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We present new soliton and hairy black hole solutions of su�N� Einstein-Yang-Mills theory in
asymptotically anti-de Sitter space. These solutions are described by N � 1 independent parameters,
and have N � 1 gauge field degrees of freedom. We examine the space of solutions in detail for su�3� and
su�4� solitons and black holes. If the magnitude of the cosmological constant is sufficiently large, we find
solutions where all the gauge field functions have no zeros. These solutions are of particular interest
because we anticipate that at least some of them will be linearly stable.
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I. INTRODUCTION

Soliton and hairy black hole solutions of Einstein-Yang-
Mills (EYM) theory and its variants have been the subject
of extensive research since the discovery of nontrivial,
spherically symmetric solitons [1] and ‘‘colored’’ black
holes [2] in su�2� EYM in asymptotically flat space-
time. These black holes are ‘‘hairy’’ in the sense that
they have no magnetic charge, and are therefore indistin-
guishable at infinity from a standard Schwarzschild black
hole. There are discrete families of solutions, indexed by
the event horizon radius rh (with rh � 0 for solitons) and n,
the number of zeros of the single gauge field function !,
each pair �rh; n� identifying a solution of the field equa-
tions. A key feature of the solutions is that n > 0, so that
the gauge field function must have at least one zero (or
‘‘node’’). These solutions, while they violate the ‘‘letter’’
of the no-hair conjecture, may be thought of as not contra-
dicting its ‘‘spirit,’’ since they are found to be unstable to
classical, linear, spherically symmetric perturbations [3].
There is also a large literature concerning analytic studies
of the asymptotically flat su�2� EYM field equations [4,5],
proving the existence of the above numerical solutions and
detailed properties of the phase space of solutions. Since
these initial discoveries a plethora of new soliton and black
hole solutions have been found (see [6] for a review). The
present work combines two natural extensions of these
initial studies: the generalization to su�N� EYM, and the
inclusion of a negative cosmological constant. We now
briefly review each of these generalizations in turn.

First, in asymptotically flat space, both charged and
neutral numerical solutions of the su�N� EYM field equa-
tions have been found [7]. We consider in this paper only
purely magnetic solutions, which, in the asymptotically flat
case, are described by N � 1 gauge field functions !j. As
in asymptotically flat su�2� EYM, solutions exist at dis-
crete points in the parameter space, and can be indexed by
the radius of the event horizon (if there is one) and the

number of nodes of the!j (all!j having at least one zero).
Once again, there is a general result [8] that all these
solutions must be unstable. The su�N� EYM field equa-
tions are considerably more complicated than those for
su�2� and correspondingly less analytic work has been
done. Local existence of solutions of the field equations
near the origin (for solitons), black hole event horizon (if
there is one) and at infinity has been established [9,10].
There is a heuristic proof (following [4]) of the existence of
black hole solutions for general N [11], but more rigorous
work exits only for the case of su�3� [12].

The second generalization of asymptotically flat su�2�
EYM that we consider in this paper is the inclusion of a
nonzero cosmological constant �. When the cosmological
constant is positive, soliton [13] and black hole [14] su�2�
solutions have been found. These solutions possess a cos-
mological horizon and approach de Sitter space at infinity
(for a complete classification of the possible space-time
structures, see [15]). The phase space of solutions is again
discrete, and the single gauge field function!must have at
least one zero. Unsurprisingly, these solutions again turn
out to be unstable [14,16]. The inclusion of a negative
cosmological constant [so that the space-time is asymptoti-
cally anti-de Sitter (adS)] may be motivated by recent
progress in string theory, particularly the adS/CFT corre-
spondence [17]. It is found [18,19] that the solutions of
su�2� EYM in adS possess quite different properties com-
pared with their asymptotically flat or asymptotically de
Sitter cousins. In particular, solutions for which the gauge
field function ! has no zeros exist for sufficiently large
j�j. Solutions exist in continuous open subsets of the
parameter space, rather than at discrete points. In addition,
for sufficiently large j�j, at least some of these solutions
are stable under linear, spherically symmetric perturba-
tions [18,19] (this was subsequently extended to cover
nonspherically symmetric linear perturbations in [20]).
Therefore, while black holes cannot be given stable YM
hair in either asymptotically flat or asymptotically de Sitter
space, in asymptotically anti-de Sitter space, stable gauge
field hair is possible.*E.Winstanley@sheffield.ac.uk
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We are thus led to the following natural question: are
there stable solutions of the su�N� EYM solutions with a
negative cosmological constant? In this paper we will
present the first soliton and hairy black hole solutions of
su�N� EYM in adS, for N > 2. We consider only purely
magnetic gauge fields, so that the YM field is described by
N � 1 functions!j. We make a detailed study of the phase
space of solutions and their general properties in the par-
ticular cases N � 3, 4. Of particular interest is the exis-
tence, for sufficiently large j�j, of solutions in which all
the !j have no zeros. We anticipate that at least some of
these solutions will be stable under linear, spherically
symmetric perturbations, and will examine their stability
in detail elsewhere.

The outline of this paper is as follows. In Sec. II we
discuss the field equations, our ansatze for the fields and
the boundary conditions that must be satisfied, considering
the cases of black holes and solitons separately. Our new
solutions are discussed in detail in Sec. III, focusing par-
ticularly on the phase space of solutions. Finally, our
conclusions can be found in Sec. IV. Throughout this paper,
the metric has signature ��;�;�;�� and we use units in
which 4�G � c � 1.

II. ANSATZ, FIELD EQUATIONS, AND BOUNDARY
CONDITIONS

A. Ansatz and field equations

We consider static, spherically symmetric, four-
dimensional solitons and black holes with metric

 ds2 � ��S2dt2 ���1dr2 � r2d�2 � r2sin2�d�2;

(2.1)

where the metric functions � and S depend on the radial
coordinate r only. In the presence of a negative cosmologi-
cal constant �< 0, we write the metric function � as

 ��r� � 1�
2m�r�
r
�

�r2

3
: (2.2)

The most general, spherically symmetric, ansatz for the
su�N� gauge potential is [21]
 

A �Adt�Bdr�
1

2
�C� CH�d�

�
i
2
��C� CH� sin��D cos��d�; (2.3)

where A, B, C, and D are all (N � N) matrices and CH is
the Hermitian conjugate of C. The matrices A and B are
purely imaginary, diagonal, traceless, and depend only on
the radial coordinate r. The matrix C is upper triangular,
with nonzero entries only immediately above the diagonal:

 Cj;j�1 � !j�r�e
i�j�r�; (2.4)

for j � 1; . . . ; N � 1. In addition, D is a constant matrix:

 D � Diag�N � 1; N � 3; . . . ;�N � 3;�N � 1�: (2.5)

Here we consider only purely magnetic solutions, so we set
A 	 0. We may also take B 	 0 by a choice of gauge
[21]. From now on we will assume that all the !j�r� are
nonzero (see, for example, [7] for the possibilities in
asymptotically flat space if this assumption does not
hold). In this case one of the Yang-Mills equations be-
comes [21]

 �j � 0 8 j � 1; . . . ; N � 1: (2.6)

Our ansatz for the Yang-Mills potential therefore reduces
to

 A �
1

2
�C� CH�d��

i
2
��C� CH� sin��D cos��d�;

(2.7)

where the only nonzero entries of the matrix C are

 Cj;j�1 � !j�r�: (2.8)

The gauge field is therefore described by the N � 1 func-
tions !j�r�. We comment that our ansatz (2.7) is by no
means the only possible choice in su�N� EYM. Techniques
for finding all spherically symmetric su�N� gauge poten-
tials can be found in [22], where all irreducible models are
explicitly listed for N 
 6.

With the ansatz (2.7), there are N � 1 nontrivial Yang-
Mills equations for the N � 1 functions !j:

 r2�!00j �
�
2m� 2r3p� �

2�r3

3

�
!0j �Wj!j � 0 (2.9)

for j � 1; . . . ; N � 1, where a prime 0 denotes d=dr,

 p� �
1

4r4

XN
j�1

��!2
j �!

2
j�1 � N � 1� 2j�2�; (2.10)

 Wj � 1�!2
j �

1
2�!

2
j�1 �!

2
j�1�; (2.11)

and !0 � !N � 0. The Einstein equations take the form

 m0 � �G� r2p�;
S0

S
�

2G
r
; (2.12)

where

 G �
XN�1

j�1

!02j : (2.13)

Altogether, then, we have N � 1 ordinary differential
equations for the N � 1 unknown functions m�r�, S�r�,
and !j�r�.

The field equations (2.9) and (2.12) are invariant under
the transformation

 !j�r� ! �!j�r� (2.14)

for each j independently, and also under the substitution:
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 j! N � j: (2.15)

B. Boundary conditions

The field equations (2.9) and (2.12) are singular at the
origin r � 0 (for regular, soliton solutions), the black hole
event horizon r � rh (if there is one), and at infinity r!
1. We therefore now discuss the boundary conditions that
must be satisfied by the field variables at these singular
points. Local existence of solutions of the field equations in
neighborhoods of these singular points will be rigorously
proved elsewhere [23], generalizing the local existence
proofs in the asymptotically flat case [9,10]. The boundary
conditions satisfied by black hole solutions are more easily
stated, so we consider those first.

1. Black holes

We assume there is a regular, nonextremal, black hole
event horizon at r � rh, where ��r� has a single zero. This
fixes the value of m�rh� to be

 2m�rh� � rh �
�r3

h

3
: (2.16)

The field variables !j�r�, m�r�, and S�r� will have regular
Taylor series expansions about r � rh:

 

m�r� � m�rh� �m
0�rh��r� rh� �O�r� rh�

2;

!j�r� � !j�rh� �O�r� rh�;

S�r� � S�rh� �O�r� rh�:

(2.17)

Setting ��rh� � 0 in the Yang-Mills equations (2.9) fixes
the derivatives of the gauge field functions at the horizon:

 !0j�rh� � �
Wj�rh�!j�rh�

2m�rh� � 2r3
hp��rh� �

2�r3
h

3

: (2.18)

Therefore the expansions (2.17) are determined by theN �
1 quantities !j�rh�, rh, S�rh� for fixed cosmological con-
stant �. For the event horizon to be nonextremal, it must be
the case that

 2m0�rh� � 2r2
hp��rh�< 1��r2

h; (2.19)

which weakly constrains the possible values of the gauge
field functions !j�rh� at the event horizon. Since the field
equations (2.9) and (2.12) are invariant under the trans-
formation (2.14), we may consider!j�rh�> 0 without loss
of generality.

At infinity, the boundary conditions are considerably
less stringent than in the asymptotically flat case. In order
for the metric (2.1) to be asymptotically adS, we simply

require that the field variables !j�r�, m�r�, and S�r� con-
verge to constant values as r! 1, and have regular Taylor
series expansions in r�1 near infinity:

 m�r� � M�O�r�1�; S�r� � 1�O�r�1�;

!j�r� � !j;1 �O�r
�1�:

(2.20)

Since �< 0, there is no cosmological horizon.

2. Solitons

Soliton solutions have the same boundary conditions
(2.20) as r! 1 as black hole solutions. The boundary
conditions at a regular origin, however, are considerably
more complicated than at a black hole event horizon or at
infinity. For the asymptotically flat case, they have been
derived in [9]. As may be expected, the modifications
required by the presence of a nonzero cosmological con-
stant are not great. However, given the complexity of these
boundary conditions, we now describe their derivation in
some detail.

We begin by assuming a regular Taylor series expansion
for all field variables near r � 0:

 

m�r� � m0 �m1r�m2r
2 �O�r3�;

S�r� � S0 � S1r� S2r
2 �O�r3�;

!j�r� � !j;0 �!j;1r�!j;2r2 �O�r3�;

(2.21)

where the mi, Si, and !j;i are constants. The expansions
(2.21) are substituted into the field equations (2.9) and
(2.12) to determine the values of the constants. The con-
stant S0 is nonzero in order for the metric to be regular at
the origin, but otherwise arbitrary since the field equations
involve only derivatives of S.

Regularity of the metric and curvature at the origin
immediately gives

 m0 � m1 � m2 � 0; S1 � 0; !j;1 � 0 (2.22)

and

 !j;0 � �
������������������
j�N � j�

q
: (2.23)

Without loss of generality [due to (2.14)], we take the
positive square root in (2.23).

Examination of the leading order terms in the Yang-
Mills equations (2.9) gives the following constraint on
!2 � �!1;2; . . . ; !N�1;2�

T:

 M N�1!2 � 2!2: (2.24)

Here, MN�1 is the �N � 1� � �N � 1� matrix
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 M N�1 �

2�N � 1� �
�����������������������������������
�N � 1�2�N � 2�

p
0 � � � 0

�
�����������������������������������
�N � 1�2�N � 2�

p
2:2�N � 2� �

��������������������������������������
2�N � 2�3�N � 3�

p
� � � 0

0 �
��������������������������������������
2�N � 2�3�N � 3�

p
2:3�N � 3� � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � �
�����������������������������������
�N � 1�2�N � 2�

p
0 0 0 � � � 2�N � 1�

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(2.25)

Therefore !2 is an eigenvector of the matrix MN�1 with eigenvalue 2 if one exists, otherwise !2 � 0.
To find the eigenvalues and eigenvectors of MN�1, we first note that it can be written in the form

 M N�1 �DN�1
~MN�1D

�1
N�1; (2.26)

where

 D N�1 � Diag�
�������������
N � 1
p

;
�������������������
2�N � 2�

p
;
�������������������
3�N � 3�

p
; . . . ;

�������������
N � 1
p

�

~MN�1 �

2�N � 1� �2�N � 2� 0 � � � 0
��N � 1� 2:2�N � 2� �3�N � 3� � � � 0

0 �2�N � 2� 2:3�N � 3� � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � ��N � 1�
0 0 0 � � � 2�N � 1�

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(2.27)

Then the matrices MN�1 and ~MN�1 have the same ei-
genvalues, and the eigenvectors of MN�1 can be deduced
from those of ~MN�1. This result is useful because the
matrix ~MN�1 has been studied in detail in [9]. There it
is proved that the eigenvalues of ~MN�1 (and therefore
those of MN�1) are

 E k � k�k� 1�; k � 1; . . . ; N � 1: (2.28)

The eigenvectors of ~MN�1 in general involve Hahn poly-
nomials [24], and can be found explicitly in [9]. The
eigenvectors vk for N � 3, 4 will be presented in
Secs. III C 1 and III C 2 when we discuss the soliton solu-
tions for su�3� and su�4� EYM, respectively.

Therefore, we set

 ! 2 � b1v1; (2.29)

where v1 is a (suitably normalized) eigenvector of MN�1

with eigenvalue 2, and b1 is an arbitrary constant. From the
Einstein equations (2.12), we find that m3 and S2 are fixed
and given in terms of the !j;2.

Expanding the gauge field functions !j to order r2 has
therefore only introduced one arbitrary parameter, namely
b1. However, it is expected that N � 1 independent pa-
rameters will be required to describe the N � 1 indepen-
dent functions !j�r�. Therefore, we must work to higher
order in r in order to introduce more arbitrary parameters.

Considering the next order in the Yang-Mills equations
(2.9), and setting !3 � �!1;3; . . . ; !N�1;3�

T , we find

 M N�1!3 � 6!3; (2.30)

so that we may set

 ! 3 � b2v2; (2.31)

where b2 is an arbitrary constant and v2 is an eigenvector
of MN�1 with eigenvalue 6 [k � 2 in (2.28)]. The Einstein
equations (2.12) are then used to determine m4 and S3

(which will also depend on the cosmological constant �).
Since we requireN � 1 arbitrary parameters for theN �

1 independent functions!j�r�, the above analysis therefore
suggests that we need to expand the !j�r� up to rN�1

in order to have N � 1 arbitrary parameters in the expan-
sion. This turns out to be the case, and a detailed proof
will be given elsewhere [23]. Determining the !k �
�!1;k; . . . ; !N�1;k�

T for k > 3 is slightly more complicated
than for k � 2, 3 as outlined above. Examining the Yang-
Mills equation (2.9) to kth order, we find an equation for
the !k�1 of the following form:

 �MN�1 � k�k� 1��!k�1 � ck�1; (2.32)

where ck�1 is a complicated vector depending on
!1; . . . ;!k and m3; . . . ; mk. For � � 0, the form of ck�1

is given explicitly in [9]; when �< 0 there are minor
modifications which we do not write here (they will be
given in [23]). Since, in later sections, we present solutions
just for su�3� and su�4� EYM, we will not need the exact
form of the ck�1. If vk is an eigenvector of MN�1 with
eigenvalue Ek (2.28), we can solve Eq. (2.32) for !k�1:
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 ! k�1 � bkvk � uk�1; (2.33)

where uk�1 is a particular solution of (2.32) chosen by
requiring that uk�1 is a linear combination of v1; . . . ;vk�1.
It is proven in [9] that there is a unique solution of (2.32)
subject to this constraint, in the � � 0 case. This can be
extended to �< 0, but we do not present the lengthy
details here [23].

The upshot of all this analysis is that the expansion of the
fields, near the origin, is written as follows [where ! �
�!1; . . . ; !N�1�

T]:

 m�r� � m3r3 �O�r4�; S�r� � S0 �O�r2�;

!�r� � !0 �
XN�1

k�1

bkvkr
k�1 �O�rN�1�;

(2.34)

where

 ! 0 � �
�������������
N � 1
p

;
�������������������
2�N � 2�

p
; . . . ;

�����������������
�N � 1�

p
�T: (2.35)

The expansions (2.34) give the field variables in terms of
the N � 1 parameters b1; . . . ; bN�1 and are those which are
used in the numerical integration of the field equations in
the next section.

III. SOLUTIONS

The field equations (2.9) and (2.12) have the following
trivial solutions. Setting !j�r� 	 �

������������������
j�N � j�

p
for all j

gives the Schwarzschild-adS black hole with m�r� � M �
constant (which can be set to zero to give pure adS space).
Setting !j�r� 	 0 for all j gives the Reissner-Nordström-
adS black hole with metric function

 ��r� � 1�
2M
r
�
Q2

r2 �
�r2

3
; (3.1)

and magnetic charge Q given by

 Q2 � 1
6N�N � 1��N � 1�: (3.2)

There is an additional special class of solutions, given by
setting

 !j�r� � �
������������������
j�N � j�

q
!�r� 8 j � 1; . . . ; N � 1: (3.3)

In this case, we follow [9] and define

 �N �
���������������������������������������
1
6N�N � 1��N � 1�

q
; (3.4)

and then rescale the field variables as follows:

 R � ��1
N r; ~� � �2

N�; ~m�R� � ��1
N m�r�;

~S�R� � S�r�; ~!�R� � !�r�:
(3.5)

Note that we rescale the cosmological constant � (this is
not necessary in [9] as there � � 0). The field equations
satisfied by ~m�R�, ~S�R�, and ~!�R� are then

 

d ~m
dR
� �� ~G� R2 ~p��;

1
~S

d~S
dR
� �

2 ~G
R

;

0 � R2�
d2 ~!

dR2 �

�
2 ~m� 2R3 ~p� �

2 ~�R3

3

�
d ~!
dR

� �1� ~!2� ~!;

(3.6)

where we now have

 � � 1�
2 ~m
R
�

~�R2

3
; (3.7)

and

 

~G �
�
d ~!
dR

�
2
; ~p� �

1

2R4 �1� ~!2�2: (3.8)

The equations (3.6) are precisely the su�2� EYM field
equations. Furthermore, the boundary conditions (2.17),
(2.20), and (2.34) also become those for the su�2� case.
This is straightforward to see for the boundary conditions
at the horizon (2.17) or at infinity (2.20). At the origin
(2.34), the su�2� embedded solutions are given by b1 � 0,
but b2 � � � � � bN�1 � 0. Therefore any su�2�, asymp-
totically adS, EYM soliton or black hole solution can be
embedded into su�N� EYM to give another asymptotically
adS soliton or black hole. We will see later in this section
how the embedded su�2� solutions fit in the solution spaces
for larger N.

To find genuinely su�N� solutions, the field equations
(2.9) and (2.12) are integrated numerically using standard
‘‘shooting’’ techniques [25]. The equation for S�r� decou-
ples from the other Einstein equation and the Yang-Mills
equations so can be integrated separately if required. For
su�N� solutions, we therefore have N coupled ordinary
differential equations to integrate (N � 1 Yang-Mills equa-
tions and one Einstein equation). For black holes, we start
integrating just outside the event horizon, using as our
shooting parameters the N variables !j�rh�, rh, subject to
the weak constraint (2.19). For solitons, we start integrating
close to the origin, using as our shooting parameters the
(N � 1) variables bj (2.34). In the soliton case, there are no
a priori bounds on the parameters bj. In either case, the
field equations are then integrated outwards in the radial
coordinate r until either the field variables start to diverge
or they have converged to the asymptotic form at infinity.

We now turn to a detailed discussion of the solutions we
find. As well as presenting some examples of solutions, our
particular focus in this section will be the structure of the
space of solutions, as a subset of the phase space of
parameters characterizing the solutions. We will examine
the solution spaces in detail for su�3� and su�4� solitons
and black holes, focusing on the numbers of zeros of the
gauge field functions. The solution spaces we present may
not necessarily be complete, as our approach has been to
scan the parameter space using a grid. It is therefore
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possible that solutions in which the gauge field functions
have different numbers of zeros exist between the points of
our grid. However, our figures will reveal the key features
of the solution spaces. Of particular interest will be the
existence of solutions where all the gauge field functions
have no zeros.

A. su�2� solutions

We begin by reviewing the phase space of su�2� solu-
tions, in which case we have a single gauge field function
!�r�. Many of the properties we find in the phase space of
solutions for su�N�, N > 2 are also seen in the su�2� case
and so it is informative to examine this simpler situation
first.

1. su�2� solitons

Near the origin, one parameter, b, is required, and the
expansion (2.34) reduces to

 !�r� � 1� br2 �O�r3�: (3.9)

For solitons, the phase space has been studied in detail by
[26]. We have verified their results and the phase space is
shown in Fig. 1 [note that our parameter b in (3.9) is equal
to�b in [26]]. The phase space is parametrized by just two
quantities: the cosmological constant � and the shooting
parameter b (3.9). The shaded regions in Fig. 1 indicate
those values of the parameters for which we were unable to
find a regular solution all the way out to infinity. Where we
do find solutions, they occur in open subsets of the plane.
We label these open sets by n, the number of zeros of the

single gauge function !. We draw the reader’s attention to
the following particular features of the soliton phase space:

(1) The number of zeros of the gauge field function
increases as j�j decreases or b decreases.

(2) Solutions in which ! has no zeros occur for suffi-
ciently large j�j.

(3) As j�j decreases, we find fewer solutions. The
phase space breaks up into smaller and smaller
regions. In the limit �! 0, we are left with solu-
tions just at discrete points, which are the Bartnik-
McKinnon solitons in asymptotically flat space [1].

Note that the solution with b � 0 exists for all �, and
simply corresponds to pure adS, with !�r� 	 1.

2. su�2� black holes

We next turn to the phase space of su�2� black hole
solutions. There are now three parameters describing the
solutions, rh, �, and !�rh�. In order to plot two-
dimensional figures, we fix either rh or � and vary the
other two quantities. For su�2� black holes, the constraint
(2.19) on the value of the gauge field function at the event
horizon reads

 �!�rh�2 � 1�2 < r2
h�1��r2

h�: (3.10)

Whether we are varying rh or �, we perform a scan over all
values of !h which satisfy (3.10).

First, we show in Fig. 2 the space of black hole solutions
for fixed � � �0:01 and varying event horizon radius rh.
The outermost curves in Fig. 2 are where the inequality
(3.10) is saturated. Immediately inside these curves we
have a shaded region, which represents values of
�rh; !�rh�� for which the constraint (3.10) is satisfied, but
for which we are unable to find black hole solutions which
remain regular all the way out to infinity. As with the
solitons, where we do find solutions, we indicate in
Fig. 2 the number of zeros of the gauge field function
!�r�. The solution for which !�rh� � 1 is simply the
Schwarzschild-adS black hole, while that for !�rh� � 0
is the magnetically charged Reissner-Nordström-adS black
hole, as described above. The following key features are
apparent from Fig. 2:

(1) We find solutions in which the gauge field function
has more zeros as we decrease rh or !�rh�.

(2) As rh ! 0, the constraint (3.10) implies that
!�rh� ! 1, as can be seen in Fig. 2. This is because
the black hole solutions become solitons in this
limit, and, for solitons, we have !�0� � 1 (3.9).
However, as can be seen in Fig. 1, for this value of
�, there are different soliton solutions, with ! hav-
ing different numbers of zeros. This feature is not
readily apparent from Fig. 2.

(3) The phase space of solutions breaks up into smaller
regions as rh decreases.

We find similar behavior on varying rh for different values
of �.

FIG. 1. Phase space of soliton solutions of su�2� EYM. The
shaded area denotes those pairs ��; b� (where b is the shooting
parameter giving the form of the gauge field function ! near the
origin) for which no regular solution is found. The unshaded
regions correspond to regular solutions, the number of nodes n of
the gauge field function ! being indicated for each region. For
values of b just below the region in which n � 3, we found
solutions for which n � 4, but the latter region is too small to be
seen on the graph.
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We now fix the event horizon radius rh � 1 and vary the
cosmological constant �. The solution space in this case is
shown in Fig. 3, with a close-up for smaller values of j�j in
Fig. 4. Once again, in Figs. 3 and 4 we have shaded those
regions where the constraint (3.10) is satisfied, but no
regular black hole solutions could be found. Where we
do find solutions, the number of zeros of the gauge field
function!�r� is indicated in the figures. Similar behavior is
observed as in the soliton case (Fig. 1), namely:

(1) The number of zeros of the gauge field function
increases as j�j or !�rh� decreases.

(2) As �! 0, the phase space breaks up into discrete
points, which correspond to the asymptotically flat
colored su�2� black holes [2].

(3) For sufficiently large j�j, we find solutions in which
the gauge field function has no zeros.

B. Black holes

We now turn to solutions of the su�N� EYM field
equations with N > 2, considering first black holes and
then solitons. Many of the features of the su�2� solutions
outlined in the previous section will be replicated for larger
N.

1. su�3� black holes

For su�3� EYM, there are two gauge field functions
!1�r� and !2�r�, and therefore four parameters describing
black hole solutions: rh, �, !1�rh�, and !2�rh�. Using the
symmetry of the field equations (2.14), we set !1�rh�,

!2�rh�> 0 without loss of generality. The constraint
(2.19) on the values of the gauge field functions at the
horizon becomes, in this case,
 

�!1�rh�2 � 2�2 � �!1�rh�2 �!2�rh�2�2 � �2�!2�rh�2�2

< 2r2
h�1��r2

h�: (3.11)

Two typical black hole solutions are shown in Figs. 5 and 6.
The metric functions behave in a very similar way to the

FIG. 4. Close-up of the phase space of su�2� black holes with
rh � 1 and smaller values of �. In the bottom left of the plot
there is a small region of solutions for which n � 7, but the
region is too small to be visible.

FIG. 3. Phase space of su�2� black holes with rh � 1 and
varying �. The shaded region indicates values of the gauge field
function !�rh� at the event horizon for which the constraint
(3.10) is satisfied, but for which we find no well-behaved black
hole solution. The number of zeros n of the gauge field function
! are indicated in those regions of the phase space where we find
black hole solutions. Elsewhere on the diagram, the constraint
(3.10) is not satisfied. As well as the regions where n � 0; . . . ; 4
as marked on the diagram, we find a small region in the bottom
left of the plot where n � 5. This region is too small to indicate
on the current figure, but can be seen in Fig. 4.

FIG. 2. The space of su�2� black hole solutions when � �
�0:01, for varying rh. The shaded region indicates values of the
gauge field function !�rh� at the event horizon for which the
constraint (3.10) is satisfied, but for which we find no well-
behaved black hole solution. The number of zeros n of the gauge
field function ! are indicated in those regions of the phase space
where we find black hole solutions. Elsewhere on the diagram,
the constraint (3.10) is not satisfied. Between the region where
n � 2 and the shaded region, we find black hole solutions with
n � 3, 4, and 5, but these regions are too small to indicate on the
graph.
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su�2� solutions [18,19], smoothly interpolating between
their values at the horizon and at infinity. We note that S�r�
in particular converges very rapidly to 1 as r! 1. In
Fig. 5, we show an example of a black hole solution in
which both gauge field functions have no zeros. We note
that both gauge field functions are monotonic, however,
one is monotonically increasing and the other monotoni-
cally decreasing. In our second example (Fig. 6), both
gauge field functions have three zeros. Although, in both
our examples the two gauge field functions have the same
number of zeros, we also find solutions where the two
gauge field functions have a different numbers of zeros
(see Figs. 8 and 9).

We now examine the space of black hole solutions.
Since we have four parameters, in order to produce two-
dimensional figures, we need to fix two parameters in each
case. We find that varying the event horizon radius pro-

duces similar behavior to the su�2� case, so for the re-
mainder of this section we fix rh � 1 and consider the
phase space for different, fixed values of �, scanning all
values of !1�rh�, !2�rh� such that the constraint (3.11) is
satisfied. From the discussion at the beginning of Sec. III,
we have embedded su�2� black hole solutions when, from
(3.3),

 !1�r� �
���
2
p
!�r� � !2�r�; (3.12)

which occurs when !1�rh� � !2�rh�.
In Figs. 7–10 we plot the phase space of solutions for

fixed event horizon radius rh � 1 and varying cosmologi-
cal constant � � �0:0001, �0:1, �1, and �5, respec-
tively. In each of Figs. 7–10 we plot the dashed line
!1�rh� � !2�rh�, along which lie the embedded su�2�
black holes. It is seen in all these figures that the solution
space is symmetric about this line, as would be expected
from the symmetry (2.15) of the field equations.

As in the su�2� case, for small values of � (see Fig. 7)
the solution space fragments and we find very few solu-
tions. The values of �!1�rh�; !2�rh�� for which we find
regular black hole solutions are indicated by black dots in
Fig. 7. Above the main group of solutions, there can clearly
be seen a couple of smaller regions of solutions. There is
also a small region centered on and very close to the dashed
line at about !1�rh�  1:27, and the Schwarzschild-adS
solution at !1�rh� � !2�rh� �

���
2
p

. For this value of �, we
find very complicated behavior in the numbers of zeros
�n1; n2� of the gauge field functions !1�r�, !2�r�, respec-

FIG. 5 (color online). Typical su�3� black hole solution, with
rh � 1, � � �1, !1�rh� � 1:2, and !2�rh� � 1:3. In this ex-
ample, both gauge field functions have no zeros.

FIG. 6 (color online). Example of an su�3� black hole solu-
tion, with rh � 1, � � �0:0001, !1�rh� � 1:184, and !2�rh� �
1:216. In this case, both gauge field functions have three zeros.

FIG. 7. Solution space for su�3� black holes with rh � 1 and
� � �0:0001. The dashed line indicates where !1�rh� �
!2�rh�, along which lie the embedded su�2� solutions. The
black regions indicate where we have regular black hole solu-
tions; elsewhere we find no solutions. In this case we find a wide
variety of numbers of zeros of the gauge field functions, and so
do not indicate all the different possibilities. For these values of
� and rh, we find no solutions for which the gauge field
functions have no zeros. The key feature in this figure is the
fragmentation of the solution space and the fact that there are
comparatively few solutions.
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tively. We have found at least 14 different combinations of
the numbers of zeros of the gauge field functions, some of
which occur only in very small regions of the parameter
space. This behavior is too complicated to depict accu-
rately in Fig. 7. The numbers of zeros of the gauge field
functions vary between 1 and 4 (we find no solutions in
which either gauge field function has no zeros). We stress
that the gauge field functions do not have to have the same
numbers of zeros, for � � �0:0001 we find that jn1 � n2j
varies between 0 and 2.

The solution space is found to be symmetric about the
line !1�rh� � !2�rh� not only in terms of where we find
solutions, but also in terms of the numbers of zeros of the
gauge field functions. To state this precisely, suppose that
at the point !1�rh� � a1,!2�rh� � a2 we find a black hole
solution in which !1�r� has n1 zeros and !2�r� has n2

zeros. Then, at the point!1�r� � a2,!2�r� � a1, we find a
black hole solution in which !1�r� has n2 zeros and !1�r�
has n1 zeros. This is clearly seen in Figs. 8 and 9, and
follows from the symmetry (2.15) of the field equations.

As we increase j�j, we find (see Figs. 8–10) that the
solution space expands as a proportion of the space of
values of !1�rh�, !2�rh� satisfying the constraint (3.11).
It can also be seen from Figs. 8–10 that the number of
nodes of the gauge field functions decreases as j�j in-
creases, and that the space of solutions becomes simpler.

For � � �0:1, there is a very small region of the
solution space where both gauge field functions have no
zeros. This region expands as we increase j�j, until for
� � �5, both gauge field functions have no zeros for all
the solutions we find.

2. su�4� black holes

In this case there are three gauge field functions and so
the parameter space is five dimensional. The constraint
(2.19) satisfied at the horizon by the gauge field functions
now reads
 

�!1�rh�2 � 3�2 � �!2�rh�2 �!1�rh�2 � 1�2

� �!3�rh�2 �!2�rh�2 � 1�2 � �3�!3�rh�2�2

< 2r2
h�1��r2

h�: (3.13)

An example of a typical su�4� EYM black hole was plotted
in [27]. The solutions have the expected features, with the

FIG. 10. Solution space for su�3� black holes with rh � 1 and
� � �5. It can be seen that, for the vast majority of the phase
space for which the constraint (3.11) is satisfied, we have black
hole solutions in which both gauge field functions have no zeros.

FIG. 9. Solution space for su�3� black holes with rh � 1 and
� � �1. The shaded region indicates where the constraint
(3.11) is satisfied but we do not find black hole solutions.
Outside the shaded region the constraint (3.11) does not hold.
Where there are solutions, we have indicated the numbers of
zeros of the gauge field functions within the different regions.
For this value of � there is a large region in which both gauge
field functions have no zeros.

FIG. 8. Solution space for su�3� black holes with rh � 1 and
� � �0:1. The numbers of zeros of the gauge field functions for
the various regions of the solution space are shown. For other
values of !1�rh�, !2�rh� we find no solutions. There is a very
small region containing solutions in which both gauge field
functions have no zeros, in the top right-hand corner of the plot.
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metric functions monotonically interpolating between their
values on the black hole event horizon and at infinity, and
the gauge field functions having various numbers of zeros
outside the event horizon before monotonically converging
to their values at infinity.

Considering the solution spaces, to produce a two-
dimensional plot, we now have to fix three parameters. In
Figs. 11 and 12 we show examples of the solution space
when we fix �, rh and the value of one of the gauge field
functions at the horizon, varying the values of the other two
gauge field functions at the horizon. In both Figs. 11 and 12
we indicate the numbers of zeros of the three gauge field
functions for the regions where we find black hole solu-
tions. Elsewhere in these two figures, we do not find black
hole solutions. Now that there are three gauge field func-
tions, it can be seen that the structure of the solution space
is quite complicated (and gets ever more complicated as
j�j decreases). However, for the particular values of � and
rh in Figs. 11 and 12, it can be seen that there are solutions
in which all three gauge field functions have no zeros.

Many of the other features of the phase space observed
in the su�2� and su�3� cases are replicated here: namely,
the fragmentation of the solution space as j�j decreases; as
j�j increases, the proportion of the parameter space for
which the constraint (3.13) is satisfied and we have black
hole solutions increases; for sufficiently large j�j, we have
solutions in which all gauge field functions have no zeros.
Figures 13 and 14 illustrate these features. In both Figs. 13
and 14, we have exploited the symmetry (2.15) of the field
equations and set !1�rh� � !3�rh�, although it should be
noted, from Figs. 11 and 12, that this does not need to hold
[that is, although the field equations have the symmetry

(2.15), it is not necessary for the solutions to have this
symmetry]. In both Figs. 13 and 14, we have plotted the
line 4!1�rh�

2 � 3!2�rh�
2 � 4!3�rh�

2, on which lie the
embedded su�2� solutions (3.3). It can be seen in both

FIG. 13. Solution space for su�4� EYM black holes with � �
�1, rh � 1, and !1�rh� � !3�rh�. The shaded region indicates
those values of the parameters !1�rh�, !2�rh� for which the
constraint (3.13) is satisfied, but for which we find no black hole
solutions. Where we do find black hole solutions, the numbers of
zeros of the gauge field functions are indicated (note that n3 �
n1 in this case). We have also plotted the dashed line 4!1�rh�2 �
3!2�rh�

2, on which lie embedded su�2� solutions. As well as the
regions marked, we also find small regions where the numbers of
zeros of the gauge field functions are n1 � n3 � 2, n2 � 0 and
n1 � n3 � 0, n2 � 2.

FIG. 12. Solution space for su�4� EYM black holes with rh �
1, � � �1, and !2�rh� � 1:8. Where there are solutions, the
numbers of zeros of the three gauge field functions are indicated
for the relevant regions. Elsewhere in the figure we find no black
hole solutions. As well as the regions indicated, we also find
small regions where the numbers of zeros of the gauge field
functions are �n1; n2; n3� � �1; 1; 0� and (0, 1, 1).

FIG. 11. Solution space for su�4� EYM black holes with rh �
1, � � �1, and !1�rh� � 1:6. Where there are solutions, the
numbers of zeros of the three gauge field functions are indicated
for the relevant regions. Elsewhere in the figure we find no black
hole solutions. As well as the regions indicated, we also find
small regions where the numbers of zeros of the gauge field
functions are �n1; n2; n3� � �1; 1; 0� and (0, 1, 1).
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figures that the solution space is symmetric about this line,
as in the su�3� case. Figure 14 shows that it is still the case
that, for sufficiently large j�j, all the solutions we find are
such that all three gauge field functions have no zeros.

Comparing Figs. 9 and 13, we see that the proportion of
the phase space for which the constraint (3.13) is satisfied
and we have black hole solutions is rather smaller than in
the su�3� case. This can be understood from the scaling
(3.5) required to embed the su�2� solutions into su�3�
EYM. From (3.5), an su�2� black hole solution with cos-
mological constant � and event horizon radius rh is em-
bedded into su�3� as a solution with cosmological constant
4� and event horizon radius rh=2 [since �3 � 2 (3.4)], and
into su�4� as a solution with cosmological constant 10�
and event horizon radius rh=

������
10
p

[since �4 �
������
10
p

(3.4)].
This scaling means that, for larger N, larger � values are
needed to find the same behavior as is observed at smaller
� values in the su�2� case.

C. Solitons

The behavior of the gauge field functions near the origin
(2.34) makes finding numerical soliton solutions of the
field equations (2.9) and (2.12) more complicated than
finding black hole solutions. We define new variables
�1�r�; . . .�N�1�r� which have the following behavior
near the origin:

 �j�r� � bjr
j�1 �O�rj�2�; j � 1; . . . ; N � 1;

(3.14)

where the bj are the constants in the expansion of !�r�
(2.34). Therefore the gauge field functions take the form

 ! �r� � !0 �
XN�1

k�1

�k�r�vk: (3.15)

For each N, we proceed as follows. First, the normalized
eigenvectors vk of the matrix MN�1 (2.25) are calculated.
We then have the !j�r� in terms of the �k�r� from (3.15).
The expressions (3.15) are substituted into the field equa-
tions (2.9) and (2.12) to give differential equations for the
�k�r�. The Yang-Mills equations for the�k�r�will be given
explicitly for su�3� below. For the Einstein equations, the
quantity G (2.13) becomes

 G �
XN�1

k�1

�02k ; (3.16)

because we have normalized the eigenvectors vk. The
quantity p� (2.10) takes a complicated form in terms of
the �k�r� (which we do not write here), but is readily
computed in MAPLE. Further details of this procedure in
the su�3� and su�4� cases will be outlined below.

Many of the features of the solution space for black
holes are seen also in the soliton solution spaces. In par-
ticular, the solution space becomes more complicated as
j�j decreases, eventually reducing to the asymptotically
flat solution space as �! 0. As j�j increases, we find
more solutions and, for sufficiently large j�j, we find
solutions in which all the gauge field functions have no
zeros. In the following subsections, we have focused on the
structure of the solution spaces for smaller values of j�j
where there are more features.

1. su�3� solitons

In su�3� EYM, the matrix MN�1 (2.25) with N � 3
takes the form

 M 2 �
4 �2
�2 4

� �
: (3.17)

It is straightforward to confirm that the eigenvalues of M2

are 2, 6, with corresponding normalized eigenvectors

 v 1 �
1���
2
p

1
1

� �
; v2 �

1���
2
p

1
�1

� �
: (3.18)

As described above, we therefore write the gauge field
functions as follows, from (3.15):

 

!1�r�
!2�r�

� �
�

���
2
p���

2
p

 !
�

1���
2
p

�1�r� � �2�r�
�1�r� � �2�r�

� �
: (3.19)

The Yang-Mills equations (2.9) then give the following
equations for the �k�r�:

FIG. 14. Solution space for su�4� EYM black holes with � �
�10, rh � 1, and !1�rh� � !3�rh�. The shaded region indicates
those values of the parameters !1�rh�, !2�rh� for which the
constraint (3.13) is satisfied, but for which we find no black hole
solutions. In this case, for all the black hole solutions we find, all
three gauge field functions have no zeros. We have also plotted
the dashed line 4!1�rh�

2 � 3!2�rh�
2, on which lie embedded

su�2� solutions.
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0 � r2��001 �
�
2m� 2r3p� �

2�r3

3

�
�01

�
1

4
�2� �1���2

1 � 4�1 � 7�2
2�;

0 � r2��002 �
�
2m� 2r3p� �

2�r3

3

�
�02

�
1

4
�7�2

1 � 28�1 � �2
2 � 24��2;

(3.20)

where, in this case, the expression for p� (2.10) is not too
complicated:

 p� �
1

8r4 ���
2
1 � 4�1 � �

2
2�

2 � 48�2
2 � 48�1�

2
2

� 12�2
1�

2
2�: (3.21)

We then numerically integrate the field equations (2.12)
and (3.20) with the initial conditions (3.14). The solution
space is described by three parameters: �, b1, and b2.

A typical soliton solution is shown in Fig. 15. In Fig. 15,
we have plotted the auxiliary functions �1�r� and �2�r� as
well as the physical field quantities m�r�, S�r�, !1�r�, and
!2�r�. It can be seen that all variables have the expected
behavior, both near the origin and at infinity. At infinity, the
�k�r� functions converge to constant values, which can be
arbitrary [since the values of the gauge field functions
!j�r� at infinity (2.20) are arbitrary].

The solution spaces for two particular values of � are
shown in Figs. 16 and 17. The origin b1 � 0 � b2 corre-
sponds to pure adS space. In both Figs. 16 and 17, we see
that the solution space is symmetric about the axis b2 � 0.
This is due to the symmetry (2.15) of the field equations,
since the mapping b2 ! �b2 effectively swaps !1�r� and
!2�r� from (3.19). In both figures we see a region of
solutions in which both gauge field functions have no
zeros, but the size of this region increases for larger j�j.

2. su�4� solitons

In su�4� EYM, the matrix MN�1 (2.25) reads

 M 3 �
6 �

������
12
p

0
�

������
12
p

8 �
������
12
p

0 �
������
12
p

6

0
@

1
A; (3.22)

and has eigenvalues 2, 6, and 12 (2.28) and normalized
eigenvectors

FIG. 17. Solution space for su�3� solitons with � � �1.
Where we find solutions, the numbers of zeros of the gauge
field functions are indicated. Elsewhere in the parameter space
we do not find solutions. We now have a much larger region of
solutions in which both gauge field functions have no zeros.

FIG. 16. Solution space for su�3� solitons with � � �0:1.
Where we find solutions, the numbers of zeros of the gauge
field functions are indicated. Elsewhere in the parameter space
we do not find solutions. For this value of �, there is a very small
region (near the origin) of solutions in which both gauge field
functions have no zeros. Although they are too small to show on
this figure, we also find regions where the numbers of zeros of
the gauge field functions are n1 � 3 [with n2 2 �0; 1; 2; 3�] or
n2 � 3 [with n1 2 �0; 1; 2; 3�].

FIG. 15 (color online). Typical su�3� soliton solution, with
� � �0:1, b1 � 0:35, and b2 � 0:115. The gauge field function
!1�r� has two zeros, while !2�r� has no zeros.
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 v 1 �
1������
10
p

���
3
p

2���
3
p

0
@

1
A; v2 �

1���
2
p

1
0
�1

0
@

1
A;

v3 �
1���
5
p

1
�

���
3
p

1

0
@

1
A:

(3.23)

The gauge field functions therefore take the form (3.15)

 

!1

!2

!3

0
@

1
A �

���
3
p

2���
3
p

0
B@

1
CA� 1������

10
p

���
3
p
�1 �

���
5
p
�2 �

���
2
p
�3

2�1 �
���
6
p
�3���

3
p
�1 �

���
5
p
�2 �

���
2
p
�3

0
B@

1
CA:

(3.24)

The expressions for the Yang-Mills equations (2.9) and p�
(2.10) are now quite lengthy and so we do not reproduce
them here. We now have a four-dimensional parameter
space: �, b1, b2, and b3.

A typical su�4� soliton solution is shown in Fig. 18. In
Fig. 18 we have plotted just the gauge field functions !j�r�
and the auxiliary functions �k�r�, as the metric functions
have similar behavior to that seen in, for example, Fig. 15.
In Fig. 18, all three gauge field functions have no zeros. For
this large value of j�j, we find soliton solutions for a wide
range of values of b1, all with the three gauge field func-
tions having no zeros. However, we also find that b2 and b3

have rather smaller ranges over which we find solutions.
This can be seen in the next two figures.

In Figs. 19 and 20, we show the solution spaces of
solitons for � � �1, for b2 � 0 and b3 � 0 respectively.
In each case we have indicated the numbers of zeros of the
gauge field functions in those regions where we find solu-
tions. Elsewhere, no solutions are found. The solution
space in Fig. 19 is not symmetric about the axis b3 � 0,
but, in Fig. 20 the solution space is symmetric about the

axis b2 � 0. This is expected from the form of the gauge
field functions !j�r� in terms of the auxiliary functions
�k�r� (3.24). It will be seen from Figs. 19 and 20 that, for
this value of �, we have many solutions in which all three
gauge field functions have no zeros.

IV. CONCLUSIONS

In this paper we have presented new soliton and hairy
black hole solutions of su�N� Einstein-Yang-Mills theory
with a negative cosmological constant. Our solutions are
purely magnetic, so that the gauge field functions are in
general described by N � 1 functions, giving N � 1 inde-

FIG. 19. Solution space for su�4� solitons with � � �1 and
b2 � 0. Where we find solutions, the numbers of zeros of the
gauge field functions are indicated for the relevant regions. For
other values of the parameters b1 and b3, we do not find
solutions. Note that the solution space is not symmetric about
the axis b3 � 0.

FIG. 20. Solution space for su�4� solitons with � � �1 and
b3 � 0. Where we find solutions, the numbers of zeros of the
gauge field functions are indicated for the relevant regions. For
other values of the parameters b1 and b2, we do not find
solutions. In contrast to Fig. 19, in this case the solution space
is symmetric about the axis b2 � 0.

FIG. 18 (color online). Typical su�4� soliton solution, with
� � �10, b1 � �1:2, b2 � �0:1, and b3 � �0:01. We plot
just the auxiliary functions �k�r� and the gauge field functions
!j�r�. In this example, all three gauge field functions have no
zeros. Note that �3�r� is not identically zero, it monotonically
increases to 6:41� 10�2 as r! 1.
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pendent degrees of freedom. This gives, in total, N � 1
parameters (N � 1 from the gauge fields, plus the cosmo-
logical constant � and the event horizon radius rh, the
latter being zero for soliton solutions) which characterize
the solutions. We have developed the formalism for finding
solutions for arbitrary N, and have discussed in some detail
the properties of the solution space for N � 3, 4.

Although the spaces of solutions get progressively more
complicated as N increases, the key features are those also
found in the su�2� case, namely,

(1) Solutions exist in continuous open subsets of the
phase space.

(2) As j�j ! 0, the solution space fragments and ap-
proaches the discrete solution space in asymptoti-
cally flat space.

(3) For sufficiently large j�j, we have solutions in
which allN � 1 gauge field functions have no zeros.

The last item is of particular interest. The existence of
these solutions, for sufficiently large j�j, can be proved
analytically [23]. In the su�2� case, it is known that at least
some of the solutions in which the gauge field function has
no zeros, for sufficiently large j�j, are linearly stable, both
under spherically symmetric [18,19] and nonspherically
symmetric [20] linear perturbations. We have seen how
su�2� solutions can be embedded into su�N� EYM, and
the first question is whether those solutions which are
stable as solutions of su�2� EYM remain stable when
considered as solutions of su�N� EYM. We will show in
a separate publication that this is indeed the case [23], and,
furthermore, that there are genuinely su�N� solutions, in a
neighborhood of these embedded su�2� solutions, which
are also stable under linear, spherically symmetric pertur-
bations. The analysis is rather involved so we do not
describe it further here. The question of nonspherically
symmetric perturbations remains open at this stage.

Other interesting open questions remain. First, there is
evidence [28] that solutions to su�1� exist in adS, at least

for sufficiently large j�j. The field equations for su�1� are
rather different in structure from those for su�N�, with the
infinite number of ordinary differential YM equations
being replaced by a partial differential equation [28].
Therefore different numerical techniques will be required
to solve the field equations. However, the fact (to be proved
in [23]) that there are soliton and hairy black hole solutions
in su�N� EYM for any N suggests that nontrivial solutions
of su�1� EYM may indeed exist. This leaves open the
interesting possibility of giving a black hole infinite
amounts of gauge field hair. Second, we have not examined
the question of whether there are topological black hole
solutions of su�N� EYM, generalizing the topological
su�2� black holes found in [29], but we anticipate that
such solutions exist. All k � 0 su�2� EYM topological
black holes are known to be stable as are at least some of
the k � �1 solutions [29], so the stability of any su�N�
EYM topological black holes would also be of particular
interest. Finally, there is the question of the implication of
our solutions for the adS/CFT correspondence [17]. A
black hole with a particular mass and magnetic charge
measured at infinity in adS can now be either an Abelian,
magnetically charged, Reissner-Nordstrom-adS black hole
or any one of a number of su�N� EYM black holes with
different N. We would expect that, in analogy with the
su�2� case [30], there are su�N� solutions in some super-
gravity theories, which will be even more puzzling in the
context of adS/CFT. It would also be interesting to study
the corresponding picture in higher dimensions [31]. We
hope to return to these issues in the near future.
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