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We present a new numerical code developed for the evolution of binary black-hole spacetimes using
different initial data and evolution techniques. The code is demonstrated to produce state-of-the-art
simulations of orbiting and inspiralling black-hole binaries with convergent waveforms. We also present
the first detailed study of the dependence of gravitational waveforms resulting from three-dimensional
evolutions of different types of initial data. For this purpose we compare the waveforms generated by
head-on collisions of superposed Kerr-Schild, Misner, and Brill-Lindquist data over a wide range of initial
separations.
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I. INTRODUCTION

In the course of the last two years, the research area of
gravitational wave physics has entered a very exciting era.
On the experimental side, the first generation of ground-
based gravitational wave detectors, LIGO, GEO600,
TAMA300, and VIRGO, are performing observation runs
at and even beyond design sensitivity [1–5]. At the same
time, the simulation of the most promising sources of
gravitational waves, the inspiral of compact binary sys-
tems, has made enormous progress. While approximate
studies based on the post-Newtonian approach have been
able for some time to accurately simulate the earlier stages
of inspiralling binary systems [6–11], recent developments
in numerical relativity have made possible the simulation
of the highly relativistic final stages of the inspiral and
merger of compact binaries in the framework of fully
nonlinear general relativity.

For a long time such simulations have been troubled by
stability problems which caused evolutions to terminate
after times relatively short compared with the dynamic
time scales of the problems under investigation. It is be-
coming increasingly clear now, however, that these prob-
lems have been successfully overcome by a combination of
modified formulations of the Einstein equations [12–15],
suitable gauge conditions (see e.g. [16–19]) and improved
techniques for the treatment of the singularities inherent to
black-hole spacetimes.

Using such modern techniques, Brügmann et al. [17]
obtained the first simulation of a complete orbit of a black-
hole binary in the framework of the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation [12,13], using
puncture data [20] and corotating coordinates. More re-
cently, their results have been confirmed by an improved
study [21]. The first waveforms generated in the inspiral
and coalescence of black holes have been presented by
Pretorius [22,23] who uses a generalized harmonic formu-
lation of the Einstein equations combined with special
numerical techniques such as black-hole excision, spatial

compactification, and implicit finite differencing. The lat-
est development, simultaneously discovered by Camp-
anelli et al. and Baker et al. [18,19,24,25], is based on
the evolution of black-hole data of puncture type using
special gauge conditions accommodating the motion of the
punctures across the computational domain. For this reason
these simulations are commonly referred to as moving
punctures. More recently, this technique has facilitated
the investigation of various aspects of the binary black-
hole coalescence, such as the radiation of linear momen-
tum by systems of unequal masses and/or spins [26–34],
the impact on the waveforms and merger dynamics of
nonvanishing spins [35,36] and analysis of the waveforms
in the framework of post-Newtonian inspiral and black-
hole ring-down [37–42].

As in the case of black holes, simulations lasting for
several orbits have also been obtained for neutron star
binaries by several groups [43–46]. In more recent devel-
opments the focus is switching to the refinement of the
matter models by including, for example, magneto-
hydrodynamic effects (see e.g. [47]). In our work, however,
we focus on black-hole systems, and will therefore exclu-
sively study vacuum spacetimes.

In spite of the dramatic progress in numerical simula-
tions of black-hole binaries, there remain important ques-
tions to be answered, in particular, with regard to the use of
the resulting waveforms in the ongoing effort to detect and
physically interpret gravitational-wave signals. In particu-
lar, it will be important to establish the accuracy of the
numerically calculated waveforms and the consistency of
these results with regard to the use of different types of
binary-black-hole initial data and the evolution techniques
used in the codes. First steps in this direction have been
undertaken with regard to the use of evolution techniques
and separation parameters of a given initial-data type. In
Ref. [48], the impact of black-hole excision was studied in
the case of head-on collisions of Brill-Lindquist data. The
results with and without excision yielded good agreement
in that study. A comparison between plunge waveforms
obtained from moving-puncture evolutions with those re-
sulting from Lazarus calculations [49] has been presented*Ulrich.Sperhake@uni-jena.de
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in Ref. [19]. Furthermore, the waveforms resulting from
inspiralling black holes of puncture type starting from
different separations have been found to show excellent
agreement in Refs. [27,35]. A comparison of waveforms
obtained from evolving conceptually different types of
initial data has been presented in [50]. This study is in-
hibited, however, by the difficulties in starting the simula-
tions from comparable initial configurations as is
demonstrated by the nonvanishing spin in one of the two
data sets considered in this work.

The purpose of this paper is twofold. First, we present a
new numerical code which has been designed to accom-
modate different types of initial data, formulations of the
Einstein equations as well as singularity treatment. We
demonstrate that the code is capable of producing state-
of-the-art simulations of inspiralling black-hole binaries
and extract convergent waveforms. Second, we use the
code to further progress in the comparison of different
initial configurations by comparing black-hole head-on
collisions obtained from different types of initial data and
using different evolution techniques. Specifically, we com-
pare the results obtained from superposed Kerr-Schild data
evolved in the framework of black-hole excision and alge-
braic gauge conditions with those obtained from evolving
Brill-Lindquist as well as Misner data in the framework of
the moving-puncture method.

This paper is structured as follows. We begin with a
detailed presentation of the code in Sec. II. Next, we
benchmark the code in Sec. III by simulating the inspiral
and merger of an orbiting black-hole binary comparable to
those studied in the recent literature. The comparison of
head-on collisions obtained with Brill-Lindquist, Misner,
and Kerr-Schild data is given in Sec. IV and we conclude
with a discussion of our findings in Sec. V. Details on the
exact version of the BSSN equations used for this work, the
analytic solution of a boosted black hole in Kerr-Schild
coordinates, extraction of gravitational waves, and the
performance of the code are presented in Appendixes A,
B, C, and D. Throughout this work we set G � c � 1 and
use Greek indices for spacetime components 0 . . . 3 and
Latin indices for spatial components 1 . . . 3.

II. COMPUTATIONAL FRAMEWORK

The simulations presented in this work have been ob-
tained with the newly developed LEAN code. This code has
been inspired partly by the MAYA1 code [51–53], and partly
by the most recent developments in the simulation of
black-hole data of puncture type [24,25]. It is based on
the CACTUS computational toolkit [54], used for paralleli-
zation and data input/output. Mesh refinement is provided
by CARPET [55,56], puncture initial data by the

TWOPUNCTURES thorn [57], and horizon finding by
AHFINDERDIRECT [58,59]. The code achieves dynamic
mesh refinement by steering in accordance with the
black-hole motion the regridding option inherent to the
CARPET package. While the LEAN code has been inspired
by MAYA, it has been written entirely from scratch and
various new features have been added. These are fourth-
order discretization of the spatial derivatives, the evolution
of the BSSN equations using the � version (see below),
additional gauge conditions, time integration using the
fourth-order Runge-Kutta (RK) scheme, dynamic mesh
refinement that allows for multiple refinement components
to follow the black-hole motion and merge into single
components and additional initial-data options including
puncture data using the TWOPUNCTURE thorn [57] and
Misner data. Furthermore, the different organization of
the code has led to about 5 times faster evolutions and a
reduction by about a third in memory requirements com-
pared with MAYA for a given configuration. Details on the
code’s performance for the orbital simulations and head-on
collisions are provided in Appendix D. The key feature of
the code for the comparison presented below is the incor-
poration in the framework of mesh refinement of both
dynamic black-hole excision and the moving-puncture
technique used with enormous success in evolutions of
conformally flat initial data. These features as well as other
aspects of the LEAN code are described in more detail in the
remainder of this section.

A. Formulation of the Einstein equations

Most of the numerical work in three spatial dimensions
has been performed inside the framework of the canonical
‘‘3� 1’’ spacetime decomposition of Arnowitt, Deser, and
Misner (ADM) [60] (see also [61] for a detailed discus-
sion). In the notation of [61], the geometry is described in
terms of the three-dimensional metric �ij and the extrinsic
curvature Kij, as well as four gauge functions � and �i

which represent the coordinate freedom of general relativ-
ity. The Einstein field equations result in six evolution
equations each for �ij and Kij as well as four constraint
equations, namely, the Hamiltonian and momentum con-
straints. These equations are commonly referred to as the
ADM equations.

While these equations have been at the heart of most
numerical codes for a long time, the ensuing stability
problems have led to the use of various alternative formu-
lations of the Einstein equations, most of them modifica-
tions of the ADM equations. The most popular and
successful of these modified schemes is now known as
the BSSN system [12,13] and has been implemented in
the LEAN code. While the code also allows evolutions using
the Nagy-Ortiz-Reula (NOR) [62] or the generalized har-
monic formulation [14,15], we have not yet managed to
achieve long-term stable simulations using these systems.
Therefore, all simulations presented in this work have been
obtained with the BSSN system.

1Throughout this work with the MAYA code we refer to the
version used in Ref. [51] which is not to be confused with the
new code of the same name described in Ref. [26].
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The BSSN formulation results from applying the follow-
ing modifications to the original ADM equations: First, a
split of the extrinsic curvature into a trace-free part Aij and
the trace K; second, a conformal rescaling of the three-
metric and the extrinsic curvature; and, third, the introduc-
tion of contracted Christoffel symbols as separate variables
~�i. One thus arrives at a description of the spacetime in
terms of the variables

 � �
1

12
ln�; ~�ij � e�4��ij; K � �ijKij;

~Aij � e�4�
�
Kij �

1

3
�ijK

�
; ~�i � ~�mn~�imn;

(1)

as well as the gauge functions � and �i. Here, � denotes
det�ij and the definition of � implies that ~� � det~�ij � 1.
Alternatively to this choice of variables the LEAN code also
allows for evolutions using the variable

 � � e�4� (2)

as introduced in Ref. [24]. The complete evolution equa-
tions for both sets of variables are listed in Appendix A. We
refer to the two resulting systems given by Eqs. (A1)–(A5)
and Eqs. (A1), (A4), and (A6)–(A8) as the � and the �
version of the BSSN equations, respectively, in the remain-
der of this work.

In addition to evolving the BSSN variables according to
either of these systems, we enforce after each update of the
variables the condition ~Aii � 0, which is a consequence of
the definition of ~Aij in Eq. (1). We find this step to be
crucial for the stability of our simulations. Other modifi-
cations to the BSSN equations have been suggested in the
literature (see e.g. [63]). We have experimented with sev-
eral of these, but not observed any further improvements of
the performance of the code. In particular, we do not find it
necessary to enforce the condition det~�ij � 1 or to replace
the variable ~�i in terms of the Christoffel symbols at any
stage of the evolution.

B. Initial data

One main purpose of this paper is to provide a detailed
comparison of binary-black-hole collisions obtained with
different initial-data types. We now describe the different
initial data available inside the code. Specifically, these are
puncture, Misner, and superposed Kerr-Schild data.

The starting point for binary black-hole data of the
puncture type is the Schwarzschild solution in isotropic
coordinates, where the spacetime curvature is captured
entirely within the conformal factor  � e� � �1� m

2r�.
In the case of time symmetry, these conformally flat data
have been shown to generalize to an arbitrary number of
black holes by merely adding the individual quotients in
the conformal factor [64,65]

  � 1�
X
i

mi

2j ~r� ~rij
; (3)

where the index i labels the individual black holes. This
time-symmetric initial configuration of multiple black
holes is known as Brill-Lindquist data. As a further gen-
eralization of these data, spin and momentum can be
incorporated in the form of a nonvanishing extrinsic cur-
vature [66]. Finally, Brandt and Brügmann [20] have trans-
formed this type of data into a form substantially more
convenient for use in numerical simulations by applying a
compactification to the internal asymptotically flat regions
of the holes (see their paper for existence and uniqueness of
the solutions for the Hamiltonian constraint). These data
are commonly referred to as punctures and have been
widely used in numerical simulations.

Inside the LEAN code, initial data of Brill-Lindquist type
are implemented analytically using Eq. (3). More general
classes of puncture data are made available via the
TWOPUNCTURES thorn of Ansorg et al. [57], which solves
the Hamiltonian constraint using spectral methods com-
bined with transformations to a coordinate system spe-
cially adapted to the structure of the binary black-hole
spacetime (see [57] for details).

The second class of initial data we study in this work is
the axisymmetric Misner data [67] which represent a con-
formally flat spacetime containing two nonspinning equal-
mass black holes at the moment of time symmetry (Kij �
0). In Cartesian coordinates the three-metric �ij for this
configuration can be written as

 �ij �  4
M�ij; (4)

where the conformal factor is given by

  M � 1�
X
n

1

sinhn�

�
1�����������������������������������������

x2 � y2 � �z� zn�
2

p
�

1�����������������������������������������
x2 � y2 � �z� zn�

2
p �

; (5)

 zn � cothn�; (6)

and� is a free parameter determining the initial separation
of the holes D=M, where M is the ADM mass of the
system.

As an alternative to these two conformally flat data
types, the LEAN code allows the use of nonspinning
black-hole binary data based on the Kerr-Schild solution
for a single black hole [68,69]. The invariance of the
structure of the Kerr-Schild data under boost transforma-
tions has motivated their use in boosted, superposed form.
Even though these superposed data do not exactly satisfy
the Einstein constraints for finite separation of the holes,
they have been studied extensively in the literature, both as
initial data and in the context of binary-black-hole evolu-
tions (see, for example, [51,70–74]). Whenever we speak
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of superposed Kerr-Schild data in the remainder of this
work, we thus refer to this direct superposition of the data
which has been used in evolutions before. We are currently
not aware of any time evolutions presented in the literature
that start with Kerr-Schild data after applying a constraint
solving procedure.

In order to construct the data, we follow the approach of
Ref. [51]. The solution of a single boosted, nonspinning
Kerr-Schild hole with mass parameter m and velocity vi is
calculated according to the prescription presented in
Appendix B. The two solutions thus obtained for black
holes at positions Axi and Bxi are then superposed accord-
ing to

 

KS�ij �
A�ij �

B�ij � �ij; (7)

 

KSKi
j �

AKi
j �

BKi
j; (8)

 

KS�i �
A�i �

B�i; (9)

 

KS� � �A��2 � B��2 � 1��1=2: (10)

We note that, with this specific superposition, lapse � and
shift �i obey the close-limit condition, i.e. they lead to the
lapse and shift of a single Kerr-Schild hole in the limit of
zero separation.

C. Gauge conditions

An important ingredient in the recent success of numeri-
cal simulations of black-hole binaries has been the imple-
mentation of improved gauge conditions. In terms of the
‘‘3� 1’’ decomposition, the coordinate invariance of gen-
eral relativity is represented by the freedom to arbitrarily
specify the lapse function � and the shift vector �i. While
the particular choice of these functions leaves unaffected
the physical properties of the spacetime, it can have a
dramatic effect on the stability properties of a numerical
simulation.

In the past, the majority of gauge conditions have been
designed with the purpose to drive the system of variables
towards a stationary configuration (see e.g. [16,75,76]). In
combination with the use of comoving coordinates, this
approach led to the first simulation of a complete binary
black-hole orbit [17]. More recent developments, however,
have shown a tendency towards allowing the black holes to
move across the computational domain (see e.g. [51,53] for
single moving black holes and head-on collisions and
[15,18,19,23] for orbiting black holes). We have imple-
mented in the LEAN code both the use of algebraic gauge
conditions along the lines reported in [53] and live-gauge
conditions similar to those presented in [18,19] for the
evolutions of black holes of the moving-puncture type
(see also [77] for a more detailed numerical study and
[78] for an analytic study of these types of gauge choices).
Experimentally, we have found variations in these live-

gauge conditions to manifest themselves most conspicu-
ously in the profile of the variables ~�i near the punctures. In
particular, we have noticed that steep gradients in these
functions resulted in poor convergence properties of the
merger time of the black holes or, worse, instabilities. We
have found optimal performance of our code in this respect
by evolving the gauge variables according to

 @t� � �i@i�� 2�K; (11)

 @t�
i � Bi; (12)

 @tBi � @t~�
i � �Bi: (13)

Initially we have experimented with setting � � 2, but
observed an instability in the outermost refinement bound-
ary for coarser resolutions. We have found the choice � �
1 to cure that instability while preserving the good con-
vergence properties of the code and therefore use this value
throughout this work. The gauge variables are initialized
by using zero shift with a precollapsed lapse � � e�2� �����
�
p

.
The gauge conditions (11)–(13) not only provide stable

evolutions, but also facilitate a comparatively simple
method to track the black-hole position. As has been shown
in Ref. [24] the vanishing of � at the puncture in conjunc-
tion with Eq. (A6) implies that

 

dxi

dt
� ��i: (14)

We have implemented this relation via interpolation of the
shift vector at the puncture location and subsequent update
of the position using a second-order Runge-Kutta method.
In practice, we find excellent agreement between the re-
sulting locations of the puncture and the coordinate center
of the apparent horizon as calculated by AHFINDERDIRECT

from surface integrals of the global coordinates over the
horizon.

In the case of the evolutions of Kerr-Schild data, we
have also experimented with these gauge conditions. So
far, however, we have not managed to obtain long-term
stable evolutions in this way. We have therefore reverted to
the approach of using algebraic gauge according to the
procedure described in [51]. That is, we prescribe analytic
trajectories Axi�t�, Bxi�t� for black holes A and B and
calculate the resulting gauge functions by superposing
the analytic gauge of the individual holes. Following [53]
we prescribe the analytic slicing condition in the form of
the densitized lapse Q. We thus obtain

 

KS�i � KS�ij�A�j �
B�j�; (15)

 

KSQ � KS��1=2�A��2 � B��2 � 1��1=2: (16)

Here the quantities denoted with an A or a B are the
analytic expressions for the individual black holes and
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KS�ij is the superposed metric defined in Eq. (7). In prac-
tice, we calculate the lapse from its densitized counterpart
and the determinant of the numerical three-metric via � �
�1=2

numQ. We emphasize that we use the densitized lapse only
for algebraic slicing, but work with the unmodified lapse in
all simulations using live-gauge conditions.

The trajectories used to evaluate the positions and ve-
locities for the gauge functions associated with the indi-
vidual black holes are obtained from fifth-order
polynomials xi � vit� ait2=2� jit3=6� qit4=24 during
the earlier stages of the infall of the black holes. In a time
interval t1 < t < t2 we perform a smooth (up to the fourth
derivative) transition of these polynomials to the static
function xi � 0. By virtue of the close-limit property of
the superposed gauge (15) and (16), we thus obtain a
smooth transition of the gauge to that of a single non-
spinning Kerr-Schild hole.

The most difficult part in this procedure is to determine
the coefficients vi, ai, ji, qi and t1, t2 so that one obtains a
stable simulation. We have only managed to obtain stable
evolutions using gauge trajectories that are close to the
coordinate trajectories of the apparent horizon center, in
particular, in the late stages of the infall. In practice, the
black holes collide along the z axis and we set the x and y
components of all coefficients to zero. The remaining z
components are then obtained iteratively: The black holes
are evolved with some initial guess for the coefficients
(normally those used for the simulation with the next
smaller initial separation). The apparent horizon center is
tracked until this simulation becomes unstable and we
adjust the parameters to make the gauge trajectory agree
better with the horizon motion. This process is repeated
until a stable simulation is obtained. Some minor variations
of the parameters are possible while preserving the stability
of the simulation but do not have a significant impact on
the resulting waveforms, as is discussed below in
Sec. IV B 2. The exact parameters used for the Kerr-
Schild simulations in this work are given below in
Table III. Unless specified otherwise, we use the trajecto-
ries labeled ‘‘a’’ in that table.

D. Black-hole excision

Evolutions of puncture-type initial data have been per-
formed in the past both with and without the use of black-
hole excision (see e. g. [16,17,21,48,75]). Those without
excision have commonly been achieved by factoring out
the irregular part of the conformal factor while evolving
only the regular remainder. It is a remarkable and surpris-
ing feature of the moving-puncture evolutions introduced
in [18,19] that these evolutions have been successful using
neither excision nor the factoring out of the irregular part
of the conformal factor. Below we will follow the same
approach for our puncture/Brill-Lindquist and Misner
evolutions.

In order to evolve Kerr-Schild data, however, we need to
use black-hole excision. In contrast to puncture data, the
spatial slices of the Kerr-Schild data do contain the physi-
cal singularity of the black hole at r � 0, which needs to be
removed from the computational domain. Inside the LEAN

code we have implemented black-hole excision using ei-
ther one-sided derivatives or extrapolation techniques. So
far, we have obtained better stability properties using
extrapolation which is the method of choice for all simu-
lations presented in this work. This particular excision
algorithm has been described in detail in Refs. [51–53].
In the LEAN code the moving excision has now been
generalized to work with moving refinement components.
For this purpose each black hole has been assigned a
particular refinement level it resides in (the finest level in
all simulations presented in this work). Excision for this
black hole is then only performed on this refinement level
and communication to coarser levels is performed exclu-
sively via the restriction procedure inside CARPET. Special
care must be taken in the black-hole excision if the refine-
ment component has been moved because the integer grid
indices i, j, k no longer correspond to the same coordinate
position x, y, z as on previous time steps. Because the set of
excision boundary points is stored in terms of their indices
i, j, k, rather than their coordinate positions, we must
recalculate the list of excision boundary points every
time the refinement component moves. This process does
not involve changing any of the BSSN variables, however;
it merely corrects the bookkeeping of the excision mask.

With a correct list of excision points available at every
time step, we thus apply extrapolation of the BSSN vari-
ables via second-order polynomials during each iteration
of the iterated Crank-Nicholson (ICN) cycle according to
the procedure in Sec. 3 of Ref. [52]. After the completion
of the whole time step, the code checks for the position of
the black hole and adjusts the center of the excision region
if necessary. As a minor modification compared with the
excision method of the MAYA code used in [51–53], we use
the horizon finder to track the black-hole motion and move
the excision region accordingly.

So far, we have not succeeded in combining black-hole
excision with the fourth-order discretization of the spatial
derivatives. The problems largely arise from the need to
use an excision boundary of thickness � 2 to accommo-
date the wider fourth-order accurate stencils. For this rea-
son, we use second-order discretization in space for all
simulations using black-hole excision.

E. Mesh refinement

A further area of remarkable progress in numerical
relativity in recent years is that of mesh refinement, which
is used almost routinely now in various forms in black-hole
simulations. The need for using mesh refinement, or es-
sentially equivalent techniques based on specially adapted
coordinates such as the ‘‘fish-eye transformation’’ [79],
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arises from the presence of vastly different length scales in
the spacetimes. On the one hand, a code has to resolve the
steep gradients near the black-hole horizon, typically lead-
ing to length scales comparable with the mass of the hole.
On the other hand, the typical wavelength associated with
the ringing of a black hole is 1 order of magnitude larger.
Furthermore, the calculation of accurate waveforms makes
it necessary to extract waves at sufficiently large radii,
ideally, in the wave zone. This requires the use of computa-
tional grids at least 2 orders of magnitude larger than the
radius of a single black hole. With current computational
power, this can only be achieved inside the framework of
mesh refinement. Simulations of moving black holes add
the extra requirement of dynamic or adaptive refinement.

In the LEAN code, mesh refinement is provided by the
CARPET package. Dynamic refinement based on CARPET

has already been reported in [80]. Here we use a refined
version of this method. CARPET provides a routine which
performs a regridding operation at regular intervals. That
is, it interprets a steerable parameter string which contains
the exact specifications of all refinement components in
terms of their corner positions. Inside the LEAN code, we
control this parameter string via a separate thorn
REGRIDINFO which works as follows. This thorn creates a
map between each refinement component and the black
hole it is tied to (a zero entry meaning the component is not
tied to black-hole motion and remains stationary). The
black-hole motion, in turn, is monitored, either using the
horizon finder or the puncture tracking method according
to Eq. (14). The corner positions of the refinement compo-
nents are adjusted according to the motion of the black
holes. The REGRIDINFO thorn further performs checks on
the internal consistency of the grid specifications and, if
necessary, expands a component to guarantee that all finer
components are accommodated with a minimum number
of grid points between the refinement boundaries.
Similarly, it expands components once the black-hole po-
sition comes too close to a refinement boundary.

Finally, the thorn allows for the merger of previously
separate refinement components. This is triggered by the
distance between two components decreasing below a
user-specified threshold value. Again, the parameter string
used by CARPET is updated accordingly and the regridding
completes the dynamic adjustment of the mesh refinement.
We find this technique to work very reliably and to pre-
serve remarkably well the expected convergence properties
of the code, as will be demonstrated below in Sec. III.

For a given simulation the initial grid consists of two
types of cubic refinement levels, n outer levels centered on
the origin which remain stationary throughout the simula-
tion and m levels with two components centered around
either black hole. In the remainder of this work we specify
the exact setup by giving the resolution h on the finest level
as well as the radius of the cubes excluding ghost zones
required for interprocessor communication. The grid spac-

ing always increases by a factor of 2 from one level to the
next coarser refinement level. For example,

 f�256; 128; 74; 24; 12; 6� � �1:5; 0:75�; h � 1=48g

specifies a grid with six fixed outer components of radius
256, 128, 74, 24, 12, and 6, respectively, and two refine-
ment levels with two components each with radius 1.5 and
0.75 centered around either hole. The resolution is h �
1=48 on the finest level and successively increases to 8=3
on the outermost level. In this work we will use equatorial
as well as octant symmetry which reduces the number of
points by a factor of 2 or 8, respectively. The grid setups
used for the simulations of this work are summarized in
Table I.

F. Discretization of the BSSN equations

In Appendix A we have listed explicitly the � and �
version of the BSSN equations as used in the LEAN code.
The discretization of the spatial derivatives has been im-
plemented in the form of second-order as well as fourth-
order accurate stencils. With the exception of the advection
derivatives of the form �i@if, these stencils are centered.
Advection derivatives, on the other hand, are approximated
with lopsided stencils

 @xf �
1

2dx
��fi�2di;j;k � 4fi�di;j;k � 3fi;j;k�; (17)

 

@xf �
1

12dx
�fi�3di;j;k � 6fi�2di;j;k � 18fi�di;j;k

� 10fi;j;k � 3fi�di;j;k�; (18)

respectively, for second- and fourth-order accurate discre-

TABLE I. Grid setup and numerical schemes used for the
simulations presented in this work. The resolutions used for
the convergence studies are h1 � 1=48, h2 � 1=44, h3 � 1=40
for models R1 and BL2, h1 � 1=28, h2 � 1=24, h3 � 1=20 for
model KS4, and h1 � 1=400, h2 � 1=360, h3 � 1=320 for
model M4.

Model Scheme Grid

R1 ICN�4 f�192; 128; 74; 24; 12; 6� � �1:5; 0:75�; hig
BL1 RK�4 f�256; 128; 96; 32; 16� � �4; 2; 1�; 1=48g
BL2 RK�4 f�256; 128; 96; 32; 16� � �4; 2; 1�; hig
BL3 RK�4 f�256; 128; 96; 32; 16� � �4; 2; 1�; 1=48g
BL4 RK�4 f�256; 128; 96; 32; 16� � �4; 2; 1�; 1=48g
ISCO ICN�4 f�256; 128; 88; 24; 12; 8� � �2:4; 1:2; 0:6�; 1=40g
KS1 ICN�2 f256; 128; 96; 32; 16� � �4; 2�; 1=24g
KS2 ICN�2 f256; 128; 96; 32; 16� � �4; 2�; 1=24g
KS3 ICN�2 f256; 128; 96; 32; 16� � �4; 2�; 1=24g
KS4 ICN�2 f256; 128; 96; 32; 16� � �4; 2�; hig
M1 ICN�4 f60; 30; 45

2 ;
15
2 ;

15
4 � � �

15
16 ;

15
32 ;

15
64�;

3
512 g

M2 ICN�4 f48; 24; 18; 6; 3� � �34 ;
3
8 ;

3
16�;

3
640

M3 ICN�4 f40; 20; 15; 5; 5
2� � �

5
8 ;

5
16 ;

5
32�;

1
256g

M4 ICN�4 f32; 16; 12:8; 4; 2� � �12 ;
1
4 ;

1
8�; hig
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tization, with di � sgn��x� and likewise for the y and z
direction.

Using these representations for the spatial derivatives,
the partial differential equations for the BSSN variables are
integrated in time using the method of lines. Here the time
discretization is performed using either the second-order
accurate ICN scheme with two iterations [81] or standard
fourth-order RK integration. The exact numerical imple-
mentation of the BSSN equations is thus determined by
three parameters, the time integration scheme, the � or �
version, and the order of the spatial discretization. In the
remainder of this work, these different choices are referred
to as RK�4, ICN�2, and so on. The discretizations used for
the simulations in this work are summarized together with
the grid setups in Table I.

The Berger-Oliger–type mesh refinement provided by
CARPET requires communication between the refinement
levels, the so-called prolongation and restriction operation
(see e.g. [55]). For fourth (second)-order discretization of
the spatial derivatives, we use sixth (fourth)-order accurate
prolongation in space with a total of nine (three) or six
(two) buffer zones, respectively, for the RK and ICN time
discretization (cf. Sec. 2.3 of [55]). Prolongation in time is
always performed using third-order accuracy. The neces-
sary infrastructure required for higher order prolongation
in time and, thus, genuine fourth-order accurate commu-
nication between the refinement levels is not available in
the currently used implementation of the mesh refinement.
The fourth-order convergence found for the simulations of
puncture and Brill-Lindquist data below indicates that this
does not represent a problem for the type of simulations
under discussion in this work.

G. Wave extraction

We extract gravitational waves from our numerical
simulations by calculating the Newman-Penrose scalar
�4 using the electromagnetic decomposition of the Weyl
tensor which is described in Appendix C. The spatial
derivatives required in this calculation are obtained using
either second or fourth-order accurate stencils chosen in
accordance with the spatial discretization of the BSSN
evolution equations. The calculation of �4 as well as the
extraction of modes have been tested with the analytic
expression calculated for the Teukolsky wave [82] for
both the ‘ � 2, m � 0 and ‘ � 2, m � 2 waves (cf. also
Ref. [83]). In both cases, the evolutions have been carried
out using the ICN�2 implementation of the BSSN equa-
tions and resulted in second-order convergence of the
waveforms.

Once �4 has been calculated on a sphere of constant
extraction radius, the radiated energy and momenta are
obtained from Eqs. (22)–(24) in Ref. [84]. In practice,
we perform these calculations in a post-processing opera-
tion using the output data of �4. There, we calculate both
the total radiated energy as well as the energy radiated in

the dominant modes, ‘ � 2, m � �2 for orbiting configu-
rations and ‘ � 2,m � 0 for the head-on collisions. For all
head-on collisions we find the dominant mode to be re-
sponsible for >99% of the total radiated energy; for the
inspiral the dominant modes account for about 98.5% of
the total energy.

III. BINARY BLACK-HOLE ORBITS

Before we compare the head-on collisions of different
data types, we demonstrate the code’s capability to produce
evolutions of orbiting black-hole binaries with convergent
waveforms. For this purpose we consider model R1 of
Table I of Ref. [19]. Here two black holes with mass
parameter m � 0:483 start at coordinate positions x �
�3:257 with linear momentum parameter P � �0:133 in
the y direction.

We evolve this configuration with a setup as specified for
model R1 in Table I using three different resolutions, h1 �
1=48, h2 � 1=44, and h3 � 1=40. The simulations are
performed using equatorial symmetry across the orbital
xy plane.

The resulting real part of the ‘ � 2, m � 2 mode of the
Newman-Penrose scalar �4 extracted at r � 60M is shown
in Fig. 1 for all three resolutions. We first note that the
waveforms show good agreement with the results obtained
from similar simulations in the literature [27,35]. A factor
2 discrepancy with Fig. 2 of [27] results from a trivial
rescaling depending on the choice of the eigenmode basis
[cf. their Eq. (4)].

With regard to a convergence analysis, we first note that
the error manifests itself in two forms, a phase shift and an
amplitude difference. We therefore study the convergence
both with and without applying a phase correction to align
the global maxima of the curves. For the convergence
analysis one commonly assumes that the discretization

0030020010
t / M
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0.05

Re[Mrψ
22
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FIG. 1 (color online). The real part of the ‘ � 2, m � 2 multi-
pole of Mr�4 extracted from the R1 simulation at rex � 60M
obtained for resolutions h1, h2, and h3.
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error be dominated by a leading order term O�h��, so that
the numerical solution fh of a given grid function is related
to the continuum limit f by fh 	 f� Ch�, where the
coefficient C does not depend on the resolution h.
Applying this relation to the three different resolutions
h1, h2, h3, one obtains

 

fh3
� fh2

fh2
� fh1

	
h�3 � h

�
2

h�2 � h
�
1

: (19)

Applied to our case, this relation leads to the value 1.58 for
the case of fourth-order convergence. The convergence
behavior of the ‘ � 2, m � 2 multipole of Mr�4 with
and without a phase correction is shown in Fig. 2, where we
have amplified the differences between the higher resolu-
tion runs by the factor 1.58 expected for fourth-order
convergence. The analysis shows good agreement with
fourth-order convergence in both cases.

We similarly observe fourth-order convergence for the
total radiated energy extracted at coordinate radii rex �
50M, 60M, and 70M. We can use these results to estimate
the uncertainties in the radiated energy resulting from finite
resolution and extraction radii. The standard procedure to
assess the impact of the resolution is to apply Richardson
extrapolation, i.e. extrapolate the values obtained for a
convergent simulation to the continuum limit h! 0.
Using this procedure we obtain Etot � 3:558%, 3.543%,
and 3.532%, respectively, of the total ADM mass M of the
system at extraction radii 50M, 60M, and 70M. This
corresponds to an estimate of the discretization error in
the radiated energy of about 1% for the high resolution
h1�1=48 and about 2% for the low resolution h3�1=40.

In complete analogy to the procedure used to study the
convergence with grid resolution h, we use these values to
estimate the dependency of the radiated energy on the

extraction radius. We find the resulting error to be modeled
well by a 1=rex falloff, i.e.

 Etot 	 Etotjrex�1
�O

�
1

rex

�
: (20)

Extrapolation of the results obtained at finite extraction
radii thus gives a total radiated energy of Etot � 3:466% of
the total ADM mass as well as an estimate for the error
arising out of the use of a finite extraction radius of 2.7%,
2.3%, and 2.0%, respectively, for rex � 50M, 60M, and
70M.

For the simulations presented in this work we univer-
sally find the errors due to finite differencing and finite
extraction radius to point in opposite directions: finite
resolution leads to underestimating the amount of radiated
energy, and a finite extraction radius overestimates the
energy. We therefore feel justified in using the sum of the
individual errors as a conservative upper limit for the total
error. In this case, we obtain a numerical error of 3% for the
high resolution simulation using rex � 70M.

Repeating the same calculation without including the
artificial radiation burst due to the initial data,2 we obtain a
total radiated energy of Erad � 3:408% of the ADM mass.
We note that this result for the energy shows excellent
agreement with those presented in the literature
(cf. Table III of [27]).

As a further test of the code we follow Ref. [18] and
check the convergence properties of the Hamiltonian con-
straint on an equatorial axis shortly after the crossing of the
punctures. The result is shown in Fig. 3 where we have
amplified the high resolution result by a factor of 1:24 as
expected for fourth-order convergence. In spite of the
presence of some numerical noise, the figure demonstrates
compatibility with overall fourth-order convergence of the
simulations. We believe the larger amount of noise, as
compared with the results of [18], to be a consequence of
the use of mesh refinement and the discontinuous error
terms at the refinement boundaries.

Unfortunately we are currently not able to obtain similar
orbital simulations with Kerr-Schild data for want of suit-
able live-gauge conditions analogous to Eqs. (11)–(13).
We therefore perform the comparison between these two
data types and the Misner data inside the framework of
head-on collisions.

IV. HEAD-ON COLLISIONS

Head-on collisions represent the simplest form of black-
hole binaries and have been studied numerically in various
forms for a long time. The majority of such simulations has
been performed using data of Misner [67] or Brill-
Lindquist type (see e.g. [16,83,85–88]). As an alternative,
collisions using Kerr-Schild data have been investigated in
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FIG. 2 (color online). Convergence analysis of the ‘ � 2, m �
2 multipole of Mr�4 without correcting the phase error (upper
panel) and after applying a phase correction (lower panel).

2In practice, we ignore contributions at t < rex � 30M in the
waveforms.
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[51]. Here we will study in detail head-on collisions of all
three data types and compare the results.

The time evolutions of these two types of initial data
present different difficulties and therefore require different
evolution techniques. In summary, these are the use of
second-order differencing, algebraic gauge conditions,
and black-hole excision for the Kerr-Schild data, whereas
Brill-Lindquist data are evolved using fourth-order discre-
tization without using the black-hole excision procedure
described in Sec. II D. As will be demonstrated below, we
have obtained satisfactory convergence performance for
the Kerr-Schild evolutions using the � version of the
BSSN equations. In the case of Brill-Lindquist data, we
find the � version more successful in providing fourth-
order convergence. The Misner data are conceptually simi-
lar to Brill-Lindquist data. Experimentally, however, we
have found the Misner data to lead to substantially larger
amounts of numerical noise originating from the refine-
ment boundaries when evolved in time with the Runge-
Kutta method. Below we will show that the noise level is
acceptable when using the second-order accurate ICN
scheme instead.

In the notation of Sec. II F we therefore evolve the Kerr-
Schild data using the ICN�2 scheme, the Brill-Lindquist
data with the3 RK�4 and Misner data with the ICN�4

scheme. The resulting accuracy and convergence proper-
ties will be studied in detail in Sec. IV B.

A. Choice of initial parameters

A fundamental difficulty in the comparison between
simulations of Brill-Lindquist, Kerr-Schild, and Misner

data is the physical interpretation of the initial data sets.
We first note that there exists no general method to rigor-
ously quantify the degree to which two such initial con-
figurations represent the same physical scenario. As an
approximation, we determine the initial parameters as
follows. First, we start the head-on collisions with two
black holes of equal mass at rest, and thus eliminate the
question of choosing initial linear momenta and mass
ratios.

Except for a rescaling of the entire spacetime corre-
sponding to a rescaling of the system’s total mass, an initial
configuration for a head-on collision of nonspinning,
equal-mass black holes is characterized by one free pa-
rameter which can be viewed as a measure for the initial
separation of the black holes or the binding energy of the
system. In the case of Misner data, this degree of freedom
is represented by the parameter � in Eq. (5), whereas Brill-
Lindquist and Kerr-Schild data require coordinate posi-
tions of the black holes so that the free parameter is the
initial coordinate separation D. For the comparison of the
different data types we fix the remaining free parameter by
demanding that all three versions of the binary-black-hole
spacetime have identical binding energy,

 

Eb

M
� 1�

M1 �M2

M
; (21)

where the irreducible black-hole masses M1, M2 are given
by their respective apparent horizon masses. For illustra-
tion we plot in Fig. 4 the binding energy as a function of the
coordinate distance D. For Misner data, the initial black-
hole centers are approximated by their apparent horizon
position which is�1:0 for all simulations discussed in this
work.
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FIG. 4 (color online). Binding energy Eb=M for Kerr-Schild
(solid line), Brill-Lindquist (short-dashed line), and Misner
(long-dashed line) initial-data sets as a function of the coordinate
distance D=M of the holes.
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FIG. 3 (color online). Convergence analysis of the
Hamiltonian constraint on the x axis at t � 128M, shortly after
the crossing of the punctures.

3With the exception of the simulations in Figs. 7 and 13 which
are not used in this quantitative comparison.
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The freedom in rescaling the spacetimes is fixed by
demanding the total ADM mass to be unity for Kerr-
Schild and Brill-Lindquist data which implies bare mass
parameters m1 � m2 � 0:5 in both cases. In contrast, the
conformal factor for the Misner data in Eq. (5) does not
contain a bare mass parameter, and the ADM mass depends
on the value of�. Specifically, it decreases for larger� and
thus implies a larger black-hole separation D=M. In our
simulations we have taken into account the different ADM
masses of Kerr-Schild and Brill-Lindquist data on the one
hand and Misner data on the other by using numerically
higher resolutions for the Misner models. Relative to the
ADM mass, however, the resolutions are rather similar to
those used for Brill-Lindquist data. The exact ADM
masses for all simulations discussed in this comparison
are given in the third column of Table II.

Using this procedure, we have determined four different
models with binding energies Eb=M � �0:0290,
�0:0240, �0:0197, and �0:0169. These models are listed
in Table II as BL1� 4, KS1� 4, and M1� 4.

B. Testing the code

In this section we calibrate the performance of the code
in the case of head-on collisions of all data types by
performing convergence tests and investigating other error
sources. For Brill-Lindquist data we also use results pub-
lished in Ref. [83] starting from the approximate separation
of the innermost stable circular orbit (ISCO).

1. Brill-Lindquist data

We assess the discretization error of the Brill-Lindquist
simulations by evolving model BL2 of Table II using three
different resolutions, h1 � 1=48, h2 � 1=44, and h3 �
1=40, with a constant Courant factor of dt=dx � 1=2. We
have studied the convergence of the resulting gravitational
waveforms in complete analogy to the procedure used in
Sec. III for black-hole inspiral. We observe fourth-order
convergence as is demonstrated in Fig. 5 for the ‘ � 2,
m � 0 multipole extracted at rex � 40M. We similarly
observe fourth-order convergence for the total radiated
energy and use Richardson extrapolation to estimate the
discretization error. We find the relative error at a resolu-
tion h � 1=44 to be less than 0.5% and use this value as a
conservative upper limit.

In order to assess the impact of extracting waves at finite
radii, we have studied the wave signal at extraction radii
40M, 70M, and 90M. The resulting ‘ � 2, m � 0 multi-
pole of the Newman-Penrose scalar �4 is shown in the
upper panel of Fig. 6. We estimate the uncertainty due to
the extraction radius in the same way as in Sec. III and find
the relative error in the total radiated energy to be of the
order of 1% for rex � 40M and less for the larger radii
70M and 90M.

As a further test of our code, we compare the waveforms
obtained for Brill-Lindquist data with those available in the
literature. The head-on collisions presented commonly
start with time-symmetric initial data of two holes at

TABLE II. Summary of the simulations performed in this work. Simulation R1 is the inspiral simulation described in Sec. III. The
other simulations are the head-on collisions performed for the comparison of Brill-Lindquist, Misner, and superposed Kerr-Schild data.
M is the total ADM mass of the spacetime, D the initial coordinate separation of the holes (for Misner data we list the parameter �
instead), and Eb the binding energy M�M1 �M2. Etot, Eini, and Erad are the total radiated energy, the energy contained in the
spurious initial burst, and the energy radiated in the inspiral and merger. The uncertainties included are those due to finite differencing,
finite extraction radius, and the uncertainties in separating the merger signal from the spurious initial burst. For the Kerr-Schild data we
also list the radiated energies obtained from extrapolation to rex ! 1 with uncertainties due to finite differencing and the interference
of the initial burst.

Model D or � M Eb=M Etot=M Eini=M Erad=M

R1 6.5 0.996 �0:0145 �3:466� 0:104�% �0:058� 0:002�% �3:408� 0:102�%
BL1 8.6 1 �0:0290 �0:0553� 0:0008�% �0:0031� 0:0001�% �0:0522� 0:0008�%
BL2 10.2 1 �0:0240 �0:0553� 0:0008�% �0:0022� 0:0001�% �0:0531� 0:0008�%
BL3 12.5 1 �0:0197 �0:0557� 0:0008�% �0:0014� 0:0001�% �0:0543� 0:0008�%
BL4 14.6 1 �0:0169 �0:0564� 0:0009�% �0:0009� 0:0001�% �0:0555� 0:0008�%
KS1 10.0 1 �0:0290 �0:1099� 0:0175�% �0:0540� 0:0119�% �0:0560� 0:0123�%
rex ! 1 �0:0963� 0:0029�% �0:0438� 0:0049�% �0:0525� 0:0052�%
KS2 12.0 1 �0:0240 �0:0962� 0:0154�% �0:0325� 0:0072�% �0:0617� 0:0119�%
rex ! 1 �0:0844� 0:0025�% �0:0284� 0:0019�% �0:0560� 0:0032�%
KS3 14.0 1 �0:0197 �0:0888� 0:0142�% �0:0227� 0:0040�% �0:0661� 0:0110�%
rex ! 1 �0:0789� 0:0024�% �0:0198� 0:0010�% �0:0591� 0:0023�%
KS4 16.0 1 �0:0169 �0:0855� 0:0137�% �0:0163� 0:0028�% �0:0692� 0:0112�%
rex ! 1 �0:0751� 0:0023�% �0:0140� 0:0007�% �0:0611� 0:0021�%
M1 3.573 0.231 �0:0290 �0:0555� 0:0017�% �0:0031� 0:0001�% �0:0524� �0:0016�%
M2 3.757 0.191 �0:0240 �0:0556� 0:0017�% �0:0021� 0:0001�% �0:0535� �0:0016�%
M3 3.948 0.157 �0:0197 �0:0560� 0:0017�% �0:0014� 0:0001�% �0:0546� �0:0017�%
M4 4.096 0.135 �0:0169 �0:0567� 0:0017�% �0:0009� 0:0001�% �0:0558� �0:0017�%
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positions �1:1515M. This value has been calculated in
Refs. [89,90] for the ISCO. The ‘ � 2, m � 0 mode of the
Newman-Penrose scalar �4 of this configuration has been
calculated in [83] at an extraction radius rex � 20M. In
Fig. 7 we plot our result extracted at the same radius and
obtained using the setup labeled ‘‘ISCO’’ in Table I. Up to
the trivial rescaling factor of 2 mentioned above, we find
excellent agreement with Fig. 5 in Ref. [83]. To our knowl-
edge, similar results obtained with larger initial separations

of the holes have not yet been published. It is part of the
motivation of this work to provide such an extension of the
existing work.

We finally address one conceptual difference between
the Brill-Lindquist and Misner data on the one side and
Kerr-Schild data on the other. Whereas the former initial
data are time symmetric, the superposed Kerr-Schild data
do not satisfy this requirement, even for a vanishing ve-
locity parameter. We thus cannot rule out that the individ-
ual Kerr-Schild holes do actually have a small boost and
thus represent a slightly different physical configuration.
Unfortunately, there exists no rigorous way to quantify the
linear momenta of the individual holes in the Kerr-Schild
spacetime, although the hypothesis of small momenta is
compatible with the small nonzero initial coordinate veloc-
ities of the apparent horizon positions of v � 0:05 towards
each other which we observe for the Kerr-Schild holes. For
this reason we proceed differently and instead consider the
impact of small initial boosts as an additional uncertainty
in our study. We quantitatively study this effect using a
modified version of model BL4. Specifically, we use punc-
ture data, where initial linear momenta pointing towards
each other are applied to the individual black holes in the
form of nonzero Bowen-York [66] momentum parameters
P � 0:035 and P � 0:067. All other parameters for these
puncture models are kept at the values of model BL4.

In Fig. 8 we show the resulting waveforms at rex � 70M
shifted in time to align their global extrema. The differ-
ences in the waveforms are rather small and we obtain for
the energy radiated in the infall and merger Erad �
0:05601� 0:0008 and 0:05795� 0:0009, respectively, of
the ADM mass. Compared with the nonboosted result
0:0555� 0:0008, this corresponds to systematic deviations
of about 1% and 4%.
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FIG. 6 (color online). The ‘ � 2, m � 0 multipole obtained
for models BL2 (upper panel) and KS2 (lower panel) extracted at
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2. Kerr-Schild data

By evolving the Kerr-Schild models of Table II at differ-
ent resolutions, we find model KS4 with the largest initial
separation to exhibit the largest uncertainties. We therefore
focus in our convergence analysis on this model to obtain
conservative upper limits for the discretization error. We
have evolved this model using the finest resolutions h1 �
1=28, h2 � 1=24, and h3 � 1=20 and a constant Courant
factor of 1=4. Compared with the Brill-Lindquist data we
have to use these seemingly coarser resolutions on the
finest level because the coordinate radius of the apparent
horizon is larger in the Kerr-Schild case and the use of
excision prohibits the use of refinement components inside
the apparent horizon. We emphasize, however, that relative
to the coordinate radius of the horizon, about rah � 2M1;2

for Kerr-Schild data and rah � M1;2=2 for Brill-Lindquist
data, our setup results in a finer resolution in the Kerr-
Schild case.

The resulting differences in the ‘ � 2, m � 0 multipole
of the Newman-Penrose scalar are shown in Fig. 9 and
demonstrate second-order convergence. Using Richardson
extrapolation as before, we obtain an error of 3% in the
radiated energy due to the discretization of the Einstein
equations.

In comparison with the Brill-Lindquist data, we observe
larger differences in the amplitude of the gravitational
waves extracted at different radii. This is shown in the
lower panel of Fig. 6 where we plot the ‘ � 2, m � 0
multipole obtained for model KS2 at rex � 40M, 70M, and
90M. Systematically investigating the total radiated energy
for all Kerr-Schild simulations, we find the results compat-
ible with a 1=rex falloff as in Sec. III. For example, the

energies extracted from model KS4 at 40M, 70M, and 90M
using a resolution h � 1=24 are 0.0984%, 0.884%, and
0.855% of the total mass M, respectively. Extrapolation
to infinite radius results in 0.0752% of the mass and a
relative error of 13% at extraction radius rex � 90M. We
find the uncertainties due to the extraction radius to be very
similar for all other Kerr-Schild simulations and to be
essentially independent of the grid resolution.

In view of this large uncertainty we will always present
in the remainder of this work two values for the energies
resulting from simulations of Kerr-Schild data. The nu-
merical values obtained at the largest extraction radius
rex � 90M, together with uncertainties due to extraction
radius, discretization, and interference of the initial pulse,
and the value extrapolated to infinite radius with uncer-
tainties due to discretization and the initial pulse, are listed
in Table II.

A further difficulty in the case of the Kerr-Schild data
arises from the relatively large amount of spurious radia-
tion due to the initial data. This spurious radiation mani-
fests itself as a pulse in the waveform starting at t 	 rex. In
the two panels of Fig. 6, for example, the initial burst leads
to local extrema in the waveforms near t 	 50M. The
amplitude of the pulse is, however, substantially larger
for the Kerr-Schild (lower panel) than the Brill-Lindquist
(upper panel) data. For the smaller separations used in our
analysis, it becomes nontrivial to disentangle this pulse
from the actual merger signal, and it is not entirely clear
how much radiated energy is due to the black-hole merger
and how much is due to the spurious pulse. We attempt to
bracket these uncertainties by using a variable threshold
tthresh so that radiation at t < tthresh is considered part of the
initial pulse and radiation at larger t part of the merger

0 50 100 150 200

t / M

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

∆(Mrψ
20

)

Mrψ
20, h3

-Mrψ
20, h2

1.66(Mrψ
20, h2

-Mrψ
20, h1

)

FIG. 9 (color online). Convergence analysis of the ‘ � 2, m �
0 mode of �4 obtained at rex � 90M for model KS4 using
resolutions h1 � 1=28, h2 � 1=24, and h3 � 1=20. The differ-
ences between the high resolution results has been amplified by a
factor of 1.66 expected for second-order convergence.
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signal. At a given extraction radius we then vary tthresh in
the range rex � 30M to rex � 40M. The two resulting
energy contributions are given by their average values
obtained over this interval plus or minus an error given
by the upper and lower bounds.

We finally discuss the impact of the gauge trajectories on
the resulting waveforms. We have already mentioned in
Sec. II C that the gauge trajectories need to closely re-
semble the motion of the center of the apparent horizon
and are obtained iteratively by approximating the horizon
trajectory. For this comparison we have constructed gauge
trajectories according to this procedure, first, by fixing vz

to be zero4 and, second, by also adjusting this parameter in
the iterative procedure. The parameters for the trajectories
are listed in Table III, and in Fig. 10 we show as examples
the resulting waveforms extracted at rex � 90M for simu-
lations KS2a, b (upper panel) and KS4a, b (lower panel)
obtained using a resolution h � 1=24. The resulting wave-
forms are practically indistinguishable, and the differences
in the energies for the initial pulse, the merger signal, and
the total waveform are about 1% and thus significantly
smaller than the uncertainties due to the finite differencing
and the extraction radius. The same applies to variations
from 2=3 to zero in the evolution parameter 	 in Eq. (A5).

3. Misner data

Finally, we estimate the numerical error of the evolu-
tions starting from Misner data. All evolutions of these data

using the Runge-Kutta time integration have resulted in
significant contaminations of the resulting waveforms by
numerical noise. A comprehensive analysis of the perform-
ance of different numerical schemes in evolutions of
Misner data and the underlying causes is beyond the scope
of this work, but we will show here that sufficiently accu-
rate simulations can be obtained by using the ICN scheme
instead of Runge-Kutta and also choosing a small Courant
factor of 1=8.

The resulting differences in the ‘ � 2, m � 0 mode of
Mr�4 obtained for model M4 are shown in Fig. 11.
Compared with the Brill-Lindquist and Kerr-Schild evolu-
tions, we observe larger amounts of high frequency noise
in the early stages of the simulations due to the spurious
initial radiation. Still, the overall behavior is compatible
with the expected second-order convergence. Using the
same methods as before, we find the resulting uncertainty
in the radiated energy due to finite differencing to be of the
order of 1%. With regard to the extraction radius, we find
Misner data to behave similarly to Brill-Lindquist data.
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FIG. 10 (color online). The ‘ � 2, m � 0 multipole of Mr�4

extracted at rex � 90M for model KS2 (upper panel) and KS4
(lower panel) using gauge trajectories labeled in Table III as ‘‘a’’
(solid curve) and ‘‘b’’ (dashed curve).
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FIG. 11 (color online). Convergence analysis of the ‘ � 2,
m � 0 mode of �4 obtained for model M4 using resolutions
h1 � 1=400, h2 � 1=360, and h3 � 1=320. The differences
between the high resolution results has been amplified by a
factor of 1.40 expected for second-order convergence.

TABLE III. Parameters for the gauge trajectories used for the
Kerr-Schild simulations.

Model z=M vz azM jzM2 qzM3 t1
M

t2
M

KS1 a �5 0 
0:037 �0:0038 0 10 35
KS1 b �5 
0:08 
0:0061 
0:0002 0 20 40
KS2 a �6 0 
0:029 �0:004 
0:000278 25 50
KS2 b �6 
0:06 
0:008 �0:0004 
0:00002 20 44
KS3 a �7 0 
0:022 �0:0027 
0:000165 25 57
KS3 b �7 
0:04 
0:007 �0:0003 
0:000012 25 57
KS4 a �8 0 
0:018 �0:002 �0:000104 34.5 84.7
KS4 b �8 
0:03 
0:006 �0:00027
0:000012 50 70

4This velocity parameter is not to be confused with that used in
the calculation of the initial data for �ij and Kij which is always
zero.
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The resulting uncertainty due to the use of finite radii is
about 2% at rex � 40M and 1% at 70M or 90M.

C. Results

In order to compare the different initial-data types, we
have evolved all models listed in Table II with the grid
setups described in Table I. We summarize the results in
Fig. 12 which shows the ‘ � 2, m � 0 modes obtained at
extraction radius rex � 90M, and in Table II where we list
the initial parameters and the total radiated energy Etot as
well as the contributions of the spurious initial pulse Eini

and the merger signal Erad. The radiated energies have been
extracted at rex � 90M, and for Kerr-Schild data we also
give the extrapolated values for rex ! 1. The uncertainties
are those obtained in the previous section. In the case of
Kerr-Schild data starting from small separations, the error
for Eini and Erad is amplified significantly by the uncertain-
ties in separating the initial pulse from the merger signal.

In Fig. 12 we note the substantially larger amount of
artificial radiation due to the initial data in the Kerr-Schild
case (dashed curve). Second, we observe excellent agree-
ment between the waveforms obtained from Misner and
Brill-Lindquist data (the solid and long-dashed curves are
practically indistinguishable) and good qualitative agree-
ment with the Kerr-Schild results. There remains, however,
a small systematic deviation to the effect that the Kerr-
Schild waves have a 5%–10% larger amplitude. We have
already seen, however, that the finite extraction radius
results in an overestimation of the wave amplitudes, in
particular, in the Kerr-Schild case.

In order to quantify this effect, we consider the radiated
energies in Table II. We first note that within the uncer-
tainties Brill-Lindquist and Misner data result in identical
amounts of energy in the initial-data pulse, the merger
waveform as well as the total radiation. In contrast, the

total radiated energy obtained from the Kerr-Schild data is
significantly larger than that of Misner and Brill-Lindquist
simulations. This excess energy is largely due to the spu-
rious initial pulse, however, and for models KS1 and KS2,
the energy contained in the physically important merger
waveform agrees within the error bounds with its Misner
and Brill-Lindquist counterparts. In particular, this is true
for the values obtained from extrapolation to infinite ex-
traction radius. The situation becomes more complicated,
however, for the Kerr-Schild models starting from larger
separations, in particular, for model KS4. With the error
estimates obtained in the previous section, we obtain a
lower limit of Erad � 0:0580% of the ADM mass which
exceeds the upper limit of simulation BL4 of Erad �
0:0563 by about 3%. While we have taken into account
in the derivation of these results the errors arising from
finite differencing and the wave extraction at finite radius,
it is possible that systematic errors are responsible for the
remaining discrepancy. We have seen in Sec. IV B 1 that
small boosts give rise to radiated energies a few percent
larger than those obtained for initially time-symmetric
data. A further systematic error results from the constraint
violations inherent to the superposed Kerr-Schild data.
Unfortunately there exists, to our knowledge, no literature
on time evolutions of the constraint-solved version of the
Kerr-Schild data. Filling this gap is beyond the scope of
this paper as it requires the addition of elliptic solvers,
currently not available in the LEAN code. It is therefore
currently not possible to rigorously quantify the impact of
the constraint violations on the resulting waveforms. We
note, however, that the amount of spurious initial gravita-
tional radiation inherent to the superposed Kerr-Schild data
is significantly larger than the discrepancies we observe. If
this spurious initial radiation is a signature of the constraint
violations, it is certainly possible that the discrepancies
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observed here are due to the constraint violations of the
Kerr-Schild data.

A further interesting question is the dependence of the
radiated energies on the initial black-hole separations. We
have already noticed that the amount of spurious initial
radiation decreases at larger separations as is expected.
Correspondingly, we observe the expected increase in the
energy radiated in the infall and merger at larger initial
separations. This increase is relatively weak, though, for
the cases studied here, especially for Brill-Lindquist and
Misner data. It would be desirable to probe a larger range
of initial distances, in particular, smaller separations, to
study this behavior in more detail. Unfortunately, such an
extension encounters difficulties at either end of the
spectrum.

In the case of Kerr-Schild data, separations smaller than
that of KS1 lead to a severe contamination of the actual
signal by the spurious wave content and thus do not allow a
physically meaningful interpretation. At the upper end, we
are limited by the construction of suitable gauge trajecto-
ries. The prolonged infall puts stronger demands on the
fine-tuning of the gauge trajectories. So far, we have not
managed to obtain stable evolutions starting from Kerr-
Schild data with D> 16M.

In the case of Brill-Lindquist data, we do not encounter
such difficulties with the gauge because of the universality
of the live-gauge conditions (11)–(13). Results starting
from small separations, however, are subject to the diffi-
culties due to the initial wave burst. This is illustrated by
evolving a set of Brill-Lindquist data starting with initial
separations DBL � 2:3M, 4:3M, and 6:3M. The resulting
waveforms as obtained with the setup labeled ISCO in
Table I are shown together with that of model BL1 in
Fig. 13. We clearly notice a substantial contamination of
the waveforms at small separations by radiation inherent to

the initial data. In consequence, an accurate calculation of
the gravitational wave energy generated in the head-on
collision becomes highly nontrivial even for Brill-
Lindquist data. For this reason the comparison performed
in this study is currently limited to the window of binding
energies or separations covered by the results in Table II.

V. SUMMARY AND CONCLUSIONS

In this work, we have presented in detail a numerical
code designed for the simulation of black-hole binaries in
the framework of three-dimensional, nonlinear general
relativity. The code facilitates black-hole evolutions using
different initial-data types and evolution techniques.

It has been demonstrated that the code is capable of
evolving state-of-the-art binary-black-hole orbits using
the recently developed moving-puncture technique. With
regard to the accuracy of the results, we find it crucial to
use a fourth-order discretization of the spatial derivatives
appearing in the BSSN formulation of the Einstein field
equations. The resulting simulations yield convergent
waveforms which agree well with results presented in the
literature. The same holds for the radiated energy which we
estimate to be 3:408%� 0:102% of the total ADM mass.
The code is thus suitable for detailed studies of various
types of multiple black-hole simulation with regard to the
generation of accurate waveform templates.

In preparation for the comparison of black-hole colli-
sions using different types of initial data, we test the code’s
performance and estimate in detail the error margins asso-
ciated with the different evolutions. Specifically, we sepa-
rately demonstrate convergence of the code for simulations
starting from Brill-Lindquist, superposed Kerr-Schild, and
Misner data. We also study in depth the dependence of the
resulting waveforms on the extraction radii. While the
resulting uncertainties are relatively small for Brill-
Lindquist and Misner data, we find the use of finite ex-
traction radii to be the dominant error source for simula-
tions of Kerr-Schild data. In the case of Brill-Lindquist
data we further demonstrate the code’s reliability by com-
paring head-on collisions with results available in the
literature.

We use the code to provide a detailed comparison of
black-hole-binary head-on collisions using all three data
types. In addition to the total mass of the system, either
initial configuration has one free parameter which is speci-
fied by fixing the binding energy Eb=M of the system. We
have compared the resulting waveforms for four initial
configurations.

The resulting waveforms obtained from Brill-Lindquist
and Misner data show excellent agreement and predicts an
energy radiated in the infall and merger of about 0.052%–
0.056% of the total ADM mass M with the exact value
increasing with the initial black-hole separation. In paral-
lel, the amount of energy due to spurious radiation inherent
to the conformally flat initial data decreases from
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FIG. 13 (color online). Waveforms obtained from Brill-
Lindquist data starting at various initial separations. The data
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0:0031%M to 0:0009%M as the initial separation of the
holes is increased from a binding energy Eb � �0:029M
to �0:0169M. The uncertainties in these results for both
data types are of the order of a few percent. While this good
agreement might be expected, given the similar nature of
the two data types, it is reassuring to confirm this expec-
tation with high accuracy using current numerical
techniques.

In the case of the superposed Kerr-Schild data, we
observe a substantially larger amount of energy in the
spurious gravitational radiation due to the initial data,
about a factor 15 larger than for the other data types. For
sufficiently large separations, most of this spurious wave
content radiates away before the merger of the holes and
can thus be distinguished from the actual signal of the
merger and ring-down. For the smaller separations studied,
however, this distinction becomes more difficult and leads
to a non-negligible uncertainty in the amount of energy
radiated in the infall and merger of the holes.

In comparison with the conformally flat data types, the
merger waveforms extracted at finite radius show larger
amplitudes in the case of the Kerr-Schild simulations by
5%–10%. The agreement of the resulting radiated energies
in the infall and merger becomes much better, though, after
extrapolating results to infinite extraction radius. Still, for
large black-hole separations there remains a discrepancy of
a few % in the merger energy between Kerr-Schild data on
the one side and Brill-Lindquist and Misner data on the
other, even when taking into account remaining uncertain-
ties in the simulations. We can therefore not rule out
systematic errors affecting the accuracy of the Kerr-
Schild simulations.

Such systematic errors can arise from the fact that the
initial data are not inherently time symmetric and might
imply small initial boosts of the individual holes. By
evolving puncture data with nonvanishing Bowen-York
momentum, we have shown that small boosts can account
for the discrepancies of the observed magnitude. A second
systematic error arises from the constraint violations of the
Kerr-Schild data. In particular, we observe the energy
contained in the spurious initial radiation, likely to be a
signature of the constraint violations, to be significantly
larger than the differences we observe.

Finally, we mention future directions of research encour-
aged by this study. First, it will be valuable to understand
the origin for the relatively large uncertainties in the wave
amplitudes obtained from Kerr-Schild data at finite extrac-
tion radius or, conversely, why wave extraction appears to
work remarkably well for the Misner and puncture simu-
lations at radii significantly smaller than the wave zone.
Second, it will be important to produce evolutions of the
constraint-solved version of the Kerr-Schild data and com-
pare the results with those of the present study. An impor-
tant question in this regard also concerns the amount of
spurious initial radiation. A key advantage of Kerr-Schild–

type initial data over conformally flat data is the fact that
they contain the Kerr solution as a limit. They are therefore
particularly promising candidates for producing initial-
data sets containing black holes with very large spins
with minimal artificial radiation (see, for example, [91]
for a discussion of artificial radiation in black-hole space-
times with large spins). It is thus important to study how
the solving of the constraints reduces the large amounts of
artificial radiation observed here in the nonspinning case.
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APPENDIX A: THE BSSN EVOLUTION
EQUATIONS

The BSSN equations are implemented in the LEAN code
using either the set of variables defined in Eq. (1) or the
variable � in place of � as defined in Eq. (2). The �
version of the BSSN equations used in LEAN is given by

 @t ~�ij � �m@m ~�ij � 2~�m�i@j��m �
2
3 ~�ij@m�m � 2� ~Aij;

(A1)

 @t� � �m@m��
1
6�@m�

m � �K�; (A2)

 

@t ~Aij � �m@m ~Aij � 2 ~Am�i@j��m �
2
3

~Aij@m�m

� e�4���Rij �DiDj��TF

� ��K ~Aij � 2 ~Ai
m ~Amj�; (A3)

 @tK � �m@mK �D
mDm�� �� ~A

mn ~Amn �
1
3K

2�; (A4)

 

@t~�
i � �m@m~�i � ~�m@m�i �

2
3
~�i@m�m � 2�~�imn ~Amn

� 1
3 ~�im@m@n�n � ~�mn@m@n�i �

4
3�~�im@mK

� 2 ~Aim�6�@m�� @m��

� �	� 2
3��

~�i � ~�mn~�imn�@k�k: (A5)

Here Di is the covariant derivative operator and Rij the
Ricci tensor associated with the physical three-metric �ij,
and the superscript TF denotes the trace-free part. We also
note that the last term in the evolution equation (A5)
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vanishes in the continuum limit by virtue of the definition
of ~�i in Eq. (1). With the addition of this term we follow Yo
et al. [92] who introduced this modification to improve the
stability of the BSSN formulation in cases of relaxed
symmetry assumptions of the spacetime under study. We
set the free parameter 	 in this term to 2=3.

The � version of the evolution system is obtained by
substituting � � e�4�. The evolution equations for the
variables �, ~Aij, and ~�i are then given by

 @t� � �m@m��
2
3��K � @m�

m�; (A6)

 

@t ~Aij � �m@m ~Aij � 2 ~Am�i@j��
m � 2

3
~Aij@m�

m

� ���Rij �DiDj��TF

� ��K ~Aij � 2 ~Ai
m ~Amj�; (A7)

 

@t~�
i � �m@m~�i � ~�m@m�

i � 2
3
~�i@m�

m � 2�~�imn ~Amn

� 1
3 ~�im@m@n�n � ~�mn@m@n�i �

4

3
�~�im@mK

� ~Aim
�
3�

@m�
�
� 2@m�

�

�

�
	�

2

3

�
�~�i � ~�mn~�imn�@k�k; (A8)

while Eqs. (A1) and (A4) remain valid without
modification.

APPENDIX B: THE ADM VARIABLES OF A
SINGLE BOOSTED KERR-SCHILD BLACK HOLE

The purpose of this section is to calculate the ADM
functions �ij, Kij, �, and �i as functions of the laboratory
coordinates x� for a nonspinning boosted black hole with
mass parameter m in Kerr-Schild coordinates moving with
speed vi in the laboratory rest frame.5 The rest frame
coordinates of the black hole are related to the laboratory
coordinates by a Lorentz transformation,

 x �� � � ��
�x

�; (B1)

where the transformation matrix is given by

 � ��
� �

� ��vm
��va �am � ��� 1� v

avm
~v2

 !
: (B2)

In the black-hole rest frame, the spacetime metric is given
by (see e.g. [72])

 g �� �� � � �� �� � 2H‘ ��‘ ��; (B3)

where

 H �
m
�r
; (B4)

 ‘ �� �

�
1;
x �a

�r

�
; (B5)

 �r � x �ax �a; (B6)

and indices of x �a and v �a are raised and lowered with the flat
space metric � �a �b.

The spacetime metric in the laboratory frame is obtained
from that in the black-hole frame by a Lorentz transforma-
tion,

 g�
 � � ��
��

��

g �� �� � ��
 � 2H‘�‘
; (B7)

where we have used the fact that H and ‘� behave like a
scalar and vector, respectively, and the Minkowski metric
is invariant under Lorentz transformations.

From the spacetime metric we directly obtain the three-
metric, its inverse, as well as lapse and shift,

 �mn � �mn � 2H‘m‘n; (B8)

 �mn � �mn � 2H�mk�nl‘k‘l=�1� 2H�‘0�
2�; (B9)

 � � �1� 2H�‘0�
2��1=2; (B10)

 �m � 2H‘0‘m; (B11)

 �m � 2H‘0�mk‘k=�1� 2H�‘0�
2�: (B12)

The extrinsic curvature is obtained from the derivatives of
the three-metric according to

 Kmn � �
1

2�
�@t�mn �L��mn�

� �
1

2�
�@t�mn � 2D�m�n��; (B13)

where L� denotes the Lie derivative along the shift vector
and Dm the three-dimensional covariant derivative
operator.

The derivatives of the three-metric are most conven-
iently expressed in terms of H and ‘m,

 @t�mn � 2�‘m‘n@tH �H‘n@t‘m �H‘m@t‘n�; (B14)

 

D�m�n� � 2�‘0‘�m@n�H �H‘�m@n�‘0 �H‘0@�m‘n��

� �kmn�k: (B15)

Finally, the derivatives of H and ‘� are given by

 @�H � �� ��
�
mx ��

�r3 ; (B16)

 @�‘
 � ��a
��

�b

� �a �b

1

�r
�� �a

��
�b


x �ax �b

�r3 : (B17)

In summary, the function for calculating the ADM varia-
bles of a boosted black hole in Kerr-Schild coordinates at a
particular point requires as input the coordinates of the

5See, for example, [93] for a discussion of the superposition of
Kerr-Schild holes with nonvanishing spin.
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point in the laboratory frame as well as the velocity ~v of the
hole. First, the coordinates are transformed into the rest
frame of the black hole according to Eq. (B1). Next H and
‘ �� follow from Eqs. (B4) and (B5) and give the spacetime
metric components (B7). The three-metric, lapse, and shift
follow from Eqs. (B8), (B10), and (B12). Together with the
extrinsic curvature (B13), these are returned to the calling
function as the ADM variables of the boosted Kerr-Schild
metric.

APPENDIX C: THE ELECTROMAGNETIC
DECOMPOSITION OF THE WEYL TENSOR AND

WAVE EXTRACTION

We calculate the Newman-Penrose scalar �4 from the
Weyl tensor via

 �4 � C����n
� �m�n� �m�; (C1)

where n and �m form part of a null-tetrad ‘, n, m, �m such
that all their inner products vanish except

 � ‘  n � 1 � m  �m (C2)

Specifically, we construct ‘, n, andm from the orthonormal
triad vectors u, v, and w according to

 ‘� �
1���
2
p �n̂� � u��; n� �

1���
2
p �n̂� � u��;

m� �
1���
2
p �v� � iw��;

(C3)

where n̂� is the timelike orthonormal vector. The triad u, v,
w is constructed via Gram-Schmidt orthonormalization
starting with

 ui � �x; y; z�; vi � �xz; yz;�x2 � y2�;

wi � �imnvmwn;
(C4)

where �imn represents the three-dimensional Levi-Civita
tensor.

In the decomposition of the Weyl tensor we follow the
presentation of Friedrich [94]. The electric and magnetic
parts of the gravitational field are given by

 E�� � ?�
�?



�C��
	n

�n	; (C5)

 B�� � ?
�
�?



�
�C��
	; (C6)

where ?�
� � ��� � n̂�n̂� is the projector onto the

spacelike hypersurface and the � denotes the Hodge dual.
By virtue of the Gauss-Codazzi equations (see e.g. [95]),
one can express the electromagnetic parts in terms of
‘‘3� 1’’ variables according to

 Eij � Rij � �mn�KijKmn � KimKjn�;

Bij � �ik�
kmnDmKnj:

(C7)

The Weyl tensor is then given in terms of the electric and

magnetic parts by Eq. (3.10) of Ref. [94]. Inserting this
relation together with Eqs. (C3) and (C7) into the definition
(C1) enables us to express �4 exclusively in terms of
‘‘3� 1’’ quantities

 �4 �
1

2
�Emn�vmvn � wmwn� � Bmn�vmwn � wmvn��

�
i
2
�Emn�v

mwn � wmvn� � Bmn�w
mwn � vmvn��:

In practice, �4 is calculated using this relation on the entire
Cartesian grid and then interpolated onto coordinate
spheres of different extraction radii. We then apply a
mode decomposition using spherical harmonics Y�2

‘m of
spin-weight �2 [cf. Eq. (42) in Ref. [96]] according to

 �4�t; ; �� �
X
‘;m

 ‘m�t�Y�2
‘m �;��; (C8)

  ‘m�t� �
Z

�4�t; ;��Y
�2
‘m �;��d�: (C9)

In this context we note that �4 is always extracted onto the
entire coordinate sphere  � 0 . . .�, � � 0 . . . 2�, even
when underlying symmetry of the physical problem is used
to reduce the computational domain to a bitant or octant. In
those cases we use the fact that the real part of �4 behaves
like a scalar while the imaginary part of �4 behaves like a
pseudoscalar, i.e. reverses its sign across symmetry
boundaries.

APPENDIX D: PERFORMANCE OF THE CODE

The majority of simulations presented in this work have
been performed using a 24 node Linux cluster. Each node
contains four AMD 2200 GHz processors and provides
8 Gb of memory. Parallelization is implemented using
the MPICH version 1.2.6 2004/08/08 libraries. The code
has been compiled with version 4.0.2 2005091 of the gcc,
g�� , and gfortran compilers. Compared with alternative
architectures (cf. Ref. [97]), we have noticed that this

TABLE IV. Performance summary for representative simula-
tions presented in this work.

Simulation dt=dx #CPU Memory (Gb) Speed (M/CPUh)

R1 (h � 1=40) 1=2 12 20.1 0.620
R1 (h � 1=44) 1=2 16 26.4 0.347
R1 (h � 1=48) 1=2 24 35.2 0.225
BL4 (h � 1=40) 1=2 8 9.9 0.854
BL4 (h � 1=44) 1=2 12 12.5 0.582
BL4 (h � 1=48) 1=2 16 18.2 0.350
KS4 (h � 1=20) 1=4 8 8.1 0.571
KS4 (h � 1=24) 1=4 8 14.0 0.315
KS4 (h � 1=28) 1=4 16 22.5 0.171
M4 (h � 1=320) 1=8 8 9.1 0.269
M4 (h � 1=360) 1=8 12 12.3 0.162
M4 (h � 1=400) 1=8 12 17.5 0.111
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architecture requires about 25% more memory resources
for identical simulations.

In Table IV we summarize the performance of the code
for simulations R1, BL4, KS4, and M4 of Table II using
this architecture. The columns show the Courant factor
dt=dx which scales linearly with the code’s speed, the
number of processors used in the simulation, the required
memory, as well as the speed. The latter is measured in
physical time in units of the ADM mass M of the system
per real time and processor.

Regarding the memory usage, we observe minor varia-
tions, typically below 5%, in the course of the simulation.
This is due to the merger of refinement components as the
black holes approach each other. The merger of refinement
components also leads to an increase in speed because the
costly regridding operation is no longer required and the
total number of grid points of the merged refinement
component is smaller than the sum of the two individual
ones prior to merging. All reported speeds are averages
over the entire simulation.
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