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Some components of the graviton two-point function have been recently computed in the context of
loop quantum gravity, using the spinfoam Barrett-Crane vertex. We complete the calculation of the
remaining components. We find that, under our assumptions, the Barrett-Crane vertex does not yield the
correct long-distance limit. We argue that the problem is general and can be traced to the intertwiner
independence of the Barrett-Crane vertex, and therefore to the well-known mismatch between the Barrett-
Crane formalism and the standard canonical spin networks. In another paper we illustrate the asymptotic
behavior of a vertex amplitude that can correct this difficulty.
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I. INTRODUCTION

A key problem in loop quantum gravity (LQG) [1–3] is
to derive low-energy quantities from the full background-
independent theory. A strategy for addressing this problem
was presented in [4] and some components of the graviton
propagator of linearized quantum general relativity

 Gabcd�x; y� � h0jhab�x�hcd�y�j0i (1)

[hab�x�, a, b � 1; . . . 4, is the linearized gravitational field]
were computed in [5] (at first order) and [6] (to higher
order) starting from the background-independent theory
and using a suitable expansion. More precisely, the ‘‘di-
agonal’’ components Gaacc�x; y� have been computed in
the large-distance limit. This result has been extended to
the three-dimensional theory in [7]; an improved form of
the boundary states used in the calculation has been con-
sidered in [8]; and the exploration of some Planck-length
corrections to the propagator of the linear theory has begun
in [9]. See also [10].

Here we complete the calculation of the propagator. We
compute the nondiagonal terms ofGabcd�x; y�, those where
a � b or c � d, and therefore derive the full tensorial
structure of the propagator. The nondiagonal terms are
important because they involve the intertwiners of the
spin networks. Avoiding the complications given by the
intertwiners’ algebra was indeed the rationale behind the
relative simplicity of the diagonal terms.

The dependence of the vertex from the intertwiners is a
crucial aspect of the definition of the quantum dynamics.
The particular version of the dynamics used in [5,6], in-
deed, is defined by the Barrett-Crane (BC) vertex [11],
where the dependence on the intertwiners is trivial. This is
an aspect of the BC dynamics that has long been seen as

suspicious (see for instance [12]); and it is directly tested
here.

We find that under our assumptions the BC vertex fails
to give the correct tensorial structure of the propagator in
the large-distance limit. We argue that this result is general,
and cannot be easily corrected, say by a different boundary
state. This result is of interest for a number of reasons.
First, it indicates that the propagator calculations are non-
trivial; in particular, they are not governed just by dimen-
sional analysis, as one might have worried, and they do test
the dynamics of the theory. Second, it reinforces the ex-
pectation that the BC model fails to yield classical general
relativity (GR) in the long-distance limit. Finally, and more
importantly, it opens the possibility of studying the con-
ditions that an alternative vertex must satisfy, in order to
yield the correct long-distance behavior. This analysis is
presented in another paper [13].

The BC model exists in a number of variants [2,14]; the
results presented here are valid for all of them. Alternative
models have been considered, see for instance [15].
Recently, a vertex amplitude that modifies the BC ampli-
tude, and which addresses precisely the problems that we
find here, has been proposed [16,17], see also [18]. It
would be of great interest to repeat the calculation pre-
sented here for the new vertex proposed in those papers.

This paper is organized as follows. In Sec. II we for-
mulate the problem and we compute the action of the field
operators on the intertwiner spaces. This calculation is a
technical result with an interest in itself. Here we will use
only part of this result, the rest will be relevant for a
different paper. In Sec. III we discuss the form of the
boundary state needed to describe a semiclassical geome-
try to the desired approximation. Section IV contains the
main calculation. In Sec. V we discuss the interpretation of
our result.

This paper is not self-contained: for full background, see
[6]. For an introduction to the general ideas and the formal-
ism, see the book [2]. However, we include here detailed
appendixes, with all basic equations of the recoupling
theory needed for the calculations. The appendix corrects

*Unité mixte de recherche (UMR 6207) du CNRS et des
Universités de Provence (Aix-Marseille I), de la Mediterranée
(Aix-Marseille II) et du Sud (Toulon-Var); laboratoire affilié à la
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some imprecisions in previous formularies and can be
useful as a tool for further developments. We work entirely
in the Euclidean theory.

II. THE PROPAGATOR IN LQG

We refer to [6] for the notation and the basic definitions.
We want to compute

 G abcd
q �x; y� � hWjhab�x�hcd�y�j�qi (2)

to first order in �. Here �q is a state peaked on q, which is
the (intrinsic and extrinsic) 3D geometry of the boundary
of a spherical 4-ball of radius L in R4, x and y are two
points in this geometry, ab are tangent indices at x and cd
tangent indices at y in this geometry. That is, Gabcd

q �x; y� is
a quantity that transforms covariantly under 3D diffeo-
morphisms acting conjointly on x, y, on the indices
abcd, and on q. hab�x� is the fluctuation of the gravita-
tional field over the Euclidean metric. W is the boundary
functional, that defines the dynamics; it is assumed to be
given here by a Barrett-Crane group field theory (GFT)
[14,19] with coupling constant �. We work here to first
order in �. Following [16], if we identify the terms gen-
erated by the GFT perturbative expansion with the ones
obtained form a Regge-like lattice triangulation of GR,
then we can interpret the expansion in � as a cutoff in
the degrees of freedom. More precisely, it corresponds to
neglecting wavelengths much smaller than L. Degrees of
freedom of wavelength larger than L do not matter, since
we take a large L limit. We normalize here �q by
hWj�qi � 1.

Consider the s-knot (abstract spin-network) basis jsi �
j�; j; ii, where � is an abstract graph, n;m . . . label the
nodes of �, j � fjmng are the spins and i � fing the inter-
twiners of a spin network with graph �. Insert a resolution
of the identity in (2)

 G abcd
q �x; y� �

X
s

hWjsihsjhab�x�hcd�y�j�qi: (3)

It is shown in [6] that at first order in �, hWjsi � W�s� �
W��; j; i� where the dominant term in the large-spin limit
contains only the contribution coming from � being the
pentagonal graph, that is, for the s-knot

 

(4)

In this case, and from now on, we have five intertwiners
i � fing, labeled by n;m; . . . � 1; . . . ; 5 and ten spins j �
fjmng. We use equally the indices i; j; k; . . . � 1; . . . ; 5 to
indicate the nodes. Since the operators hab�x� do not
change the graph (they are operators acting on the spin

and intertwiners variables j, i)

 G abcd
q �x; y� �

X
j;i

W�j; i�hab�x�hcd�y���j; i� (5)

where W�j; i� � W��5; j; i� and ��j; i� � �q��5; j; i� �
h�5; j; ij�qi, and the sum is over the 15 variables �j; i� �
�jnm; in�. (We use the physicist’s notation hcd�y���j; i� for
�hcd�y����j; i�.)

Following [6], we choose the form of ��j; i� by identi-
fying �5 with the dual skeleton of a regular triangulation of
the three-sphere. Each node n � 1; . . . ; 5 corresponds to a
tetrahedron t1 . . . t5 and we choose the points x and y to be
the centers xn and xm of the two tetrahedra tn and tm. We
consider

 G ij;kl
qn;m :� Gabcd

q �xn; xm�n
�ni�
a n�nj�b n�mk�c n�ml�d ; (6)

where n�ij�a is the one-form normal to the triangle that
bounds the tetrahedra ti and tj. From now on, we assume
n � m. Since hab � gab � �ab � EaiEbi � �

ab, this is
given by

 G ij;kl
qn;m � hWj�E

�ni�
n � E�nj�n � n�ni� � n�nj���E�mk�m � E�ml�m

� n�mk� � n�ml��j�qi

�
X
j;i

W�j; i��E�ni�n � E�nj�n � n�ni� � n�nj���E�mk�m

� E�ml�m � n�mk� � n�ml����j; i�: (7)

where, E�ml�n � Ea� ~x�n�ml�a is valued in the su�2� algebra
and, with abuse of notation, the scalar product between the
triad fields indicates the product in the su�2� algebra (in the
internal space); while the scalar product among the one
forms n�ij� is the one defined by the background metric �ab.
In the rest of the paper, we compute the right hand side of
(7).

A. Linearity conditions

Before proceeding to the actual computation of (7), let
us pause to consider the following question. The four
normal one-forms of a tetrahedron sum up to zero. Thus

 

X
i�n

n�ni�a � 0: (8)

This determines a set of linear conditions that must be
satisfied by Gij;kl

qn;m. In fact, from the last equation it follows
immediately that

 

X
i�n

Gij;kl
qn;m � 0: (9)

(The existence of conditions of this kind, of course, is
necessary, since the four one forms n�ni�a (for fixed n)
span a three-dimensional space, namely, the space tangent
to the boundary surface at xn, and therefore the quantities
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Gij;kl
qn;m are determined by the restriction of the bi-tensor

Gabcd
q to these tangent spaces.) How is it possible that the

linear conditions (9) are satisfied by the expression (7)?
The answer is interesting. The operator E�ni�n � E�nj�n acts

on the space of the intertwiners of the node n. This is the
SU�2� invariant part of the tensor product of the four SU�2�
irreducible representations determined by the four spins
jni. In particular, E�ni�n is the generator of SU�2� rotations in
the representation jni. Therefore

 J �
X
i�n

E�ni�n (10)

is the generator of SU�2� rotations in the tensor product of
these representations. But the intertwiners’ space is pre-
cisely the SU�2� invariant part of the tensor product.
Therefore J � 0 on the intertwiner space. Inserting this
in (7), Eq. (9) follows immediately. Therefore the linearity
conditions between the projections of the propagator in the
space tangent to the boundary surface are implemented by
the SU�2� invariance at the nodes.

B. Operators

We begin by computing the action of the field operator
E�ni�n � E�nj�n on the state. This operator acts on the inter-
twiner space at the node n. It acts as a ‘‘double grasping’’
[3] operator that inserts a virtual link (in the spin-one
representation) at the node, connecting the links labeled
ni and nj. The state of each node n (n � 1; . . . ; 5) is
determined by five quantum numbers: the four spins jnj
(n � j, j � 1; . . . ; 5) that label the links adjacent to the
node and a quantum number in of the virtual link that
specifies the value of the intertwiner. In this section we
study the action of this operator on a single node n; hence
we drop for clarity the index n and write the intertwiner
quantum number as i, the adjacent spins as ji, jj, jp, jq, and
the operator as E�i� � E�j�. We use the graphic notation of
SU�2� recoupling theory to compute the action of the
operators on the spin-network states (see [2]). The basics
of this notation are given in Appendix A and the details of
the derivation of the action of the operator are given in
Appendix C. Choose a given pairing at the node, say
�i; j��p; q� (and fix the orientation, say clockwise, of each
of the two trivalent vertices). We represent the node in the
form

 

(11)

where we use the same notation i for the intertwiner and
the spin of the virtual link that determines it. This basis
diagonalizes the operator E�i� � E�j�, but not the operators
E�i� � E�q� and E�i� � E�p�. We consider the action of these
three ‘‘doublegrasping’’ operators on this basis. The sim-

plest is the action of E�i� � E�i�. Using the formulas in
Appendix C we have easily

 

(12)

where

 Cii � C2�ji�; (13)

with C2�a� � a�a� 1� is the Casimir of the representation
a. Just slightly more complicated is the action of E�i� � E�j�

 

(14)

where

 Dij �
C2�i� � C2�ji� � C

2�jj�

2
: (15)

In these two cases the action of the operator is diagonal.
If, instead, the grasped links are not paired together, the
action of the operator is not diagonal in this basis. In this
case, the recoupling theory in the appendixes gives

 

(16)

where

 Xiq��
�C2�i��C2�ji��C

2�jj���C
2�i��C2�jq��C

2�jp��

4C2�i�
;

(17)
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 Yiq � �
1

4i dim�i�

����������������������������������������������������������������������������������������������������������������������������
�ji � jj � i� 1��ji � jj � i���ji � jj � i��ji � jj � i� 1�

q

�
����������������������������������������������������������������������������������������������������������������������������������
�jp � jq � i� 1��jp � jq � i���jp � jq � i��jp � jq � i� 1�

q
; (18)

 Ziq � �
1

4�i� 1� dim�i�

�������������������������������������������������������������������������������������������������������������������������������������
�ji � jj � i� 2��ji � jj � i� 1���ji � jj � i� 1��ji � jj � i�

q

�
�������������������������������������������������������������������������������������������������������������������������������������������
�jp � jq � i� 2��jp � jq � i� 1���jp � jq � i� 1��jp � jq � i�

q
: (19)

The last possibility is

 

(20)

Note that Xip is exactly Xiq with p and q switched and
Yip � Yiq, Zip � Ziq.

Finally, we have to take care of the orientation. As
shown in the appendixes, the sign of the nondiagonal terms
is influenced by the orientations: in the planar representa-
tion that we are using, there is a � sign if the added link
intersects the virtual one and a �1 otherwise.

Summarizing, in a different notation and reinserting
explicitly the index n of the node, we have the following
action of the EE operators. If the grasped links are paired
together we have the diagonal action

 E�ni� � E�nj�j�5; j; i1; . . . ; in; . . . ; i5i

� Sijn j�5; j; i1; . . . ; in; . . . ; i5i; (21)

where

 Sijn �
�Cii � C2�jni� if i � j;

Dij �
C2�in��C2�jni��C2�jnj�

2 if i � j:
(22)

If the grasped links are not paired together, we have the
nondiagonal action

 E�ni� �E�nq�j�5; j; i1; . . . ; in; . . . ; i5i

�

�
Xiqn j�5; j; i1; . . . ; in; . . . ; i5i � Y

iq
n j�5; j; i1; . . . ; in� 1; . . . ; i5i � Z

iq
n j�5; j; i1; . . . ; in� 1; . . . ; i5i if i opposite to q;

Xiqn j�5; j; i1; . . . ; i; . . . ; i5i � Y
iq
n j�5; j; i1; . . . ; in� 1; . . . ; i5i � Z

iq
n j�5; j; i1; . . . ; in� 1; . . . ; i5i otherwise:

(23)

This completes the calculation of the action of the gravi-
tational field operators.

III. THE BOUNDARY STATE

The boundary state utilized in [6] was assumed to have a
Gaussian dependence on the spins, and to be peaked on a
particular intertwiner. This intertwiner was assumed to
project trivially onto the BC intertwiner of the BC vertex.
This was a simplifying assumption permitting us to avoid
dealing with the intertwiners, motivated by the fact that
intertwiners play no role for the diagonal terms. However,
it was also pointed out in [6] that this procedure is not
well defined, because of the mismatch between SO�4�
linearity and SU�2� linearity (see the discussion in the
appendixes of [6]). Here we face the problem squarely,

and consider the intertwiner dependence of the boundary
state explicitly.

A natural generalization of the Gaussian state used in
[6], with a well-defined and nontrivial intertwiner depen-
dence, is the state
 

��j; i� � Cexp
�
�

1

2j0

X
�ij��mr�

��ij��mr��jij� j0��jmr� j0�

� i�
X
�ij�

jij

�
� exp

�
�
X
n

�
�in� i0�2

4�

�
X
p�n

��jnp� j0��in� i0� � i��in� i0�
��
: (24)

The first line of this equation is precisely the spin depen-
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dence of the state used in [6]. The second line contains a
Gaussian dependence on the intertwiner variables. More
precisely, it includes a diagonal Gaussian term, a non-
diagonal Gaussian spin-intertwiner term, and a phase fac-
tor. We do not include nondiagonal intertwiner-intertwiner
terms here. These will be considered in another paper.

Let us fix some of the constants appearing in (24), by
requiring the state to be peaked on the expected geometry.
The constant j0 determines the background area A0 of the
faces, via C�jnm� � Anm. As in [6], we leave j0 free to
determine the overall scale. The constant � determines the
background values of the angles between the normals to
the tetrahedra. As in [6], we fix them to those of a regular
four-simplex, namely cos� � �1=4.

The constant i0 is the background value of the inter-
twiner variable. As shown in [6], the spin of the virtual link
in is the quantum number of the angle between the normals
of two triangles. More precisely, the Casimir C�in� of the
representation in is the operator corresponding to the clas-
sical quantity

 C2�in� � Ani � Anj � 2 ~n�ni� � ~n�nj�; (25)

where i and j are the paired links at the node n and Ani is
the area of the triangle dual to the link �ni�. The scalar
product of the normals to the triangles can therefore be
related to the Casimirs of spins and intertwiners:

 n�ni� � n�nj� �
C�in� � C�jni� � C�jnj�

2
: (26)

For each node, the state must therefore be peaked on a
value i0 such that

 i0�i0 � 1� � A0 � A0 � 2A0A0 cos�ij; (27)

where cos�ij is the 3D dihedral angle between the faces of
the tetrahedron. For the regular 4-symplex, in the large-
distance limit we have Aij � j0, cos�ij � �

1
3 , which gives

 i0 �
2���
3
p j0: (28)

This fixes i0. Notice that in [6] our Eq. (25) refers to the
Casimir of an SO�4� simple representation and follows
from the quantization of the Plebanski 2 form BIJ � eI ^
eJ associated with the discretized geometry. Exactly the
same result follows from Eq. (14) directly from LQG.

Fixing i0 in this manner determines only the mean value
of the angle �ij between the two triangles that are paired
together in the chosen pairing. What about the mean value
of the angles between faces that are not paired together,
such as �iq? It is shown in [20] that a state of the form
e�i�i0�

2=� is peaked on �iq � 0, which is not what we want;
but the mean value of �iq, can be modified by adding a
phase to the state. This is the analog of the fact that a phase
changes the mean value of the momentum of the wave
packet of a nonrelativistic particle, without affecting the

mean value of the position. In particular, it was shown in
[20] that by choosing the phase and the width of the
Gaussian to be

 � �
�
2
; � �

j0

3
; (29)

we obtain a state whose mean value and variance for all
angles is the same.

Let us therefore adopt here these values. Still, the
present situation is more complicated than the case con-
sidered in [20], because the tetrahedron considered there
had fixed and equal values of the external spins; while here
the spins can take arbitrary values around the peak sym-
metric configuration jnm � j0. As a consequence, when
repeating the calculation in [20], one finds additional spin-
intertwiner Gaussian terms. These, however can be cor-
rected by fixing the spin-intertwiner Gaussian terms in
(24). A detailed calculation (see below), shows indeed
that in the large j0 limit, the state (24) transforms under
change of pairing into a state with the same intertwiner
mean value and the same variance �, provided we also
choose

 � � �i
3

4j0
; (30)

which we assume from now on. With these values and
introducing the difference variables �in � in � i0 and
�jmr � jmr � j0 the wave functional, given in (24), reads

 

��j; i� � Ce
��1=2j0�

P
��ij��mr��jij�jmr�i�

P
ij

�jij

	 e
�
P
n

��3��in�2=4j0��i�
P
a

�3=4j0��jan���=2���in�
: (31)

This state, however, presents a problem, which we discuss
in the next section.

A. Pairing independence

It is natural to require that the state respects the symme-
tries of the problem. A moment of reflection shows that the
state (31) does not. The reason is that the variables in are
the spin of the virtual links in one specific pairing, and this
breaks the symmetry of the four-simplex. The phases and
variances chosen assure that the mean values are the de-
sired ones, hence symmetric; but an explicit calculation
confirms that the relative fluctuations of the angle variables
determined by the state (31) depend on the pair chosen.

To correct the problem, recall that there are three natural
bases in each intertwiner space, determined by the three
possible pairings of these links. Denote them as follows.
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(33)

where we conventionally denote ix 
 i the basis in the
pairing chosen as reference. These bases diagonalize the
three noncommuting operators E�i� � E�j�, E�i� � E�q� and
E�i� � E�p�, respectively. Furthermore a spin-network state
is specified by the orientation of the three-valent nodes
[21]; we fix this orientation by giving an ordering to the
links. We write for instance

 

(33)

where the plus sign � (� ) means anticlockwise (clock-
wise) ordering of the links in the two nodes. A complete
basis in the space of the spin networks on �5 is specified
giving the pairing and the orientation at each node. In order
to label the different bases, introduce at each node n a
variable mn that takes the values mn � x, y, z, namely, that
ranges over the three possible pairings at the node.
Similarly, introduce a variable on � f����; ����;
����; ����g that labels the possible orientations. To cor-

rect the pairing dependence of the state (24), let us first
rewrite it in the notation

 j�qix�� �
X

j;ix��
��j; ix���jj; ix��i; (34)

where the suffix x�� to the ket emphasizes the fact that
the state has been defined with the chosen pairing and
orientation at each node. We can now consider a new state
obtained by summing (34) over all choices of pairings and
orientations. That is, we change the definition of the
boundary state to

 j�qi �
X
mn;on

j�qimnon ; (35)

where
P
mn;on �

P
m1...m5

P
o1...o5

and

 j�qimnon �
X

j;imnon
��j; imnon�jj; imnoni; (36)

namely j�qimnon is the same as the state j�qix��, but
defined with a different choice of pairing at each node.

Since (by assumption) (24) does not depend on the
orientation, the sum over the orientation of the node
(say) 1, in (35) reduces to a term proportional to

 (37)

As shown in the appendixes, the change in orientation of a vertex produces the sign ��1�a�b�c, where a, b, c are the three
adjacent spins. Hence

 

X
o

jj; io1 ; i2; i3; i4; i5i� � �1� ��1�j14�j15�i1 � ��1�j12�j13�i1 � ��1�j12�j13�j14�j15�2i1�jj; i��1 ; i2; i3; i4; i5i

�

�
4jj; i��1 ; i2; i3; i4; i5; i if �j12 � j13 � i

m1
1 � 2n1 and j14 � j15 � i

m1
1 � 2n2�;

0 otherwise:
(38)

We can therefore trade the sum over orientations in (35)
with a condition on the spins summed over: at all trivalent
vertices, the sum of the two external spins and the virtual
spin, must be an even integer. (The factor 4 is absorbed in
the normalization factor C.) With this understanding, we
drop the sum over orientations in (35), which now reads

 j�qi �
X
mn

j�qimn
; (39)

where all orientations are fixed. This state can of course
also be expressed in terms of a single basis

 j�qi �
X
j;i

�q�j; i�jj; ii; (40)

where we have returned to the notation in � ix;��n . Its
components are

 ��j; i� � hj; ij�qi �
X
mn

��j; imn�hj; ijj; imni: (41)

The matrices of the change of basis hj; ijj; imni are (prod-
ucts of five) 6-j Wigner-symbols, as given by standard
recoupling theory.

The state (39) is the boundary state we shall use. The
complication of the sum over pairings is less serious than
what could seem at first sight, due to a key technicality that
we prove in the next section: the components of (39)
become effectively orthogonal in the large-distance limit.

1. Orthogonality of the terms in different bases in the
large j0 limit

Suppose we want to compute the norm of the boundary
state, in the limit of large j0. From (39), this is given by
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 j�j2 �
X
mn

X
m0nmn

h�qj�qim0n : (42)

We now show that in the large j0 limit the nondiagonal
terms of this sum (those with mn � m0n) vanish. Consider
one of these terms, say

 I�
mn

h�qj�qim0n �
X
jimn

X
j0im

0
n

��j; imn���j0; im
0
n�hjimn jj0im

0
ni

(43)

where, say, mn � �x; x; x; x; x� and m0n � �y; x; x; x; x�. The
scalar product is diagonal in the spins j and is given by 6-j
symbol in the intertwiners quantum numbers. Hence

 I �
X

j

X
imn

X
im
0
n

��j; imn���j; im
0
n�hix1ji

y
1i; (44)

where (see Appendix D),

 hix1ji
y
1i � ��1�j13�j14�ix1�i

y
1

������������
dix1di

y
1

q �
j12 j13 ix1
j15 j14 iy1

�
: (45)

In the large j0 limit, this sum can be approximated by an
integral, as in [6]. Both the spin and the intertwiner sums

become Gaussian integrals, peaked, respectively, on j0 and
i0. The range of the sum over intertwiners is finite for finite
j0, because of the Clebsh Gordan conditions at the two
trivalent node; but this range is much larger than the width
of the Gaussian in the limit, and therefore the integral over
the intertwiner variables too can be taken over the entire
real line. In the limit, the 6-j symbol has the asymptotic
value [22]

 

�
j12 j13 ix1
j15 j14 iy1

�
�
ei�SR���=4�� � e�i�SR���=4���������������

12�V
p ; (46)

where SR is the Regge action of a tetrahedron with side
length determined by the spins of the 6j symbol, and V is
its volume. Changing the sum into an integration and using
this, we have
 

I �
Z
dj
Z
di
Z
diy1��j; i���j; im

0
n���1�j13�j14�ix1�i

y
1

	
ei�SR���=4�� � e�i�SR���=4���������������

12�V
p : (47)

Inserting the explicit form of the state (31) gives

 I �
Z
dj
Z
die

��1=j0�
P

��ij��mr��jij�jmr�
P
n�1

�3��in�2=2j0���3��i1�2=4j0��i�
P
a

�3=4j0��jan���=2���ix1

�
Z
diy1e

��3��iy1�
2=4j0�e

i�
P
a

�3=4j0��jan���=2���iy1 ei�SR���i
y
1���=4�� � e�i�SR���i

y
1���=4���������������

12�V
p : (48)

In the limit, only the first terms in the expansion of the
Regge action around the maximum of the peak of the
Gaussian matter. We thus Taylor expand the Regge action
in its six entries j1n, ix1, iy1 around the background values j0

and i0.
 

Sj�jna� �
@SR
@j1n

��������j0;i0

�j1n �
@SR
@ix1

��������j0;i0

�ix1 �
@SR
@iy1

��������j0;i0

�iy1

� higher order terms: (49)

The key point now is that the first of these terms is a rapidly
oscillating phase factor in the j1n variable. The Gaussian
j1n integration in (48) is suppressed by this phase factor.

More precisely, the integral is like a Fourier transform in
the j1n variable, of a Gaussian centered around a large
value of j0 with variance proportional

�����
j0

p
; this Fourier

transform is then a Gaussian with variance 1=
�����
j0

p
, which

goes to zero in the j0 ! 1 limit. QED.

2. Change of basis

For later convenience, let us also give here the expres-
sion of the state (31) under the transformation induced by
the change of basis associated to a change of pairing. Say
we change from the basis iy to the basis ix in the node n �
1. Then directly from (41) we have

 �0q�j; ix1; i2 . . . i5� � e��1=2j0�
P

��ij��mr��jij�jmr�i
P

��jije
�
P
n�1

��3��in�2=4j0��i�
P
a

�3=4j0��jan���=2���in�

�
X
iy1

e
���3��iy1�

2=4j0��i�
P
a

�3=4j0��ja1���=2���iy1�
��1�j13�j14�ix1�i

y
1

������������
dix1di

y
1

q �
j12 j13 ix1
j15 j14 iy1

�
(50)

where, we recall, the sum over intertwiners is under the condition (38) that gives ��1�j13�j14�ix1 � 1. We can evaluate the
sum in the large j0 limit by approximating it again with an integral. Inserting the asymptotic expansion of the 6j symbol,
we have
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 �0q�j; ix1; i2; . . . ; i5� � e��1=2j0�
P

��ij��mr��jij�jmr�i
P

��jije
�
P
n�1

��3��in�2=4j0��i�
P
a

�3=4j0��jan���=2���in�
ei�i0

�
Z
d�iy1e

��3��iy1�
2=4j0��i�

P
a

�3=4j0��ja1���=2���iy1� ������������
dix1di

y
1

q ei�SR���i
y
1���=4�� � e�i�SR���i

y
1���=4���������������

12�V
p : (51)

This can be computed expanding the Regge action to
second order around j0 and i0. As shown in Appendix F, the
result is
 

�0q�j; ix1; i2; . . . ; i5� � ��j; ix1; i2; . . . ; i5�N1

	 e�iS�j1a�e
�2i�

P
a

�3=4j0��ja1��ix1
; (52)

where N1 is a normalization constant with jN1j
2 � 1, and

S�j1a� is the expansion of the Regge action linked to the
tetrahedron associated with the f6jg symbol (46) up to the
second order only in the link variables, that is
 

S�jna� �
@SR
@j1n

��������j0;i0

�j1n �
@2SR

@j1n@j1n0

��������j0;i0

�j1n�j1n0

�
1

2

@2SR
@2j1n

��������j0;i0

��j1n�
2: (53)

This result follows from the choice (29) and (30) of the
parameters in (24). In particular, the value �n �

�
2 makes

the intertwiner phase equal, with opposite sign, to the term
exp�i�@SR@iy1

jj0;i0�i
y
1 � ��i

y
1�, namely, the term in the expan-

sion of the Regge action SR linear in the variable �iy1. This
selects one of the two exponentials in the asymptotic
expansion (46), while the rapidly oscillating phase factor
in the variables �iy1 cancels the other.

The same calculation gives the iz ! ix change of vari-
able
 

�00q�j; ix1; i2; . . . ; i5� � ��j; ix1; i2; . . . ; i5�N1e�iS
0�j1a�

	 e
�2i�

P
a

�3=4j0��ja1��ix1
; (54)

with the same constant N1 as above. The only differences
between (52) and (54) is that the arguments of the 6-j
symbol enter with a different order, so that
S0�j12; j13; j14; j15; � � S�j12; j13; j15; j14�.

Using these results, we can explicitly rewrite the state
(39) in our preferred basis. We obtain easily

 j�qi � 45
X
j;i

��j; i�
Y5

n�1

G��jna; �in�jj; ii; (55)

where

 G��jna; �in� �

 
1� N1e

�2i�
P
a

�3=4j0��j
an��ixn
�e�iS�jna�

� e�iS
0�jna��

!
: (56)

B. Mean values and variances

With these preliminaries completed, we can now check
that mean values and relative fluctuations of areas and
angles have the right behavior in the large scale limit.
With the notation

 hOi :�
h�qjOj�qi

h�qj�qi
and �O �

��������������������������
hO2i � hOi2

q
(57)

we demand

 hjnii � j0 and
�jni
hjnii

! 0 when j0 ! 1; (58)

as in [6], as well as

 himn
n i � i0 and

�imn
n

himn
n i
! 0 when j0 ! 1: (59)

Notice that we demand this for all mn, namely, for each
node in each pairing.

It is easy to show that the state (39) satisfies (58).
Because of the vanishing of the interference terms proven
above, in the large j0 limit the mean values reduce to the
average of the mean values on each diagonal term.
 

hjnii�

P
mn

P
j

P
imnn

jnij��jimn
n �j2P

mn

P
j

P
imnn

j��jimn
n �j2

�

P
mn

R
d�jd�imn

n jnie
��1=j0�

P
��ij��mr��jij�jmre

�
P
n

�3��imnn �2=2j0�

P
mn

R
d�jd�imn

n e��1=j0�
P

��ij��mr��jij�jmre
�
P
n

�3��imnn �2=2j0�

� j0: (60)

The calculation of the variance and mean value in the
intertwiner variable is a bit more complicated. It is conve-
nient to express the state in the pairing of the relevant
variable using (52) and (54). With this, we have
 

hix1i �

P
mn�m1

P
j

P
imnn�1

P
ix1

ix1�j�qj
2 � j�0qj

2 � j�00qj
2�

P
mn

P
j

P
imnn

j�qj
2

� 3

P
mn�m1

P
j

P
imnn�1

P
ix1

ix1j�qj
2

P
mn

P
j

P
imnn

j�qj
2 �

P
mn�m1

P
j

P
imnn�1

P
ix1

ix1j�qj
2

P
mn�m1

P
j

P
imnn�1

P
ix1

j�qj
2

� i0; (61)
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where we have used the (52) and (54) and the fact that the
constant N1 in these expression satisfies jN1j

2 � 1. The
same procedure can be used to compute the variance and
check that (59) is satisfied.

IV. CALCULATION OF THE PROPAGATOR

We are now ready to compute all components of the
propagator (7). Consider this quantity for a fixed value of
m, n, i, j, k, l. Because of the sum in (56), the propagator
can be written in the form:
 

Gij;kl
qn;m � 45

X
j

X
in

��j; i�
Y5

n�1

G��jna; �in�

� hWj�E�ni�n � E�nj�n � n�ni� � n�nj���E�mk�m � E�ml�m

� n�mk� � n�ml��jj; ini; (62)

For a given value of m, n, i, j, k, l, we now can fix the
reference choice of pairing so that �ij� (if different) are
paired at the node n and �kl� (if different) are paired at the
node m. With this choice of basis the action of the opera-
tors is diagonal, and we have

 

Gij;kl
qn;m � 45

X
j

X
in

��j; i�
Y5

n�1

G��jna;�in��D
ij
n � n�ni� � n�nj��

	 �Dkl
m � n�mk� � n�ml��hWjj; ii: (63)

We use the same form of the Barret-Crane vertex as in

[4,5]. This is given by

 hWjj; ii :� W�j; i� � W�j�
Y
n

hiBCjini

� W�j�
Y
n

�2in � 1�; (64)

whereW�j� is the Barrett-Crane vertex, which is a function
of the ten spins alone. In the large-distance limit,

Q
n�2in �

1� � 2i50, hence

 W�j; i� � 2i50W�j�: (65)

Using this, (63) becomes
 

Gij;kl
qn;m �

X
j

W�j�
X
ixn

��j; i�
Y5

n�1

G��jna; �in�

	 �Dij
n � n�ni� � n�nj���Dkl

m � n�mk� � n�ml��; (66)

where we have absorbed numerical factors and i50 in the
normalization of the state. Each factor G��jna; �in� in this
expression has the form �1� NeiS � NeiS

0
�. The terms

with the exponents contain rapidly oscillating phases in
the spin variables, which again suppress the integral in the
large j0 limit. Therefore we can drop these factors.

The value of the eigenvalues Dij
n is given in (22). The

value of the product of normals is given in (26). Using
these, we have

 Dij
n � n�ni� � n�nj� �

�C�in� � C�i0�� � �C�j
�ni�� � C�j0�� � �C�j

�nj�� � C�j0��

2
: (67)

Expanding up to second order around the background
values j0 and i0

 C�jj� � C�j0� � ��jj�
2 � 2�jjj0 � �jj; (68)

we obtain, in the large j0 limit

 Dij
n � n�ni� � n�nj� � �ini0 � �jjj0 � �jnkj0: (69)

Inserting this in (66) we have
 

Gij;kl
qn;m � j2

0

X
j

W�j�
X
ixn

�
2���
3
p �in � �jni � �jnk

�

	

�
2���
3
p �im � �jmk � �jml

�
��j; i�: (70)

In the case in which two of the indices of the propagator
are parallel, say i � j, this reduces easily to
 

Gii;kl
qn;m � 2j2

0

X
j

W�j�
X
ixn

�jni

�
2���
3
p �im � �jmk � �jml

�

	��j; i�: (71)

While if i � j and k � l we recover the diagonal terms,

 G ii;kk
qn;m � 4j2

0

X
j

W�j�
X
ixn

�jni�jmk��j; i�: (72)

We can now evaluate (70). Inserting the explicit form of
the state gives

 

Gij;kl
qn;m � Cj2

0

X
�j;�i

W�j�
�

2���
3
p �in � �jni � �jnk

�

	

�
2���
3
p �im � �jmk � �jml

�
� e��1=2j0�

P
��ij��mr��jij�jmr�i

P
��jij

	 e
�
P
n

��3��in�2=4j0��i�
P
a

�3=4j0��jan���=2���in�
: (73)

Using the asymptotic expression for the BC vertex, we can
proceed as in [4,5]. The rapidly oscillating phase term in
the spins selects one of the factors of this expansion, giving
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Gij;kl
qn;m�N j2

0

X
�j�ab�;�i�

Y
a<b

dim�j�ab��
�

2���
3
p �in��jni��jnk

�

	

�
2���
3
p �im��jmk��jml

�
� e��1=2j0����iGj0��ij��mn��jij�jmn

	 e
�
P
n

��3��in�2=4j0��i�
P
a

�3=4j0��jan���=2���in�
; (74)

where the phase factor i�
P
pqjpq in (73) has been ab-

sorbed by the corresponding phase factor in the asymptotic
expansion of the 10j symbolW�j� (see [22,23]), as in [5,6].
Here G is the matrix of the second derivatives of the Regge
action (see [5,6]) and should not be confused with the G
used in the appendixes. Finally,
 

Gij;kl
qn;m �N 0j2

0

X
�j�ab�;�i�

�
2���
3
p �in � �jni � �jnk

�

	

�
2���
3
p �im � �jmk � �jml

�
� e��1=2j0����iGj0��ij��mn��jij�jmn

	 e
�
P
n

��3��in�2=4j0��i�
P
a

�3=4j0��jan���=2���in�
: (75)

We can rearrange this expression introducing the 15 com-
ponents vector �I� � ��jab; �in� and �� � �0; �in� and

the 15	 15 correlation matrix

 M �
A10	10 C10	5

CT
5	10 S5	5

� �
; (76)

where Aabcd �
1
2 ��� iGj0�abcd is a 10	 10 matrix and

Snm � Inm
3
4 is a diagonal 5	 5 matrix and C is a 10	 5

matrix and CT is its transpose, and evaluate it approximat-
ing the sum with an integral
 

Gij;kl
qn;m �N 0j2

0

Z
d�I�

�
2���
3
p �in � �jni � �jj

�

	

�
2���
3
p �im � �jmk � �jml

�
	 e��M�	=j0��I��I	ei���I� : (77)

The matrix M is invertible and independent from j0. Direct
calculation using (G5) gives a sum of terms of the kind

 

e�j0�M�1������������
detM
p �j3

0M
�1
�	 � j

4
0M
�1
�
�
M�1

	����: (78)

These terms go to zero fast in the j0 ! 1 limit, and
therefore do not match the expected large-distance behav-
ior of the propagator.

One could hope to circumvent the problem behavior
thanks to the normalization factor. Including this explicitly
we have

 

~G ij;kl
qn;m �

hWj�E�ni�n � E�nj�n � n�ni� � n�nj���E�mk�m � E�ml�m � n�mk� � n�ml��j�qi

hWj�qi
: (79)

The denominator gives

 hWj�qi �
e�j0�M�1������������

detM
p : (80)

Terms of the kind (78) are still pathological, since they give

 

�M�1
�	

j0
�M�1

�
�
M�1
	���

�
(81)

in the limit. In conclusion, the calculation presented does
not appear to give the correct low energy propagator.

V. CONCLUSIONS

The calculation presented above is based on a number of
assumptions on the form of the boundary state. Could the
negative result that we have obtained be simply the result
of these assumptions being too strict, or otherwise wrong?
Could, in particular, a different boundary state give the
correct low energy behavior? Although we do not have any
real proof, we do not think that this is the case. The original
aim of the research program motivating this article was to
find such a state; the negative result we report here has
initially come as a disappointment, and we have fought

against it at length. We have eventually reached the con-
clusion that the problem is more substantial, and is related
to the BC vertex itself, at least as it is used in the present
approach. There are several indications pointing to this
conclusion.

First, the trivial intertwiner dependence of the Barrett-
Crane structure clashes with the intertwiner dependence of
the boundary state that is needed to have a good semiclas-
sical behavior. Since the variables associated to the angles
between faces do not commute with one another, the
boundary state cannot be sharp on a classical configuration.
In order for a state peaked on a given angle to be also
peaked on the other noncommuting angles, the state must
have a phase dependence from intertwiners and spin vari-
ables. Following the general structure of quantum mechan-
ics, one then expect the transition amplitude matching
between coherent states to include a phase factor exactly
balancing those phases. This is the case for instance for the
free propagator of nonrelativistic quantum particles, as
well as for the phases associated to the angles between
tetrahedra in the calculation illustrated in [4,5]. However,
no such phase factor appears in the BC vertex. In particu-
lar, the phase factor i��=2�

P
pip present in the boundary
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state (necessary to have the complete symmetry of the
state) is not matched by a corresponding factor in the
vertex amplitude. This factor gives the rapidly oscillating
term that suppresses the sum.

Second, as already mentioned, there is in fact a structural
difficulty, already pointed out in [4,5], with the definition
(64) of the amplitude, and we think that this difficulty is at
the roots of the problem. Let us illustrate this difficulty in
detail.

There are two possible interpretations of Eq. (64). The
first is that this is true for one particular basis, namely, for
in � ixn. Let us discard this possibility, which would imply
that the BC the vertex itself would depend on a specific
choice of pairing. The second is that it is (simultaneously)
true in all possible bases, that is

 hWjj; imni � W�j�
Y
n

�2imn � 1� (82)

for any choice of pairing, namely, for any choice of mn.
This is indeed the definition of the vertex that we have
implicitly used. However, defined in this way, the vertex
hWj is not a linear functional on the state space. This is
immediately evident by expressing, say hiy1j on the hix1j
basis.

We can say this in other words. The Barrett-Crane
intertwiner is defined as a sum of simple SO�4� inter-
twiners, that we can write as

 

(83)

Hence

 hiBCjim; imi � �2im � 1� (84)

whatever is m. Since the simple SO�4� intertwiner jix; ixi
diagonalizes the same geometrical quantity as the SO�3�
intertwiner jixi, it is tempting to physically identify the two
and write

 hiBCjimi � �2im � 1�: (85)

But there is no state hiBCj in the SO�3� intertwiner space
that has this property. In other words, there is a mismatch
between the linear structures of SO�4� and SO�3� in build-
ing up the theory that we have used.

In principle, the second difficulty could be circumvented
by abandoning the standard canonical SO�3� LQG struc-
ture, and its graviton operators, and replacing it with a

purely SO�4� one. We expect the first difficulty to still
prevent this from working, but we have no definite result
in this direction.

In another paper [13], we show that, perhaps surpris-
ingly, a vertex with a suitable asymptotic behavior can
overcame all these difficulties.

APPENDIX A: RECOUPLING THEORY

We give here the definitions at the basis of recoupling
theory and the graphical notation that is used in the text.
Our main reference source is [24].

(i) Wigner 3j symbols.—These are represented by a 3-
valent node, the three lines stand for the angular
momenta which are coupled by the 3j symbol. We
denote the anticlockwise orientation with a � sign
and the clockwise orientation with a sign�. in index
notation v�	
:

 

(A1)

The symmetry relation v�	
 � ��1�a�b�cv�
	

 

a b c
� 	 


� �
� ��1�a�b�c

a c b
� 
 	

� �
(A2)

implies

 (A3)

(ii) The Kroneker delta.

 (A4)

(iii) Antisymmetric or ‘‘metric’’ tensor. (1-j symbol.)—In
vector notation: a��	

 

a
�	

� �
� ��1�a�����	 (A5)

in graphical notation:

 (A6)

the relations ��
0	��	 � ��

0

� and ��
0	�	� �

���
0

�, for the fundamental representation, read,
for generic representations
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X
	

a
�0	

� �
a
�	

� �
� ��

0

� (A7)

 

(A8)

and

 

X
	

a
�0	

� �
a
	�

� �
� ��1�2a��

0

� (A9)

 (A10)

From the properties of the 3j symbols it follows: in
vector notation: v�	
 � v�	
; in graphical notation:

 

(A11)

Trace of the identity

 

(A12)

(iv) First orthogonality relation for 3j symbols.

 

X
�;	

a b c
� 	 


� �
a b c0

� 	 
0

� �
�

1

2c� 1
�cc0�

0

(A13)

 

(A14)
This implies

 

(A15)

(v) Second orthogonality relation.

 

X
c


�2c� 1�
a b c
� 	 


� �
a b c
�0 	0 


� �
� ���0�

	
	0:

(A16)
Graphically

 

(A17)

(vi) 6j symbol.

 

(A18)

(vii) The 4j coefficient, or 4-valent node.

 (A19)

(viii) Recoupling theorem.

EMANUELE ALESCI AND CARLO ROVELLI PHYSICAL REVIEW D 76, 104012 (2007)

104012-12



 

(A20)

(ix) Inverse transformation.

 (A21)

(x) Orthogonality relation for the 6j symbols.

 

X
f

dimm dimf
�
a b f
d c e

��
a c m
d b f

�
� �em: (A22)

(xi) Biedenharn-Elliot identity.

 

X
x

dimx��1�a�b�c�d�e�f�g�h�i�x
�
e f x
b a i

��
a b x
c d h

��
d c x
f e g

�
�

�
g h i
a e d

��
g h i
b f c

�
: (A23)

(xii) The ‘‘basic rule.’’

 

X
���

��1�d�e�f������
d e c
�� � 


� �
e f a
�� � �

� �
f d b
�� � 	

� �
�

�
a b c
d e f

�
a b c
� 	 


� �
: (A24)

 (A25)

APPENDIX B: ANALYTIC EXPRESSIONS FOR 6j SYMBOLS

From [24].

 

�
a b e
d c f

�
� ��1�a�b�c�d��a; b; e���a; c; f���b; d; f���c; d; e�

X
z

��1�z
f�z�
z!

(B1)

where
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 ��a; b; c� �

�������������������������������������������������������������������������������
�a� b� c�!�a� c� b�!�b� c� a�!

�a� b� c� 1�!

s
(B2)

and

 f�z� �
�a� b� c� d� 1� z�!

�e� f� a� d� z�!�e� f� b� c� z�!�a� b� e� z�!�c� d� e� z�!�a� c� f� z�!�b� d� e� f�!
(B3)

The sum is extended to all the positive integers z, such that no factorial has negative argument.
The definition (B1) implies some restrictions on the arguments of the 6j:
In particular the ��a; b; c� restricts the arguments to satisfy the triangle inequalities

 �a� b� c�  0 �a� b� c�  0 ��a� b� c�  0 (B4)

and a� b� c has to be an integer number.
The expression (B1) reduces to the following simple expressions used in the calculation

 

�
a a 1
b b e

�
�
��1�a�b�e�1

2

C2�a� � C2�b� � C2�e�������������������������������������������������������
C2�a� dim�a�C2�b� dim�b�

p (B5)

 

�
e e� 1 1
a a b

�
�
��1�a�b�e

2

������������������������������������������������������������������������������������������������������������������������
�a� b� e� 1��a� b� e���a� b� e��a� b� e� 1�

C2�a� dim�a�e dim�e� dim�e� 1�

s
(B6)

 

�
e e� 1 1
a a b

�
�
��1�a�b�e�1

2

���������������������������������������������������������������������������������������������������������������������������������
�a� b� e� 2��a� b� e� 1���a� b� e� 1��a� b� e�

C2�a� dim�a��e� 1� dim�e� dim�e� 1�

s
: (B7)

The 6j symbol is invariant for interchange of any two
columns, and also for interchange of the upper and lower
arguments in each of any two columns:

 

�
a b e
d c f

�
�

�
a e b
d f c

�
�

�
e a b
f d c

�

�

�
a c f
d b e

�
�

�
d c e
a b f

�
; etc: (B8)

We have also used the trivial facts

 ��1�a � ��1��a 8 a 2 Z; ��1�2a � 1

8 a 2 Z; ��1�3s � ��1��s 8 s 2
Z

2

in the calculations involving the 6j symbols

APPENDIX C: GRASPING OPERATORS

The operator Ea� ~x�n�ni�a is the ‘‘grasping operator’’ that
acts on the spin network’s link dual to the triangle with
normal n�ni�a . Let say that this link is in the j representation;
Ea� ~x�nnia will acts inserting an SU�2� generator in the same
representation [2] or equivalently, by inserting an inter-
twiner between the �j� rep and the rep 1, namely, a 3j

symbol not normalized:

 E�ni�� ~x�i�	 � i�j�Ji�	 � iNjvi�	 (C1)

where �j�Ji�	 is the SU�2� generator in the j representation
(i � �1, 0, 1), (�;	 � �j; . . . ; j), Nj is a normalization
factor and vi�	 is the normalized 3j symbol. The action of
the operator E�ni� is then determined by the representation
of the links on which it acts; in the following we will call
E�j� an operator acting on the link with rep j.

Graphically, with our conventions

 (C2)

(Note the arrow that reflect the lowered magnetic index.)
To fix the normalization factor Nj is enough to square

the expression (C1), use (A14)

 

jJ2�
	 � C2�j�jI�	 �

�Nj�2

dimj
I�	j (C3)

and take the trace of the previous equation (where jI�	 is
the identity in the rep j ), obtaining
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 Nj �
����������������������������
j�j� 1� dimj

q
: (C4)

Our triangulated manifold consist of a 4 simplex made
of 5 tetrahedron tn, bounded by triangles tnm. In the dual
picture the 4 simplex is represented by the pentagonal net
where the tetrahedra are the 4-valent nodes n, labeled by
the intertwiners in in a given pairing, and the triangles are
the links nm labeled by the spin numbers jnm.

In our calculation we act with the operator Ea� ~x�n�nl�a on
the tetrahedron tn in the direction n�nl�a orthogonal to the
triangle tnl; in the dual picture we are then acting on the 4-
valent nodes n and precisely on the link jni. To enlighten
the notation, fixed a node n, we will call the four possible

colorings corresponding to the 4 directions ni with a, b, c,
d where the letter indicates the representation of the links.
Graphically the action of a single grasping operator oper-
ating on the link a for example is

 (C5)

The action of our operators E�ni�n � E�nj�n on a node in a
fixed pairing can then produce four different results de-
pending on the two directions nni,nnj

 

(C6)

where in the last equalities we have used the relation (A8), (A10), and (A11) to eliminate the arrows and the (A3) to solve
the loop using (A14). The other possible case is

 

(C7)

where we have changed the orientations of the 3-valent nodes to simplify the loop, using the basic identity (A25), and used
the symmetry properties of 6j symbols and its explicit expression (B5).

The other possible action is
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(C8)

In the derivation of the result we have used, in order, the recoupling theorem (A21) to change the pairing of the node, the
basic rule (A25) to solve the loop, the inverse transformation (A21) to put the graph on the starting pairing and the
Biedenharn-Elliot identity (A23), having adjusted the sign factors, using the triangles inequalities of the 3j symbols
defining the 6j. To analyze the result we have to look at the existence conditions of the f6jg (Appendix B) concluding that
m can only take the values e� 1, e, e� 1, the final result is then

 

(C9)

The form of the coefficient form is easily calculated inserting the explicit expression of the f6jg symbols given in
Appendix B

 Xace � �N�a�N�c���1�3d�a�b�c dim�e�
�
e e 1
a a b

��
e e 1
c c d

�

� �
��1�2�a�b�e�

4

�C2�b� � C2�a� � C2�e���C2�d� � C2�c� � C2�e��

C2�e�
(C10)
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 Yace � �N
�a�N�c���1�3d�a�b�c dim�e� 1�

�
e e� 1 1
a a b

��
e e� 1 1
c c d

�

� �
��1�2�a�b�e�

4e dim�e�

������������������������������������������������������������������������������������������������������������������������
�a� b� e� 1��a� b� e���a� b� e��a� b� e� 1�

p
�

�����������������������������������������������������������������������������������������������������������������������
�c� d� e� 1���c� d� e��c� d� e��c� d� e� 1�

p
(C11)

 Zace � �N�a�N�c���1�3d�a�b�c dim�e� 1�
�
e e� 1 1
a a b

��
e e� 1 1
c c d

�

� �
��1�2�a�b�e�1�

4�e� 1� dim�e�

���������������������������������������������������������������������������������������������������������������������������������
�a� b� e� 2��a� b� e� 1���a� b� e� 1��a� b� e�

p
�

��������������������������������������������������������������������������������������������������������������������������������
�c� d� e� 2���c� d� e� 1��c� d� e� 1��c� d� e�

p
: (C12)

Note that by definition (a� b� e) is an integer, so there are not sign factors appearing in these expressions.
The last term is

 

×

,       (C13)×

The result is obtained flipping the two link’s c and d to recast the graph in the form (C8), using the previous result and
flipping back the graph in the summation. Keeping in mind that the product of f6jg appearing in the nondiagonal terms is
left unchanged by the change c! d, the final result is then the same as (C9) apart from the sign of the nondiagonal terms
and the change c! d in the diagonal one
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(C14)

where

 Xade � �N
�a�N�d���1�a�b�c�d�2e dim�e�

�
e e 1
a a b

��
e e 1
d d c

�

� �
1

4

�C2�b� � C2�a� � C2�e���C2�c� � C2�d� � C2�e��

C2�e�
: (C15)

Note that by definition

 Yace � Yade Zace � Zade : (C16)

The operators that we have calculated have to satisfy

 E�a�n � E
�a�
n � E

�a�
n � E

�b�
n � E

�a�
n � E

�c�
n � E

�a�
n � E

�d�
n � 0 (C17)

as a direct consequence of (8) which, at quantum level, implies that a four-valent node (by definition an intertwiner) is
invariant under the action of the group. A direct calculation on our four-valent node shows that this is indeed the case

 

(C18)

being 0 the coefficient of all the states.

APPENDIX D: NORMALIZATION OF THE SPIN-
NETWORK STATES

Following [2], we define a spin network S � ��; jl; in� as
given by a graph � with a given orientation (or ordering of
the links) with L links andN nodes, and by a representation
jl associated to each to each link and an intertwiner in to
each node. As a functional of the connection, a spin-
network state is given by

 �S�A� � hAjSi 
 ��lRjl�H�A; 
l��� � ��nin� (D1)

where the notation � indicates the contraction between dual
spaces and Rjl�H�A; 
l�� is the jl representation of the
holonomy group element H�A; 
l� along the curve 
l of
the gravitation field connection A. In the paper we have
used states normalized in such a way that

 hSjS0i � �S;S0 : (D2)

Following [25,26] we can see that the scalar product re-
duces to the evaluation of the spin network and that the
definition of the spin-network state has to be properly
normalized in order for (D2) to be satisfied. Here we
have used three-valent intertwiners [3j Wigner symbols
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(A1)] normalized to 1, so that the evaluation of the theta
graph gives 1: see (A15). This means that the formula (8.7)
of [25] defining a normalized spin-network state in our
case reads

 jSiN �
��������������������Y
e2E

dimje

s
jSi; (D3)

where E is the set of real and virtual edges (intertwiner
links of the decomposition of multivalent nodes). We can
then see that the recoupling theorem (A21) when applied to
the spin-network normalized state becomes

 

(D4)

×

APPENDIX E: REGGE ACTION AND ITS
DERIVATIVES

Following [27], we can write the asymptotic formula of
a 6j symbol as

 

�
a b c
d e f

�
�

1�������������
12�V
p cos

�
SR �

�
4

�
(E1)

where

 SR �
X4

i;j�1

lij�ij (E2)

where SR is the Regge action of the tetrahedron

 (E3)

associated to the 6j symbol, and �ij � �ji (i � j) are the
dihedral angle at the edge lij. The edge lengths in terms of
the 6j entries are l12 � a� 1

2 , l13 � b� 1
2 , l14 � c� 1

2 ,
l34 � d� 1

2 , l23 � b� 1
2 and lhh � 0, lhk � lkh.

The dihedral angles can be expressed in terms of the
volume and the areas of the tetrahedron

 AiAj sin�ij �
3

2
lijV (E4)

where Ai is the area of the triangle opposite to the vertex i
(Ai, Aj are the areas of the triangles that share the edge lij).
We are interested in the expansion of the Regge action in
the variables lij; we can express everything in terms of the
edge length expressing the volume and the areas using the
formula

 V2
d �
��1�d�1

2d�d!�2
detCd (E5)

where Vd is the volume of a simplex of dimension d and Cd
is the Cayley matrix of dimension d; in particular, given 6
edges for the tetrahedron or 3 for the triangle, with the
following Cayley matrix we can calculate all the quantities
appearing in (E4)

 C3 �

0 1 1 1 1
1 0 l21 l22 l23
1 l21 0 l24 l25
1 l22 l24 0 l26
1 l23 l25 l26 0

0BBBBB@

1CCCCCA

C2 �

0 1 1 1
1 0 l21 l22
1 l21 0 l23
1 l22 l23 0

0
BBB@

1
CCCA:

(E6)

We are interested in the asymptotic expansion of the 6j
symbol that realizes the change of pairing at a given node;
in the node 1 for example

 

�
j12 j13 ix1
j15 j14 iy1

�
(E7)

with link variables j1n centered around j0 and intertwiners
variables imn

1 centered around i0 � 2��
3
p j0. Using the pre-

vious formula we can calculate the coefficients of the
Regge action expansion linked to this symbol. The relevant
derivatives for our calculation are (see also the appendix of
[9])

 

@SAR
@ix1

��������j0;i0
�
@SAR
@iy1

��������j0;i0
�
�
2
; (E8)

 

@2SAR
@j1n@i

x
1

��������j0;i0
�

@2SAR
@j1n@i

y
1

��������j0;i0
�

3

4j0 ; (E9)

 

@2SAR
@ix1@i

y
1

��������j0;i0
� �

���
3
p

j0 ; (E10)

 

@2SAR
@2ix1

��������j0;i0
�
@2SAR
@2iy1

��������j0;i0
� �

���
3
p

2j0 : (E11)
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APPENDIX F: CHANGE OF PAIRING ON THE
BOUNDARY STATE

Here we show how one of the coefficients defined by
(36) transforms under the change of basis determined by a
different pairing. In particular, we show that with the
choice of parameters in (24), Eq. (50) becomes (52).
Under the change of basis,

 

�0q�j; ix1; i2 . . . i5� �
X
iy1

�q�j; i
y
1; i2 . . . i5���1�j13�j14�ix1�i

y
1

	
������������
dix1di

y
1

q � j12 j13 ix1
j15 j14 iy1

�
: (F1)

With the choice of the boundary state defined by (24), this
reads

 �0q�j; ix1; i2 . . . i5� � e��1=2j0�
P

��ij��mr��jij�jmr�i
P

��jije
�
P
n�1

����imnn �2=4�imn ��
P
a

�jnai
mn
n
�jan�imnn �i�imnn

�imnn �

�
X
iy1

e
�����iy1�

2=4�iy
1
��
P
a

�ja1i
y
1
�ja1�iy1�i�iy

1
�iy1�
��1�j13�j14�ix1�i

y
1

������������
dix1di

y
1

q �
j12 j13 ix1
j15 j14 iy1

�
: (F2)

Expanding the 6j symbol in the large-j limit, and applying the relation (38) we get

 �0q�j; ix1; i2; . . . ; i5� � e��1=2j0�
P

��ij��mr��jij�jmr�i
P

��jije
�
P
n�1

����imnn �2=4�imn ��
P
a

�jnai
mn
n
�jan�imnn �i�imnn

�imnn �
�
ei�i0

2

	
Z
d�iy1e

�����iy1�
2=4�iy

1
��
P
a

�ja1i
y
1
�ja1�iy1�i�iy

1
�iy1� ������������

dix1di
y
1

q ei�SR���i
y
1���=4�� � e�i�SR���i

y
1���=4���������������

12�V
p : (F3)

We expand the Regge action up to second order in all its 6 entries; the external link around j0 and the intertwiners around i0
 

SR�j1n; i
y
1; i

x
1� � SR�j

0; i0� �
@SR
@j1n

��������j0;i0
�j1n �

@SR
@ix1

��������j0;i0
�ix1 �

@SR
@iy1

��������j0;i0
�iy1 �

@2SR
@j1n@j1n0

��������j0;i0
�j1n�j1n0

�
@2SR
@j1n@ix1

��������j0;i0
�j1n�i

x
1 �

@2SR
@j1n@i

y
1

��������j0;i0
�j1n�i

y
1 �

@2SR
@ix1@i

y
1

��������j0;i0
�ix1�i

y
1 �

1

2

@2SR
@2j1n

��������j0;i0
��j1n�

2

�
1

2

@2SR
@2ix1

��������j0;i0
��ix1�

2 �
1

2

@2SR
@2iy1

��������j0;i0
��iy1�

2 � . . . : (F4)

In the background in which we are interested, i0 � 2��
3
p j0 and @SR

@iy1
jj0;i0 �

@SR
@ix1
jj0;i0 �

�
2 . The value � � @SR

@iy1
jj0;i0 �

�
2 , yields a

phase in the intertwiner variable e�i��=2��iy1 that cancels one of the two rapidly oscillating phase factor due to the linear term
of the expansion of the Regge action. In particular the linear part in the intertwiner variable of the first exponential
ei��@SR=@i

y
1�jj0 ;i0����i

y
1 � ei�3�=2��iy1 combines with the boundary phase factor but the linear part of the second one

e�i��@SR=@i
y
1�jj0 ;i0����i

y
1 � ei��=2��iy1 is canceled: for the same mechanism described in [6] only the second term in the

summation (F3) survives. Denoting ~SR � SR � i��=2��iy1, we have that (F3) reduces to

 �0q�j; ix1; i2; . . . ; i5� � e��1=2j0�
P

��ij��mr��jij�jmr�i
P

��jije
�
P
n�1

����imnn �2=4�imn ��
P
a

�jnai
mn
n
�jan�imnn �i��=2��imnn �

�
ei�i0

2

	
Z
d�iy1e

�����iy1�
2=4�iy

1
��
P
a

�j1ai
y
1
�ja1�iy1�i��=2��iy1� ������������

dix1di
y
1

q e�i� ~SR���=4���������������
12�V
p : (F5)

From [9], we have that denoting� �

����������
dix

1
diy

1

12�V

r
, the dominant term is��j0�. We take��j0� out of the integration and evaluate

the integral following [20]. To simplify the notation, rename the second derivative of the Regge action Gjna;imnn �
@2SR

@jna@i
mn
n
jj0;i0 , G

i
m
n0

n ;imnn
� @2SR

@i
m
n0

n @imnn
jj0;i0 and indicate with S�jna� (53) the part of the Regge action that depends only on the

boundary links involved in the 6j symbol considered and with no dependence from the intertwiners. Substituting we get

 �0q�j; ix1; i2; . . . ; i5� � e��1=2j0�
P

��ij��mr��jij�jmr�i
P

��jije
�
P
n�1

����imnn �2=4�imn ��
P
a

�jnai
mn
n
�jan�imnn �i��=2��imnn �

�
ei�i0

2
e�i��=4���j0�e�iSR�j

0;i0� � e�iSj�j1a�e�i��=2��ix1e
�i�
P
a

Gj1aix1
�ja1��ix1

e
��i=2�Gix

1
ix
1
��ix1�

2

�
Z
d�iy1e

��1=2���1=2�iy
1
��iGiy

1
iy
1
���iy1�

2

e
�iGix

1
iy
1
�ix1�i

y
1e
��
P
a

��j1ai
y
1
�iGj1ai

y
1
��ja1��iy1

(F6)
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The choice � � �iGj1ai
y
1
� �i 3

4j0 eliminates the argument of the last exponential, so that we fall into the same as
calculation [20], and we can transform the Gaussian in another Gaussian with the same variance. Evaluating the integral we
get

 �0q�j; ix1; i2; . . . ; i5�� e
��1=2j0�

P
��ij��mr��jij�jmr�i

P
��jije

�
P
n�1

����imnn �2=4�imn ��i�
P
a

�3=4j0��jan���=2���imnn �
�

������������������������������
�

2� 1
2�iy

1

� iGA
iy1i

y
1
�

vuut
�ei�i0e�i��=4���j0�e�iS

A�j0;i0�e�iS
A
j �j1a�e�i��=2��ix1e

�i�
P
a

Gj1aix1
�ja1��ix1

e
��1=2���G2

ix
1
iy
1

=��1=2�iy
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The Gaussian in the last equation has variance
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(F8)

as in [20]. Proceeding in the same way, we fix � so that both �iy1 and �ix1 are real quantities. Remarkably the auxiliary
tetrahedron described by SR is isosceles and in this case �ix1 � �iy1 � j0=3.

The final form of the coefficient is then
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where

 N1 �

�������������������������������
�

2� 1
2�iy

1

� iGiy1i
y
1
�

vuut ei�i0e�i��=4���j0�e�iSR�j
0;i0� (F10)

and we have the result (52).
Summarizing, the parameters (29) and (30) are deter-

mined by the requirement that the Gaussian has the same
shape in all bases.

APPENDIX G: SIMPLE GAUSSIAN INTEGRALS
USED IN THE CALCULATION
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