gravity [20];
and, finally, iii) general fourth-order theories where invar-
iants such as R��R�� or R����R���� are also considered,
[21].

Our analysis is based on the metric approach, developed
in the Jordan frame, assuming that the observations are
performed in it, without resorting to any conformal trans-
formation as done in several cases [22]. This point of view
is adopted in order to avoid dangerous variable changes
which could compromise the correct physical interpreta-
tion of the results.

We will show that the corrections induced on the gravi-
tational potentials can be suitable to explain relevant as-
trophysical behaviors or can be related with some relevant
physical issues.

As a preliminary analysis, we will concentrate on the
vacuum case with the aim to build up a further rigorous
formalism for the Newtonian and post-Newtonian limit of
f�R� theories in the presence of matter. As we will see, it is
possible to deduce an effective estimation of the post-
Newtonian parameter � by considering the second-order
solutions of the metric coefficient in the vacuum case. For
the sake of completeness we will treat the problem also by
imposing the harmonic gauge on the field equations.

The paper is organized as follows: in Sec. II, the general
formalism concerning the spherically symmetric back-
ground in fourth-order gravity is introduced. Section III
is devoted to a discussion of the post-Newtonian approxi-
mation considering the differences with respect to GR: in
this theory not all order of perturbations can be consistently
achieved if conservation laws are taken into account; in
f�R� gravity this shortcoming can be, in principle, avoided.
In Sec. IV, the analytic approach to the weak field in f�R�
gravity is developed. In particular, we achieve the gravita-
tional potential (related to the gtt component of the metric)
which is always corrected with respect to the Newtonian
one of the linear f�R� � R theory. Besides, we show that
the Birkhoff theorem is not a general result for f�R� gravity
since time-dependent evolution for spherically symmetric
solutions can be achieved depending on the order of per-
turbations. In Sec. V, the post-Minkowskian limit is dis-
cussed considering also the possibility of obtaining
gravitational waves solutions. Sec. VI is devoted to the
discussion and conclusions.

II. f�R� GRAVITY IN SPHERICALLY SYMMETRIC
SPACETIME

The action for f�R� gravity reads:

 A �
Z
d4x

�������
�g
p

�f�R� �XLm�; (1)

where f�R� is an analytic function of the Ricci scalar, X �
16�G
c4 is the coupling constant, and Lm describes the ordi-

nary matter Lagrangian. Such an action is the straightfor-
ward generalization of the Hilbert-Einstein action of GR
where f�R� � R is assumed.

By varying (1) with respect to the metric, one obtains the
fourth-order field equations:

 f0R�� �
1

2
fg�� � f

0
;�� � g���f0 �

X

2
T��; (2)

with T�� �
�2�����
�g
p

��
�����
�g
p

Lm�

�g�� and f0 � df�R�
dR . The trace is

 3�f0 � f0R� 2f �
X

2
T; (3)

and such an expression can be read as a Klein-Gordon
equation, where the effective field is f0, if f�R� is nonlinear
in R [10].

As said, we are interested in investigating the Newtonian
and the post-Newtonian limit of f�R� gravity in a spheri-
cally symmetric background. Solutions can be obtained
considering the metric (see also [23,24])

 ds2 � g�	dx
�dx	 � A�x0; r�dx02 � B�x0; r�dr2 � r2d�

(4)

where x0 � ct; A and B are generic functions depending on
time and coordinate radius; d� is the angular element. The
field equations (2) turn out to be

 H�� � f0R�� �
1

2
fg�� �H�� �

X

2
T��

H � g�	H�	 � f0R� 2f�H �
X

2
T

(5)

where
 

H�� � �f00fR;�� � �0
��R;0 � �r��R;r

� g����g
00
;0 � g

00 ln
�������
�g
p

;0�R;0

� �grr;r � grr ln
�������
�g
p

�R;r � g00R;00 � grrR;rr�g

� f000�R;�R;� � g���g00R;0
2 � grrR;r2��

H � g�	H �	

� 3f00��g00
;0 � g

00 ln
�������
�g
p

;0�R;0

� �grr;r � grr ln
�������
�g
p

;r�R;r � g
00R;00 � grrR;rr�

� 3f000�g00R;0
2 � grrR;r2� (6)

are the higher-than-second-order terms of the theory. We
are adopting the convention R�� � R
�
� for the Ricci
tensor and R���� � ����;� � . . . , for the Riemann tensor.
Connections are Levi-Civita:

 ���� �
1

2
g�
�g�
;� � g�
;� � g��;
�: (7)
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III. GENERAL REMARKS ON THE NEWTONIAN
AND THE POST-NEWTONIAN APPROXIMATION

At this point, it is worth discussing some general issues
on the Newtonian and post-Newtonian limits. Basically
there are some general features one has to take into account
when approaching these limits, whatever the underlying
theory of gravitation is.

If one considers a system of gravitationally interacting
particles of mass �M, the kinetic energy 1

2
�M �v2 will be,

roughly, of the same order of magnitude as the typical
potential energy U � G �M2= �r, with �M, �r, and �v the typical
average values of masses, separations, and velocities of
these particles. As a consequence:

 

�v2 �
G �M

�r
; (8)

(for instance, a test particle in a circular orbit of radius r
about a central mass M will have velocity v given in
Newtonian mechanics by the exact formula v2 � GM=r.)

The post-Newtonian approximation can be described as
a method for obtaining the motion of the system to higher
than the first order (approximation which coincides with
the Newtonian mechanics) with respect to the quantities
G �M=�r and �v2 assumed small with respect to the squared
light speed c2. This approximation is sometimes referred to
as an expansion in inverse powers of the light speed.

The typical values of the Newtonian gravitational po-
tential U are nowhere larger than 10�5 in the Solar System
(in geometrized units,U=c2 is dimensionless). On the other
hand, planetary velocities satisfy the condition �v2 & U1,
while the matter pressure p experienced inside the Sun and
the planets is generally smaller than the matter gravita-
tional energy density 
U, in other words2 p=
 & U.
Furthermore, one must consider that even other forms of
energy in the Solar System (compressional energy, radia-
tion, thermal energy, etc.) have small intensities and the
specific energy density � (the ratio of the energy density to
the rest-mass density) is related to U by � & U (� is
�10�5 in the Sun and�10�9 in the Earth [25]). As matter
of fact, one can consider that these quantities, as function
of the velocity, give second-order contributions:

 U� v2 � p=
��� O�2�: (9)

Therefore, the velocity v gives O(1) terms in the velocity
expansions, U2 is of order O(4), Uv of O(3), U� is of
O(4), and so on. Considering these approximations, one
has

 

@

@x0
� v 	 r; (10)

and

 

j@=@x0j

jrj
� O�1�: (11)

Now, particles move along geodesics:

 

d2x�

ds2
� ���	

dx�

ds
dx	

ds
� 0; (12)

which can be written in detail as
 

d2xi

dx02 � ��i00 � 2�i0m
dxm

dx0 � �imn
dxm

dx0

dxn

dx0

�

�
�0

00 � 2�0
0m

dxm

dx0 � 2�0
mn
dxm

dx0

dxn

dx0

�
dxi

dx0 : (13)

In the Newtonian approximation, that is, vanishingly small
velocities and only first-order terms in the difference be-
tween g�� and the Minkowski metric ���, one obtains that
the particle motion equations reduce to the standard result:

 

d2xi

dx02
’ ��i00 ’ �

1

2

@g00

@xi
: (14)

The quantity 1� g00 is of order G �M= �r, so that the
Newtonian approximation gives d2xi

dx02 to the order G �M= �r2,
that is, to the order �v2=r. As a consequence if we would
like to search for the post-Newtonian approximation, we
need to compute d2xi

dx02 to the order �v4=�r. Because of the
equivalence principle and the differentiability of the space-
time manifold, we expect that it should be possible to find a
coordinate system in which the metric tensor is nearly
equal to the Minkowski one ���, the correction being
expandable in powers of G �M= �r� �v2. In other words one
has to consider the metric developed as follows:

 

8>>><
>>>:
g00�x0;x� ’ 1� g�2�00 �x

0;x� � g�4�00 �x
0;x� � O�6�

g0i�x
0;x� ’ g�3�0i �x

0;x� � O�5�

gij�x
0;x� ’ ��ij � g

�2�
ij �x

0;x� � O�4�

(15)

where �ij is the Kronecker delta, and for the controvariant
form of g��, one has

 

8>>><
>>>:
g00�x0;x� ’ 1� g�2�00�x0;x� � g�4�00�x0;x� � O�6�

g0i�x0;x� ’ g�3�0i�x0;x� � O�5�

gij�x0;x� ’ ��ij � g�2�ij�x0;x� � O�4�:

(16)

In evaluating ���� we must take into account that the scales
of distance and time, in our systems, are, respectively, set
by �r and �r= �v, thus the space and time derivatives should be
regarded as being of order

 

@
@xi
�

1

�r
;

@

@x0 �
�v
�r
: (17)

Using the above approximations (15) and (16), we have,

1We consider here the velocity v in units of the light speed c.
2Typical values of p=
 are �10�5 in the Sun and �10�10 in

the Earth [25].
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from the definition (7),

 

8>>>>>><
>>>>>>:

��3�000 �
1
2 g
�2�;0
00 ��2�i00 �

1
2g
�2�;i
00

��2�ijk �
1
2 �g

�2�;i
jk � g

�2�i
j;k � g

�2�i
k;j� ��3�0ij �

1
2 �g

�3�0
i;j � g

�3�0
j;i � g

�3�;0
ij�

��3�i0j �
1
2 �g

�3�;i
0j � g

�3�i
0;j � g

�2�i
j;0� ��4�00i �

1
2 �g

�4�0
0;i � g

�2�00g�2�00;i�

��4�i00 �
1
2 �g

�4�;i
00 � g

�2�img�2�00;m � 2g�3�i0;0� ��2�00i �
1
2g
�2�0

0;i

: (18)

The Ricci tensor components are

 

8>>>>>><
>>>>>>:

R�2�00 �
1
24 g

�2�
00

R�4�00 �
1
24 g

�4�
00 �

1
2 g
�2�mn

;mg
�2�
00;n �

1
2 g
�2�mng�2�00;mn �

1
2g
�2�m

m;00 �
1
4g
�2�0;m

0g
�2�
00;m �

1
4g
�2�m;n

mg
�2�
00;n � g

�3�m
0;m0

R�3�0i �
1
24 g

�3�
0i �

1
2 g
�2�m

i;m0 �
1
2 g
�3�m

0;mi �
1
2 g
�2�m

m;0i

R�2�ij �
1
24 g

�2�
ij �

1
2 g
�2�m

i;mj �
1
2g
�2�m

j;mi �
1
2g
�2�0

0;ij �
1
2 g
�2�m

m;ij

(19)

and assuming the harmonic gauge g
���
� � 0 (see the Appendix for details), one can rewrite these last expressions as

 

8>>>>>><
>>>>>>:

R�2�00 �
1
24 g

�2�
00

R�4�00 �
1
24 g

�4�
00 �

1
2 g
�2�mng�2�00;mn �

1
2 g
�2�0

0;00 �
1
2 j 5� g

�2�
00 j

2

R�3�0i �
1
24 g

�3�
0i

R�2�ij �
1
24 g

�2�
ij

(20)

with 4 and 5, respectively, the Laplacian and the gradient in flat space. The Ricci scalar reads

 

�R�2� �R�2�00�R
�2�m

m�
1
24g

�2�0
0�

1
24g

�2�m
m

R�4� �R�4�00�g
�2�00R�2�00 �g

�2�mnR�2�mn� 1
24g

�4�0
0�

1
2g
�2�0;0

0;0�
1
2g
�2�mn�g�2�00;mn�4g

�2�
mn��

1
2j5g

�2�0
0j

2� 1
2g
�2�004g�2�00

:

(21)

The inverse of the metric tensor is defined by means of the
equation

 g�
g
� � ��� (22)

with ��� the Kronecker delta. The relations among the
higher-than-first-order terms turn out to be

 

8>>>>>><
>>>>>>:

g�2�00�x0;x� � �g
�2�
00 �x0;x�

g�4�00�x0;x� � g�2�00 �x0;x�2 � g
�4�
00 �x0;x�

g�3�0i � g�3�0i

g�2�ij�x0;x� � �g
�2�
ij �x0;x�

: (23)

Finally, the Lagrangian of a particle in presence of a
gravitational field can be expressed as proportional to the
invariant distance ds1=2, thus we have:

 L �
�
g
�

dx


dx0

dx�

dx0

�
1=2
� �g00 � 2g0mv

m � gmnv
mvn�1=2

� �1� g�2�00 � g
�4�
00 � 2g�3�0mv

m � v2 � g�2�mnvmvn�1=2;

(24)

which, to the O(2) order, reduces to the classic Newtonian
Lagrangian of a test particle LNew � �1� g

�2�
00 � v2�1=2,

where v � dxm

dx0
dxm
dx0 . As matter of fact, post-Newtonian

physics has to involve higher-than-O(4)-order terms in
the Lagrangian.

An important remark concerns the odd-order perturba-
tion terms O(1) or O(3). Since, these terms contain odd
powers of velocity v or of time derivatives, they are related
to the energy dissipation or absorption by the system.
Nevertheless, the mass-energy conservation prevents the
energy and mass losses and, as a consequence, prevents, in
the Newtonian limit, terms of O(1) and O(3) orders in the
Lagrangian. If one takes into account contributions higher
than O(4) order, different theories give different predic-
tions. GR, for example, due to the conservation of post-
Newtonian energy, forbids terms of O(5) order; on the
other hand, terms of O(7) order can appear and are related
to the energy lost by means of the gravitational radiation.

IV. THE NEWTONIAN LIMIT OF f�R� GRAVITY IN
SPHERICALLY SYMMETRIC BACKGROUND VS.

POST-NEWTONIAN LIMIT

Exploiting the formalism of post-Newtonian approxima-
tion described in the previous section, we can develop a
systematic analysis in the limit of weak field and small
velocities for f�R� gravity. We are going to assume, as
background, a spherically symmetric spacetime and we are
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going to investigate the vacuum case. Considering the
metric (4), assuming, unless not specified, c � 1 and
then x0 � ct! t, we have, for a given g��:

 

8>>>><
>>>>:

gtt�t; r� � A�t; r� ’ 1� g�2�tt �t; r� � g
�4�
tt �t; r�

grr�t; r� � �B�t; r� ’ �1� g�2�rr �t; r�

g���t; r� � �r
2

g�t; r� � �r2sin2�

; (25)

while the approximations for g�� are

 

�
gtt � A�t; r��1 ’ 1� g�2�tt � �g

�2�2
tt � g

�4�
tt �

grr � �B�t; r��1 ’ �1� g�2�rr
: (26)

The determinant reads

 g ’ r4sin2�f�1� �g�2�rr � g
�2�
tt � � �g

�2�
tt g

�2�
rr � g

�4�
tt �g: (27)

As a consequence, the Christoffel’s symbols are

 

8>>>>>><
>>>>>>:

��3�ttt �
g�2�tt;t
2 ��2�rtt � ��4�rtt �

g�2�tt;r
2 �

g�2�rr g
�2�
tt;r�g

�4�
tt;r

2

��3�rtr � �
g�2�rr;t

2 ��2�ttr � ��4�ttr �
g�2�tt;r

2 �
g�4�tt;r�g

�2�
tt g

�2�
tt;r

2

��3�trr � �
g�2�rr;t

2 ��2�rrr � ��4�rrr � �
g�2�rr;r

2 �
g�2�rr g

�2�
rr;r

2

�r � sin2��r�� ��0�r�� � ��2�r�� � ��4�r�� � �r� rg
�2�
rr � rg

�2�2
rr

: (28)

Let us even display the Ricci’s tensor components

 

8>>>>>>>><
>>>>>>>>:

Rtt ’ R
�2�
tt � R

�4�
tt

Rtr ’ R
�3�
tr

Rrr ’ R
�2�
rr

R�� ’ R
�2�
��

R ’ sin2�R�2���

(29)

where

 

8>>>>>>>>>>>><
>>>>>>>>>>>>:

R�2�tt �
rg�2�tt;rr�2g�2�tt;r

2r

R�4�tt �
�rg�2�2tt;r �4g�4�tt;r�rg

�2�
tt;rg

�2�
rr;r�2g�2�rr �2g

�2�
tt;r�rg

�2�
tt;rr��2rg�4�tt;rr�2rg�2�rr;tt

4r

R�3�tr � �
g�2�rr;t
r

R�2�rr � �
rg�2�tt;rr�2g�2�rr;r

2r

R�2��� � �
2g�2�rr �r�g

�2�
tt;r�g

�2�
rr;r�

2

(30)

and the Ricci scalar expression in the post-Newtonian approximation

 R ’ R�2� � R�4� (31)

with

 

8<
:
R�2� �

2g�2�rr �r�2g
�2�
tt;r�2g�2�rr;r�rg

�2�
tt;rr�

r2

R�4� �
4g�2�2rr �2rg�2�rr �2g

�2�
tt;r�4g�2�rr;r�rg

�2�
tt;rr��rf�rg

�2�2
tt;r �4g�4�tt;r�rg

�2�
tt;rg

�2�
rr;r�2g�2�tt �2g

�2�
tt;r�rg

�2�
tt;rr��2rg�4�tt;rr�2rg�2�rr;ttg

2r2

: (32)

In order to derive the post-Newtonian approximation for a
generic function f�R�, one should specify the
f�R�-Lagrangian into the field equations (5). This is a
crucial point because once a certain Lagrangian is chosen,
one will obtain a particular post-Newtonian approximation
referred to such a choice. This means to lose any general
prescription and to obtain corrections to the Newtonian
potential which refer ‘‘univocally’’ to the considered f�R�
function. Alternatively, one can restrict to analytic f�R�
functions expandable with respect to a certain value R �
R0. In general, such theories are physically interesting and
allow one to recover the GR results and the correct bound-
ary and asymptotic conditions. Then we assume

 f�R� �
X
n

fn�R0�

n!
�R� R0�

n

’ f0 � f1R� f2R2 � f3R3 � . . . ; (33)
where the f�R� function is analytic at R � 0 (or, at least, its
nonanalytic part, if it exists at all, goes to zero faster than
R3 at R! 0) as the expansion implies. Furthermore, the
coefficient f1 must be positive in order to have a positive
defined gravitational constant. On the other hand, it is
possible to obtain the post-Newtonian approximation of
f�R� gravity considering such an expansion into the field
equations (5) and expanding the system up to the orders
O(0), O(2), and O(4). This approach provides general
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results and specific (analytic) Lagrangians are selected by
the coefficients fi in (33).

Let us now substitute the series (33) into the field
equations (5). Developing the equations up to O(0), O(2),
and O(4) orders in the case of vanishing matter, i.e., T�� �
0, we have

 

8>>>>>><
>>>>>>:

H�0��� � 0; H�0� � 0

H�2��� � 0; H�2� � 0

H�3��� � 0; H�3� � 0

H�4��� � 0; H�4� � 0

(34)

and, in particular, from the O(0)-order approximation, one

obtains

 f0 � 0; (35)

which trivially follows from the above assumption (15) that
the spacetime is asymptotically Minkowskian. This result
suggests a first consideration. If the Lagrangian is devel-
opable around a vanishing value of the Ricci scalar (R0 �
0) the relation (35) will imply that the cosmological con-
stant contribution has to be zero in vacuum whatever the
f�R�-gravity theory. This result appears quite obvious but
sometimes it is not considered in literature.

If we now consider the O(2)-order approximation, the
equations system (34), in the vacuum case, results to be

 

8>>>>>>>><
>>>>>>>>:

f1rR
�2� � 2f1g

�2�
tt;r � 8f2R

�2�
;r � f1rg

�2�
tt;rr � 4f2rR

�2� � 0

f1rR
�2� � 2f1g

�2�
rr;r � 8f2R

�2�
;r � f1rg

�2�
tt;rr � 0

2f1g
�2�
rr � r�f1rR

�2� � f1g
�2�
tt;r � f1g

�2�
rr;r � 4f2R

�2�
;r � 4f2rR

�2�
;rr� � 0

f1rR
�2� � 6f2�2R

�2�
;r � rR

�2�
;rr� � 0

2g�2�rr � r�2g
�2�
tt;r � rR�2� � 2g�2�rr;r � rg

�2�
tt;rr� � 0

: (36)

The trace equation (the fourth line in (36)), in particular,
provides a differential equation with respect to the Ricci
scalar which allows one to solve the system (36) at O(2)
order:

 

8>>>>>><
>>>>>>:

g�2�tt � �0 �
�1�t�e

�r
����
��
p

3�r � �2�t�e
r
����
��
p

6����3=2r

g�2�rr �
�1�t��r

�����
��
p

�1�e�r
����
��
p

3�r �
�2�t���r�

�����
��
p

�er
����
��
p

6�2r

R�2� � �1�t�e
�r
����
��
p

r �
�2�t�

�����
��
p

er
����
��
p

2�r

(37)

where � � f1

6f2
and f1 and f2 are the expansion coefficients

obtained by Taylor developing the analytic f�R�
Lagrangian. Let us notice that the integration constant �0

is correctly dimensionless, while the two arbitrary func-
tions of time �1�t� and �2�t� have, respectively, the dimen-
sions of lenght�1 and lenght�2; � has the dimension
lenght�2. The functions �i�t� (i � 1, 2) are completely
arbitrary since the differential equation system (36) con-
tains only spatial derivatives. Besides, the integration con-
stant �0 can be set to zero, as in the theory of the potential,
since it represents an unessential additive quantity.

With these results in mind, the gravitational potential of
a generic analytic f�R� can be obtained. In fact, the first of
(37) gives the second-order solution in terms of the metric
expansion (see the definition (25)), but, as said above, this
term coincides with the gravitational potential at the
Newtonian order. In other words, we have gtt �

1� 2grav � 1� g�2�tt and then the gravitational potential

of a fourth-order gravity theory, analytic in the Ricci scalar
R, is

 FOG
grav �

K1e
�r

�����
��
p

3�r
�
K2e

r
�����
��
p

6����3=2r
; (38)

with K1 � �1�t� and K2 � �2�t�.
As previously mentioned, one has to notice that the

structure of the potential, for a given f�R� theory, is deter-
mined by the parameter �, which depends on the first and
the second derivative of the f�R� function, once developed
around a particular point R0.

Furthermore, one has to consider that the potential (38)
holds in the case of nonvanishing f2 since we manipulated
the equations in (36) dividing by such a quantity. As a
matter of fact, the GR Newtonian limit cannot be achieved
directly from the solution (38) but from the field equations
(36) once the appropriate expressions in terms of the con-
stants fi are derived.

The solution (38) has to be discussed in relation to the
sign of the term under the square root in the exponents. The
first possibility is that the sign is positive, which means that
f1 and f2 have an opposite signature. In this case, the
solutions (37) and (38) can be rewritten introducing the
scale parameter l � j�j�1=2. In particular, considering
�0 � 0, the two �i�t� functions as constants, k1 �
��1�t�=3�l and k2�t� � ��2�t�=6�l2, and by introducing a
radial coordinate ~r in units of l, we have
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8>>>>>><
>>>>>>:

g�2�tt � �0 �
�1�t�l

3
e�r=l
r=l �

�2�t�l2

6
er=l
r=l � k1

e�~r

~r � k2
e~r

~r

g�2�rr � �
�1�t�l

3
�r=l�1�e�r=l

r=l � �2�t�l2

6
�r=l�1�er=l

r=l � �k1
�~r�1�e�~r

~r � k2
�~r�1�e~r

~r

R�2� � �1�t�
l

e�r=l
r=l �

�2�t�
2

er=l
r=l �

3
l2

�
k1

e�~r

~r � k2
e~r

~r

� (39)

by which we can recast the gravitational potential as

 FOG
grav �

k1e
�~r

~r
�
k2e

~r

~r
; (40)

which is analogous to the result in [11], derived for the
theory R� �R2 � �R��R�� and coherent3 with the re-
sults in Ref. [26], obtained for higher-order Lagrangians as
f�R;�R� � R�

Pp
k�0 akR�kR. In this last case, it was

demonstrated that the number of Yukawa corrections to the
gravitational potential was strictly related to the order of
the theory. However, as discussed in [21], it is straightfor-
ward to show that the usual form Newton� Yukawa can
be easily achieved by Eq. (40) through a coordinate
change.

From (37) and (39), one can notice that the Newtonian
limit of any analytic f�R� theory is related only to the first
and second term of the Taylor expansion of the given
theory.

In other words, the gravitational potential is always
characterized by the two Yukawa corrections, and only
the first two terms of the Taylor expansion of a generical
f�R� Lagrangian turn out to be relevant. This is indeed a
general result.

The diverging contribution, arising from the exponential
growing mode, has to be carefully analyzed and, in par-
ticular, the physical relevance of this term must be eval-
uated in relation to the length-scale �����1=2. For very
large r (i.e. r > >�����1=2) the weak field approximation
turns out to be unphysical and (37) does not hold anymore.
As a matter of fact, one can obtain a modified gravitational
potential which can work as a standard Newtonian one, in
the opportune limit, and provide interesting behaviors at
larger scales, even in the presence of the growing mode,
once the constants in (38) have been opportunely adjusted.
Such a potential, once the growing exponential term is
settled to zero, reproduces the Yukawa-like gravitational
potential, phenomenologically introduced by Sanders [27]
to explain the flat rotation curves of spiral galaxies without
dark matter.

Besides, Yukawa-like corrections to the gravitational
potential have been suggested in several approaches. For
example, an interesting proposal is a model describing the
gravitational interaction between dark matter and baryons.
This points out that the interaction suppressed on small

subgalactic scales can be described by means of a Yukawa
contribution added to the standard Newtonian potential.
Such a behavior is effectively suggested by the observa-
tions of the inner rotation curves of low-mass galaxies and
provides a natural scenario in which to interpret the cuspy
profile of dark matter halos observed in N-body simula-
tions [28].

It is important to stress that the result we have obtained
here is coherent with other calculations. In fact, since the
Taylor expansion of an exponential potential is a power law
series, it is not surprising to obtain a power law correction
to the Newtonian potential [12] when a less rigorous
approach is considered in order to calculate the weak field
limit of a generic f�R� theory. In particular, perturbative
calculations will provide effective potentials which can be
recovered by means of an appropriate approximation from
the general case (40).

Let us now consider the opposite case in which the sign
of � is negative and, as a consequence, the two Yukawa
corrections in (39) are complex numbers.

Since the form of gtt, the gravitational potential (40)
turns out to be:

 FOG
grav �

k1e�{
~r

~r
�
k2e{

~r

~r
; (41)

which can be recast as

 FOG
grav �

1

~r
��k1 � k2� cos~r� i�k2 � k1� sin~r�: (42)

Such a gravitational potential, which could be discarded as
nonphysically relevant, has the property to satisfy the
Helmholtz equation, r2� k2 � 4�G
, where  is
the gravitational potential and 
 is a real function acting
both as matter and the antimatter density. As discussed in
[29], Re�FOG

grav � can be addressed as a classically modified
Newtonian potential corrected by a Yukawa factor while
Im�FOG

grav � could have significant implications for quantum
mechanics. In particular, this term can provide an astro-
physical, and in our case even theoretically well founded,
origin for the puzzling decay KL ! ���� whose phase is
related to an imaginary potential in the kaon mass matrix.
Of course, these considerations, at this level, are only
speculative, nevertheless it could be worth taking them
into account for further investigations.

Let us now consider the system (34) up to the third-order
contributions. The first important issue is that, at this order,
one has to consider even the off-diagonal equation

 f1g
�2�
rr;t � 2f2rR

�2�
;tr � 0; (43)

3Let us remember that in the case of homogeneous and
isotropic spacetime, higher-order curvature invariants as
R��R

�� and R����R���� reduce to R2.
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which relates the time derivative of the Ricci scalar to the
time derivative of g�2�rr . From this relation, it is possible to
draw a relevant consideration. One can deduce that if the
Ricci scalar depends on time so it is for the metric compo-
nents, and even the gravitational potential turns out to be
influenced. This result agrees with the analysis provided in
[20] where a complete description of the weak field limit of
fourth-order gravity has been provided in terms of the
dynamical evolution of the Ricci scalar. In that paper, it
was demonstrated that if one supposes a time-independent
Ricci scalar, static spherically symmetric solutions are
allowed. Equation (43) confirms this result and provides
the formal theoretical explanation of such a behavior. In
particular, together with (39), it suggests that if one con-
siders the problem at a lower level of approximation (i.e.,
the second order) the background spacetime metric can
have static solutions according to the Birkhoff theorem;
this is no more verified when the problem is faced with
approximations of higher order. In other words, the debated
issue to prove the validity of the Birkhoff theorem in the
higher-order theories of gravity finds here its physical
answer. In [20] and here, the validity of this theorem is
demonstrated for f�R� theories only when the Ricci scalar
is time independent or, in addition, when the Newtonian
limit solutions are investigated up to the second order of
approximation in terms of a v=c expansion of the metric
coefficients. Therefore, the Birkhoff theorem does not
represent a general feature in the case of fourth-order
gravity but, on the other hand, in the limit of small veloc-
ities and weak fields (which is enough to deal with the
Solar System gravitational experiments), one can assume
that the gravitational potential is effectively time indepen-
dent according to (37) and (38).

The above results fix a fundamental difference between
GR and fourth-order gravity theories. While in GR a
spherically symmetric solution represents a stationary
and static configuration difficult to be related to a cosmo-
logical background evolution, this is no more true in the
case of higher-order gravity. In the latter case, a spherically
symmetric background can have time-dependent evolution
together with the radial dependence. In this sense, a rela-
tion between a spherical solution and the cosmological
Hubble flow can be easily achieved.

The subsequent step concerns the analysis of the system
(34) up to the O(4) order. Such an analysis provides the
solutions, in terms of g�4�tt , the right order for the post-
Newtonian parameters. Unfortunately, at this order of ap-
proximation, the system turns out to be too much involuted
and a general solution is not possible.

From Eqs. (34), one can notice that the general solution
is characterized only by the first three orders of the f�R�
expansion. Such a result is in agreement with the f�R�
reconstruction which can be induced by the post-
Newtonian parameters adopting a scalar-tensor analogy
(for details see [17,30]).

However, although we cannot achieve a complete de-
scription, an approximate estimation of the post-
Newtonian parameter � can be obtained recurring to the
O(2) evaluation of the metric coefficients in the vacuum
case.

It is important to notice that, since (37) suggests a
modified gravitational potential (with respect to the stan-
dard Newtonian one) as a general solution of analytic f�R�
gravity models, there is no reason to ask for a post-
Newtonian description for these theories. In fact, as pre-
viously said, the post-Newtonian analysis presupposes to
evaluate deviations from the Newtonian potential at a
higher-than-second-order approximation in terms of the
quantity v=c. Thus, if the gravitational potential deduced
from a given f�R� theory of gravity is a general function of
the radial coordinate, displaying a Newtonian behavior
only in a certain regime (or in a given range of the radial
coordinate), it could be meaningless to develop a general
post-Newtonian formalism as in GR [25,31]. Of course, by
a proper expansion of the gravitational potential for small
values of the radial coordinate, and only in this limit, one
can develop an analogous of the post-Newtonian limit for
these theories with respect to the Newtonian behavior and
estimate the deviations from it.

In order to have an effective estimation of the post-
Newtonian parameter �, we can proceed in the following
way. Expanding gtt and grr, obtained at the second order in
(39) with respect to the dimensionless coordinate ~r, one
has4

 g�2�tt � �k2 � k1� �
k1 � k2

~r
�
k1 � k2

2
~r� O�2�;

g�2�rr � �
k1 � k2

~r
�
k1 � k2

2
~r� O�2�;

(44)

where, clearly, k1 � k2 � GM and k1 � k2 in the standard
case. When ~r! 0 (i.e., when the coordinate r < <

��������
��
p

)
the linear and the higher-than-first-order terms are vanish-
ingly small and only the first Newtonian term survives.
Since the post-Newtonian parameter � is strictly related to
the coefficients of the 1=r term into the expressions of gtt
and grr, one can actually obtain an effective estimation of
this quantity confronting the coefficients of the Newtonian
terms relative to both of the expressions in (44). Being � �
1 in GR, the difference between these two coefficients
gives the effective deviation from the GR expectation
value.

It is easy to derive that a generic fourth-order gravity
theory provides a post-Newtonian parameter � which is
consistent with the GR prescription �� � 1� if k1 � k2.
Conversely, deviations from such a behavior can be ac-
commodated by tuning the relation between the two inte-
gration constants k1 and k2. This is equivalent to adjusting
the form of the f�R� theory in such a way to obtain the right

4In this case the symbol O[2] is referred to higher-than-first-
order contributions the dimensionless coordinate ~r.
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GR limit, and then the Newtonian potential. This result
agrees with the viewpoint that asks for the recovering of
GR behavior from generic f�R� theories in the post-
Newtonian limit [32,33]. This is particularly true when
the f�R� Lagrangian behaves, in the weak field and small
velocities regime, as the Hilbert-Einstein Lagrangian.

On the other side, if deviations from these regime are
observed, a f�R� Lagrangian, built up with a third-order
polynomial in the Ricci scalar, can be suitable to interpret
such a behavior (see [30]).

Actually, the degeneracy regarding the integration con-
stants can be partially broken once a complete post-
Newtonian parametrization is developed in the presence
of matter. In such a case, the integration constants remain
constrained by the Boltzmann-Vlasov equation which de-
scribes the conservation of matter at these scales [34].

Up to now, the discussion has been developed without
any gauge choice. In order to overcome the difficulties
related to the nonlinearities of calculations, we can con-
sider some gauge choice obtaining less general solutions
for the metric entries. A natural choice is represented by
the conditions (20) which coincide with the standard post-
Newtonian gauge

 hjk;
k �

1

2
h;j � O�4�; h0k;

k �
1

2
hkk;0 � O�5�; (45)

where h�� accounts for deviations from the Minkowski
metric (g�� � ��� � h��). In this case the Ricci curvature
tensor becomes5

 

8><
>:
Rttjhg ’ R

�2�
ttjhg
� R�4�ttjhg

Rrrjhg ’ R
�2�
rrjhg

(46)

where

 

8>>>>>>>>><
>>>>>>>>>:

R�2�ttjhg �
rg�2�tt;rr�2g�2�tt;r

2r

R�4�ttjhg �
rg�4�tt;rr�2g�4�tt;r�r�g

�2�
rr g

�2�
tt;rr�g

�2�
tt;tt�g

�2�
tt;rr �

2r

R�2�rrjhg �
rg�2�rr;rr�2g�2�rr;r

2r

R�2���jhg � R�2�jhg � 0

(47)

while the Ricci scalar expressions at the O(2) and O(4)
orders read

 

8><
>:
R�2�
jhg �

rg�2�tt;rr�2g�2�tt;r�rg
�2�
rr;rr�2g�2�rr;r

2r

R�4�
jhg �

rg�4�tt;rr�2g�4�tt;r�r�g
�2�
rr g

�2�
tt;rr�g

�2�
tt;tt�g

�2�
tt;rr ��g

�2�
tt �rg

�2�
tt;rr�2g�2�tt;r��g

�2�
rr �rg

�2�
rr;rr�2g�2�rr;r�

2r

: (48)

The gauge choice does not affect the Christoffel. Thus, by
solving the system (34), with the simplification induced by
the gauge, one obtains

 

8><
>:
gttjhg �t; r� � 1� k1

r �
k2

r2 �
k3 logr
r

grrjhg �t; r� � 1� k4

r

(49)

where the constants k1, k4 are relative to the O(2) order of
approximation, while k2 and k3 are related to the O(4)
order. The Ricci scalar is zero both at O(2) and at O(4)
approximation orders.

Equations (49) suggest some interesting remarks. It is
easy to check that the GR prescriptions are immediately
recovered for k1 � k4 and k2 � k3 � 0. The grr compo-
nent displays only the second-order term, as required by a
GR-like behavior, while the gtt component shows also the
fourth-order corrections which determine the second post-
Newtonian parameter � [25]. It has to be stressed here that
a full post-Newtonian formalism requires that matter in the
system (34) be taken into account: the presence of matter
links the second- and fourth-order contributions in the
metric coefficients [25].

V. THE POST-MINKOWSKIAN APPROXIMATION

In the previous section we have developed a general
analytic procedure to deduce the Newtonian and the post-

Newtonian limit of f�R� gravity in the absence of matter or
far from matter sources. Here we want to discuss a different
limit of these theories, pursued when the small velocity
assumption is relaxed and only the weak field approxima-
tion is retained. This situation is related to the Minkowski
limit of the underlying gravity theory as well, as the dis-
cussion of the previous section was related to the
Newtonian one. In order to develop such an analysis, we
can reasonably resort to the metric (4), considering the
gravitational potentials A�t; r� and B�t; r� in the suitable
form

 

�A�t; r� � 1� a�t; r�

B�t; r� � 1� b�t; r�
(50)

with a�t; r�; b�t; r� 
 1. Let us now perturb the field equa-
tions (5) considering, again, the Taylor expansion (33) for a
generic f�R� theory. For the vacuum case (T�� � 0), at the
first order with respect to a and b, it is

 

� f0 � 0

f1fR
�1�
�� � 1

2g
�0�
��R�1�g �H �1�

�� � 0
(51)

where

5We have indicated with the subscript hg the harmonic gauge
variables.
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H �1�
�� � �f2fR

�1�
;�� � ��0�
��R

�1�
;
 � g

�0�
���g�0�
�;
R

�1�
;�

� g�0�
�R�1�;
� � g�0�
� ln
�������
�g
p �0�

;
 R
�1�
;� �g: (52)

In this approximation, the Ricci scalar turns out to be zero
while the derivatives, in the previous relations, are calcu-
lated at R � 0.

Let us now consider the limit for large r, i.e., we study
the problem far from the source of the gravitational field. In
such a case Eqs. (51) become

 

8<
:
@2a�t;r�
@r2 �

@2b�t;r�
@t2
�0

f1�a�t;r��b�t;r���8f2�
@2b�t;r�
@r2 �

@2a�t;r�
@t2
�2@

2b�t;r�
@t2
����t�

(53)

where ��t� is a generic time-dependent function.
Equations (53) are two coupled wave equations in terms
of the two functions a�t; r� and b�t; r�. Therefore, we can
ask for wavelike solutions for the gravitational potentials
a�t; r� and b�t; r�

 

�a�t; r� � R d!dk
2� ~a�!; k�ei�!t�kr�

b�t; r� �
R d!dk

2�
~b�!; k�ei�!t�kr�

(54)

and substitute these into (53). In order to simplify the
calculations, we can set ��t� � 0 since, as said, this is an

arbitrary time function. Equations (53) are satisfied if

 

� ~a�!; k� � ~b�!; k�; ! � �k

~a�!; k� � �1� 3�
4k2�~b�!; k�; ! � �

���������������
k2 � 3�

4

q (55)

where, as before, � � f1

6f2
. In particular, for f1 � 0 or f2 �

0 one obtains solutions with a dispersion relation ! � �k.
In other words, for fi � 0 (i � 1, 2), that is in the case of
nonlinear f�R�, the above dispersion relation suggests that
massive modes are in order. In particular, for � < 0, the
mass of the graviton is mgrav � �

3�
4 and, coherently, it is

obtained for a modified real gravitational potential. As a
matter of fact, a gravitational potential deviating from the
Newtonian regime induces a massive degree of freedom
into the particle spectrum of the gravity sector with an
interesting perspective for the detection and the production
of gravitational waves [35]. It has to be noted that the
presence of massive gravitons in the wave spectrum of
higher-order gravity is a well-known result since the paper
of [11]. Nevertheless it is our opinion that this issue has
been always considered under a negative perspective and
has been not sufficiently investigated. Furthermore, if � >
0, even the solution

 

�
a�~t; ~r� � �a0 � a1~r�e�

��
3
p

2
~t

b�~t; ~r� � �b0 � b1~t� cos�
��
3
p

2 ~r� � �b00 � b
0
1
~t� sin�

��
3
p

2 ~r� � b000 � b
00
1
~t

(56)

with a0, a1, b0, b1, b00, b01, b000 , b001 constants is admitted. The
variables ~r and ~t are expressed in units of ��1=2. In the
post-Minkowskian approximation, as expected, the gravi-
tational field propagates by means of wavelike solutions.
This result suggests that investigating the gravitational
waves behavior of fourth-order gravity can represent an
interesting issue where a new phenomenology (massive
gravitons) has to be seriously taken into account.
Besides, such massive degrees of freedom could be a
realistic and testable candidate for cold dark matter, as
discussed in [36].

VI. CONCLUSIONS

In this paper, we have developed a general analytic
approach to deal with the weak field and small velocity
limit (Newtonian limit) of a generic f�R� gravity theory.
The scheme can be adopted also to correctly calculate the
post-Newtonian parameters of such theories without any
redefinition of the degrees of freedom by some scalar field
leading to the so called O’Hanlon Lagrangian [37]. In fact,
considering this latter approach, we get a Brans-Dicke-like
theory with a vanishing kinetic term and then the post-
Newtonian parameter � results � � 1=2 and not �� 1 as
observed. This result is misleading in the weak field limit.

In the approach presented here, we do not need any change
from the Jordan to the Einstein frame [30,38]. Apart from
the possible shortcomings related to noncorrect changes of
variables, any f�R� theory can be rewritten as a scalar-
tensor one or an ideal fluid, as shown in [39–41]. In those
papers, it has been demonstrated that such different repre-
sentations give rise to physically nonequivalent theories,
and then also the Newtonian and post-Newtonian approx-
imations have to be handled very carefully because the
results could not be equivalent. In fact, the further geomet-
ric degrees of freedom of f�R� gravity (with respect to
GR), the scalar field and the ideal fluid have weak field
behaviors strictly depending on the adopted gauge which
could not be equivalent or difficult to compare. In order to
circumvent these possible sources of shortcomings, one
should state the frame (Jordan or Einstein) at the very
beginning and then remain in such a frame along all the
calculations up to the final results. Adopting this proce-
dure, arbitrary limits and noncompatible results should be
avoided.

In this paper, we have considered the Taylor expansion
of a generic f�R� theory, obtaining general solutions in
terms of the metric coefficients up to the third order of
approximation when matter is neglected. In particular, the
solution relative to the gtt metric component gives the

S. CAPOZZIELLO, A. STABILE, AND A. TROISI PHYSICAL REVIEW D 76, 104019 (2007)

104019-10



gravitational potential which is corrected with respect to
the Newtonian one of f�R� � R. The general gravitational
potential is given by a couple of Yukawa-like terms, com-
bined with the Newtonian potential, which is effectively
achieved at small distances. In relation to the sign of the
characteristic coefficients entering the gtt component, one
can obtain real or complex solutions. In both cases, the
resulting gravitational potential has physical meanings.
This degeneracy could be removed once standard matter
is introduced into dynamics.

The complete analysis allows one to obtain direct infor-
mation on the post-Newtonian formalism: the post-
Newtonian parameters can be fully characterized consid-
ering the integration constants in the gravitational poten-
tial. Nevertheless this study is beyond the aim of this paper
and will be developed in a forthcoming research project.

Furthermore, it has been shown that the Birkhoff theo-
rem is not a general result for f�R� gravity. This is a
fundamental difference between GR and fourth-order grav-
ity. While in GR a spherically symmetric solution is, in any
case, stationary and static, here time-dependent evolution
can be achieved depending on the order of perturbations.

Finally, we have discussed the differences between the
post-Newtonian and the post-Minkoskian limit in f�R�
gravity. The main result of such an investigation is the
presence of massive degrees of freedom in the spectrum of
gravitational waves which are strictly related to the mod-
ifications occurring in the gravitational potential. This
occurrence could constitute an interesting opportunity for
the detection and investigation of gravitational waves.

APPENDIX

In this appendix, we show that the harmonic gauge can
be suitably reduced to the form (20). Such a gauge is

usually characterized by the condition g�	���	 � 0. For
� � 0 one has

 2g�	�0
�	 � g�2�0;00 � 2g�3�0;mm � g�2�m;0m � 0; (A1)

and for � � i

 2g�	�i�	 � g�2�0;i0 � 2g�2�mi;m � g
�2�m;i

m � 0: (A2)

Differentiating Eq. (A1) with respect to x0, xj, and (A2)
and with respect to x0, one obtains

 g�2�00;00 � 2g�3�m0;0m � g
�2�m

m;00 � 0; (A3)

 g�2�00;0j � 2g�3�m0;jm � g
�2�m

m;0j � 0; (A4)

 g�2�00;0i � 2g�2�mi;0m � g
�2�m

m;0i � 0: (A5)

On the other side, combining Eq. (A4) and (A5) we get

 g�2�mm;0i � g
�2�m

i;0m � g
�3�m

0;mi � 0: (A6)

Finally, differentiating Eq. (A2) with respect to xj, one
has

 g�2�00;ij � 2g�2�mi;jm � g
�2�m

m;ij � 0 (A7)

and redefining indexes as j! i, i! j since these are mute
indexes, we get

 g�2�00;ij � 2g�2�mj;im � g
�2�m

m;ij � 0: (A8)

Combining Eq. (A7) and (A8) we obtain

 g�2�00;ij � g
�2�m

i;jm � g
�2�m

j;im � g
�2�m

m;ij � 0: (A9)

The relations (A3), (A6), and (A9) guarantee the viability
of (20).
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