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Thermodynamical model for nonextremal black p-brane
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We show that the correct entropy, temperature (and absorption probability) of nonextremal black
p-brane can be reproduced by a certain thermodynamical model when maximizing its entropy. We show
that the form of the model is related to the geometrical similarity of nonextremal and near extremal black
p-brane at near horizon region, and argue about the appropriateness of the model.
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L. INTRODUCTION

The microscopic origin of black hole entropy has been
considered to be an important subject for years, since the
mechanism of black hole thermodynamics is regarded to
be explained by quantum gravity theory. String theory, the
leading candidate of quantum gravity theory, actually ex-
plained a black hole entropy by a microscopic model [1]. A
certain D-brane model exactly reproduces the black hole
entropy including its coefficient. It is based on supersym-
metric nature of the black hole, which ensures vanishing
quantum corrections so that the string—D-brane model
defined at weak coupling region reproduces entropy in
strong coupling region. Because of similar supersymmetric
nature, AdS/CFT correspondence [2] has been providing
various important results.

On the other hand, when supersymmetry is broken, the
relation between D-brane model in weak coupling region
and supergravity (of strong coupling region) is unclear,
since the quantum correction is unknown. It is difficult to
relate string theoretical models to black hole thermody-
namics in general. However, it is important to look for
thermodynamical models which can describe black hole
thermodynamics, since one might find a clue to understand
nonperturbative property of quantum gravity theory.

For example, [3] showed that D3-brane and open string
gas model provides the microscopic description of near
extremal black 3-brane thermodynamics, up to numerical
factor. The reason of this agreement without supersymme-
try is explained in [4—6], and the reason of the discrepancy
of the coefficient is studied in [7,8]. In addition, [9] showed
that the entropy of near extremal black p-brane is de-
scribed as S o« g*T” where T is the temperature and ¢ is
the charge.

Surprisingly, [10] showed that D3-brane—anti—D3-
brane model also provides the microscopic description of
nonextremal (and, in particular, Schwarzschild) thermody-
namics, including its absorption probability [11], up to
numerical factor. References [12,13] extended it to general
neutral p-brane and showed that the similar model repro-
duces the correct entropy up to numerical factor. It is also
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applied to nonextremal black p-branes, multicharged
branes, rotating branes [14—18]. Recently, [19] showed a
relation between the thermodynamics of chargeless black
3-brane and D3-brane—anti—D3-brane system, in the su-
pergravity framework.

All those thermodynamical models for black 3-brane are
T* model, i.e., the thermodynamics of black 3-brane is
described like R3"! massless field in finite temperature.
This might indicate a correspondence between gravity and
other massless theory. In addition, all those models are
“extended near extremal model,” i.e., when the thermal
energy of the near extremal p-brane is described by 7%,
that of the nonextremal p-brane (far from extremality) is
also described by T*.

In this paper, we propose an expression of a ‘“phenome-
nological” thermodynamical model which provides the
correct entropy and temperature and absorption probability
including coefficients. This expression does not yield addi-
tional discrepancy in the coefficient, and exactly reprodu-
ces the supergravity results. Next we show a geometrical
similarity between the near extremal black p-brane and
nonextremal black p-brane. This geometrical similarity
results in the “extended near extremal model” which we
mentioned above. We also show that our thermodynamical
model is in fact appropriate for blackbody radiation of
nonextremal black 3-brane, by considering the action of
dilaton field in the low energy region. And we show that the
correct absorption probability and graybody factor for
nonextremal black 3-brane are also obtained. We show
that this exact agreement is due to the equality of the scalar
field equation in black 3-brane background and parameter
changed near extremal 3-brane background.

The organization of this paper is as follows. In Sec. II,
we briefly review black p-brane and the thermodynamic
quantities of black p-brane and the thermodynamical mod-
els proposed in the past. In Sec. III, we explain our ther-
modynamical model ansatz. After introducing the ansatz,
we show a geometrical similarity between nonextremal
black p-brane and near extremal black p-brane. We also
show that the agreement of the temperature, the entropy,
and the absorption probability is related to the geometrical
similarity. We also argue about the appropriateness of our
ansatz in terms of the geometrical similarity and the action
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of massless scalar field. Section IV is the conclusion and
discussion.

II. BLACK p-BRANE THERMODYNAMICS AND
THERMODYNAMICAL MODELS

A. Black p-brane and its thermodynamical quantities

The black p-brane solution in 10 dimensional super-
gravity of 1/2 BPS in the extremal limit is described as
extrema of the following supergravity action [9,20-26]:

S=-5 lexJ—<R - —(a¢)2

1
- e¢"F, 2 2.1
28— pr° E ) .
the metric of black p-brane solution is
ds* = HPVB(p)(H- ([ —f(r)de* + dy>+...+ dypz]
+ 7N r)dr? + rPdQ3, ). (2.2)
where
Rd /.Ld
H(r)=1+—, =1-—,
) A fir) A 2.3)
RY = pfsinh?y,
d=17-p, 2.4)
. the horizon radius. 2.5)
The extremal limit corresponds to
u— 0, (2.6)
Y — %, (2.7)
w? sinh27y: fixed. (2.8)

The total energy E, the charge per unit volume g of the
black p-brane are [9,21,26,27],

W4+
E = dl

wiV(d + 1 + dsinh?y), (2.9

d,u sinh2y, (2.10)

2\/—
where w ;. is volume of a d + 1-dimensional unit sphere,
V is volume of the torus which the brane wrapped.

The Bekenstein-Hawking entropy S and the temperature
of the black p-brane are

2 2
S = %MdelVHl/z(M) = %Mdjq‘/cosh'y’
2.11)
d
=_ - 2.12
4 coshy 12
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The absorption probability of black 3-brane for Ith
partial wave of dilaton to the lowest order in the radiation
frequency is [11]

2733021 (1 + 1/4)
(I+2)’T(1/2 + 1/4)?
the absorption cross-section (the graybody factor) of the
black 3-brane is written [28]

pO = )2+S

coshy, (2.13)

(0u

o _ 87 2 0
o =2 (1 + 1) + 2)%(1 + 3P,
w

(2.14)

B. Thermodynamical models for black p-brane

In this subsection, we review some of thermodynamical
models for nonextremal black p-brane proposed in the past
[3,9,10]. In addition, we argue about relation between
those models and this paper’s model.

1. Near extremal p-brane
At the beginning, we review thermodynamical model of
near extremal black 3- brane [3]. “Near extremal” corre-
sponds to the region of &5 << 1 in (2.2). In this region, the

near horizon geometry of the near extremal black 3-brane
is

2 LR
ds? = - ;2( )dzz + o Z dx? T dr?
(] — 4
+ R2dQ2. (2.15)

The entropy is determined by the area of the horizon and
the temperature is surface gravity on the horizon. Thus the
near horizon geometry determines S and 7. The entropy
and the temperature are written

27t
S = 7\/1%2“3, (2.16)
o
T=—5. 2.17
pr—) (2.17)
The total energy E can be written as [3]
E=M,+ oM (2.18)

where M is the mass of extremal 3-brane and dM is small
mass added to M. SM is written as

oM = 21 Vut (2.19)
S and 6M can be expressed by R and 7,
S = 2levﬁ (2.20)
37
oM = 2—R8VT4 (2.21)
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Smce << 1, R in (2.20) and (2.21) can be written
V2K
R4 = 3 q, (2.22)

where g is the charge of the near extremal 3-brane.
Reference [3] proposed a D3-brane model for near ex-
tremal 3-brane. The number of the D3-brane N is [9]

1
N=——q, 2.23
Nk (2.23)
therefore R* is expressed by N as
i_ K
7 (2.24)
Thus, S and M are written
2 2
S = lRSVT3 TNV, (2.25)
3 372
M = 277 RSVT* = ;T N2VT*, (2.26)

which corresponds to massless open string gas on the D3-
branes (however, the numerical factor differs by % from free
case).

Note that the parameter R* in the metric (2.15) corre-
sponds to N, in the above argument. When R in the near
horizon geometry (2.15) changes to R/,

2
ds* = — R’2<1_ )dtz-i-—de

RIZ
dr’ + R"dQ2, (2.27)
21—t
the entropy is written
2 2
S = lR/8 VTP = NPV, (2.28)

which means the number of degrees of freedom of the open
string N? is replaced by N'>. We will show in the next
section that the near horizon geometry of the black 3-brane
far from extremality is written in similar metric, and the
entropy and the energy can be obtained by replacing the
number of degree of freedom.

The above argument can easily be extended to general
p-brane. The near horizon geometry of the near extremal
black p-brane is

, pd(1—a) wd s pd(=a) P 5
ds? = - (1= a2+ L ¥ 4x2
Rd(l—a) < rd) Rd(l—a) ; !
Rad
e dr? + RGO (229)
(1 = )

+
where o = 21

< » and the entropy and the temperature are
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27de+1

g = RI2 /41y
K>
_ 277w2d+1 (4;7>)‘/(1_)‘)Rd/2(1/\)VTA/(IA), (2.30)
K
Wyt (d
oM = V(= +1|u?
e
(e
K
(2.31)
where A = % - % Those are expressed by the number of
Dp-branes N
No L 1 2.32
= Braay o ? (2.32)
as
1
S = XCPNI/Z(I—/\)T)L/(I—A)’ (233)
SM = CPN1/2(1—A)T1/(1—)L), (234)

as shown in [9], where C), is a constant. R is proportional
to N as in 3-brane case. When R in (2.29) changes, the N in
(2.33) and (2.34) changes.

2. Far from extremality

For the black 3-brane far from extremality, [10] pro-
posed the thermodynamical model
2 2
— N+ M)V + %szr* + %szﬂ (2.35)
where N is the number of anti—D3-branes and T is the
temperature of the anti—D3-branes. Note that the coeffi-
cient % already includes the % numerical factor of the near
extremal case (2.26). The entropy is
2 2
§=Z-NVT' + VT, (2.36)
The correct entropy up to numerical factor (23/4) is repro-
duced when maximizing S by N and N. Note that the above
argument contains two kinds of additional numerical fac-
tor. The one is the % factor built in the D3-brane model
(2.35), another is the discrepancy that emerged after the
maximization of the entropy, 23/4 [10].

A similar argument can be applied for general p-brane
[12,13]. Those models also yield a discrepancy even
though they already include the numerical factor of the
near extremal region.

3. Relation to this paper’s model

In the above model for the black p-brane far from
extremality [10,12,13], the total energy after maximizing
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the entropy is

E=(N+ N)7,V + 4\/NN7,V. 2.37)

where N, N are written by the supergravity parameters as

N—-N= wdTHd,ud sinh2y = —wd;Ide/z(Rd + w2,
4k T, 2K T,
(2.38)

d
NN = 24112 e

2.39
8K-T), ( )

The second term of (2.37) corresponds to the energy of gas
on the branes and the antibranes. If we rewrite (2.37) by
Q = N - N3

E=+0%+ (2VNN)*7,V + 4A\/NNT,V.

E and Q are fixed when maximizing the entropy. We have

now one parameter NN instead of N and N. The VNN
determines the degree of nonextremality. If we denote

(2.40)

n = 24/NN, (2.41)
the energy is
E = \/QZ + nszV + 2Ant,V (2.42)

= Q> + 21,V + C,(JQ* + n? + n)!/20- Dy /0=,
(2.43)

where C), is a constant. The above (2.42) and (2.43) is the
energy after maximizing the entropy.

Our model is as follows. The total energy before max-
imizing the entropy is

E=4/Q? +n%7,V + C,(Q* + n? + )/ 21Ny 1/1-4),
(2.44)

where n is a free parameter, and the correct entropy and
temperature are obtained when maximizing the entropy by
n. This model smoothly reduces to the near extremal model
[3,9] when § < 1. The constant C, is determined by
comparing with the near extremal models [3,9] in the
near extremal region. Once we include the numerical factor
in the near extremal model as C),, our model does not yield
any other discrepancies, and correctly reproduces entropy
and temperature through all the nonextremal region.

III. THERMODYNAMICS OF NONEXTREMAL
BLACK p-BRANE

A. An ansatz of thermodynamical model

First, we introduce an ansatz of microcanonical thermo-
dynamical model for nonextremal black p-brane as fol-
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lows. In the next subsection, we argue about the
appropriateness of this ansatz.

Ansatz.—Partition function Z for nonextremal black
p-brane thermodynamics:

1
InZ = = (N> + n* = N)7,V

+ %f(N, n)VTA/ (=0, (3.1)
where
f(N,n) = C,(JN? + n? + n)!/20-4), (3.2)
C,= 22(15-2p)/(5=p) g—[28=p)/5=p)] ) 7720-p)/5—p
% w;£2]/(5—p)]K4/(5—p)7_0pl/(5—17)’ (3.3)
8 — 1
A= ﬁ -5 (34)

N: charge, V: The volume of the brane,

and n is determined so that the entropy is maximized under

fixed energy and charge. The resulted n is n = %j w.
P

Total energy of the black p-brane E,, is

Elotal = Ethermal + NTpV) (35)

where N7,V is the mass of the black p-brane in the
extremal limit (i.e., zero temperature brane).

From the ansatz (3.1) we get (thermal) energy and free
energy and entropy:

(1) Energy:

5 0
Ethermal =T ﬁ InZ

= (/N2 + 12 = N)r,V + f(N, n)VT"/0-D

3.6)
(ii) Free energy:
F=-ThnZ
= (WN? +n* = N)1,V
1—A
- F(N, n)vTY/ (=4 (3.7)
(iii) Entropy:
Ethermal —F

1
S = = fw, n)VTM1=0  (3.8)

T

The n and temperature 7 are determined by the condi-
tion of maximum entropy, as follows.
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Rewrite the entropy as

S = lfVT)\/(l—/\)
A

| N
=SV Erpermar VN2 + n*7,V + N7,V)A
(3.9)
The condition
8—5 =0, (3.10)
on

at fixed Ejema (OF Eym) and fixed charge N yields the
following equation:

(Epermar — VN? + 0?7,V + N7,V) = 2An7,V. (3.11)
Then the total energy E\,, is written as
Ea = VN* + 1?7,V + 2An7,V.

From above (3.12) and the given total energy and charge,
we get n. Also, we get the temperature as

(3.12)

T — <2Anrp>1—A (3.13)
fWN,n)) '
The second order derivative of the entropy is
2
I8 — NN F 222N+ 1) <0, (3.14)

on?

and the first order derivative vanishes at the one point, thus
the above solution is the solution at the maximum entropy.

The model has the following characteristics:

(i) For a given total energy and charge, the ansatz yields
the correct temperature and entropy, which agree
with the supergravity result.

(i) The thermal energy Egema Vanishes at extremal
limit.

(iii)) The model reduces to near extremal black p-brane
thermodynamical model [3,9] at & — O limit.

(iv) The second term of (3.6) can be obtained from the
thermodynamical model of near extremal black
p-brane by replacing the “freedom of the gas” by
(N, n).

(v) When we substitute the ‘““freedom of the gas”
f(N, n) and the temperature to the absorption proba-
bility of near extremal black 3-brane, we get the
correct absorption probability and graybody factor
of the nonextremal black 3-brane.

We explain 4 and 5 in the following.
Characteristic 4.—The thermodynamical model of the

near extremal black 3-brane is [3]
Ethermal = C3N2VT4, (315)

where C; is constant (3772/8). The N is the number of
coincident D3-branes, and N? is the number of degrees of
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freedom of the open string. Replacing the C;N? by f(N, n)

C3N2 s C3(VN2 + n2 + I’l)2

yields the second term of the (3.6). For p # 3, the replace-
ment

C, NN — € (YN? + n? + p)/120-N)]

in the near extremal p-brane model [9] yields the second
term of (3.6)

Characteristic 5.—In the following, we show that the
absorption probability (and the graybody factor) of non-
extremal black 3-brane can be obtained by replacing ““the
number of the degrees of freedom’ and temperature of the
near extremal result.

The absorption probability of near extremal black 3-
brane for the /th partial wave calculated by supergravity
theory is [11,29]

(3.16)

(3.17)

272A35T(1 + 1/4)*

PO =
(I + 2)1’T(1 + 1/2)?

21+5M21+3R2‘

(3.18)

In the near extremal region, the parameter R and u in
supergravity can be written by N and 7T as [11]

4+ KN | kN

Rewriting the absorption probability by N and 7,

Pl _ 2723 50(1 + 1/4)*
(I +2)PT(1 + 1/2)?
1 1><1+4>/z

+2
X (1)2[+5NZ+2T2I+3K1+2<*> (7
o

> (3.20)

Replacing N by VN? + n? + n and substituting the correct
T, and rewriting those by supergravity parameters, we get

273737201 + 1/4)
(I+2)PT(1/2 + 1/4)

() =

)2l+5

coshy. (3.21)

(op

This result agrees with the result from the supergravity
(2.13). The graybody factor is calculated as (2.14), thus we
reproduced graybody factor of black 3-brane by this
“replacing.”

B. Near extremal and nonextremal geometry

In this section, we show that the nonextremal black
p-brane has a relation to near extremal black p-brane
geometry. In the vicinity of the horizon, the nonextremal
p-brane (far from extremality) has similar geometry with
near extremal p-brane, and this leads to the temperature
and the entropy described by the similar form. We also
show that this geometrical similarity has a relation to
various properties of our thermodynamical model.
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1. The vicinity of the horizon geometry

A nonextremal black p-brane (arbitrary far from extrem-
ality) with parameter R, and pw is

d
PRN Gk P fde
(1+ If—;)l_“ 1+ 1:—5)1_“ s
Rd
1+ )« Rd a
+ 7(( )) dr + < + r—g) PdO2,,,  (3.22)
where
+1

a= pT (3.23)

On the other hand, the near horizon limit of near extremal
black p-brane parametrized by R and w is

5 rd(l*a) Md 2 d(l a) P
ds® = _Rd(‘*“)< )dt P de
Rad
+ 761( u”’) dr? + Rdpr2~adgQ)? . (3.24)
red(1 — =2
When we change the parameters R and w as
R? = R¢ + ud, (3.25)
w= Mo (3.26)
(3.24) is
d(1—a)
2 _ r _ Mo\ 0
ds (Rd + Lo d)(l*oz) <1 rd )dl
d(l a)

R+ )
red(1 — %)
3.27)

(Rd-i-,ud)(l a)zd +
+ (R d+ Ko d)oz 2— adde-H

First, the nonextremal p-brane (3.22) and the parameter
changed near extremal p-brane (3.27) are equal at the
horizon (r = ug).

Next, we consider the vicinity of the horizon. When we
expand the metric for the time direction of the nonextremal
p-brane (3.22) [we denote it as g,,(r)] in the vicinity of the
horizon,

d(l—a)—1

2umo) — (:d e (328

8ulpo + €) = N —a
©G)

On the other hand, when we expand the metric for the time
direction of the parameter changed near extremal p-brane

(3.27) [we denote it as h,,(r)] in the vicinity of the horizon,

d(l a1,

(o) — ( Rd e (329

htt(/'LO + E) d)l Py
Mo

The both agree. The same agreement holds for the r
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direction. Both metrics for r direction: g,, and #,, also
agree in the vicinity of the horizon.

2. The entropy and the temperature

Consider the following two types of geometry:

(1) Geometry A: Geometry (3.27) in near horizon re-
gion, and asymptotically flat.

(i) Geometry B: Nonextremal black p-brane back-
ground (3.22).

In the following, we show that the entropy and the tem-
perature of the both geometry agree.

Entropy.—As we mentioned in the previous subsection,
the metric of the geometry A and the geometry B agree at
the horizon r = . Thus their entropies agree.

Temperature.—Defining u as

= 2<(Rd+—'u“0)a>l/2( — Mo)l/z,

Py (3.30)

both metrics in the vicinity of the horizon can be written in
Euclidean form as

dty

2 (Rd+ d)l/”

ds? ~ u2<
/Ld/z 7

) + du® + (other terms).  (3.31)

By comparing above with the polar coordinates of 2-
dimensional plane

ds*> = u*d6* + du?, 0=60=2m, (3.32)
the period of the compactified 7z (which is %) must be
47 (RL + d)1/2
l = M’ (3.33)

T Mg/z—l d

so that conical singularity in ¢ — r plane vanishes. As
above, the temperature of the two geometries agree be-
cause their ##— and rr— components are equal in the
vicinity of the horizon.

Near extremal and far from extremality.—As we men-
tioned in Sec. II B, near extremal region corresponds to the
region of & << 1. In this region,

270411 @)1y [oa
S~—+r—— V4/RE, 3.34
2 Mo 0 ( )
(@/2)-1
T (3.35)
47 R(d)

On the other hand, £ can not be neglected in the region far
from extremality. In this region,

27w 1

(d/2)+1
2 Mo V\/Rg + u,

(3.36)
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d/2)—1
2

4 |RI + pd

One can see from (3.34), (3.35), (3.36), and (3.37) that S
and T of “far from extremality” region are obtained by
replacing R — RY + ud in the near extremal S and 7. The
geometric similarity we showed above corresponds to this
“replacement.” As we have shown in Sec. II B, Rg of near
extremal p-brane corresponds to the number of D p-branes
N. Thus above replacement corresponds to the replacement
of N in the near extremal thermodynamical model.
Explicitly, RS — R¢ + ud corresponds to

T~ (3.37)

N —+N?+n?+n, (3.38)

and this leads to the second term of total energy (3.6)

Etpermal = (\/W - N)TPV + f(N, n)VTl/(l—/\)
(3.39)

of our model, where n is determined by the maximization
of entropy in our model as (3.9) to (3.13).

3. Match of absorption probability and graybody factor

We show below that the equation of the motion of the
massless scalar field in geometry A 3-brane and
geometry B 3-brane is equal in the low energy region.
This equality results in the agreement of the absorption
probability (and the graybody factor).

The equation of the motion of massless scalar field in
nonextremal black 3-brane background (the geometry B) is

4 4
2 + (5 T %)a,d)
T

1+ (+4) 1+%
- R Ul R 2 WA
(1 - &y :

P-E) -4

where w: energy (of the scalar field ¢), [: angular momen-
tum, k: momentum in direction to x;.

We consider the equation of the motion in the low
energy region % << 1 (where T is the temperature of the
black 3-brane) in the following.

The equation of motion of massless scalar field in the
geometry A of near horizon region is

5 4y
2 + (— T %)M»
T
Rt i0+4) B

+ - r k2>¢ =0. 3.41)
<(1 — L) 1- &
At infinity of geometry A, the equation is the same as that
in flat spacetime.
The difference of the equation in the geometry A and
that in the geometry B is the terms which contain R. When

(1 - )
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we consider the massless particle propagating perpendicu-
lar to the brane (k = 0), the difference of the equation in
the geometry A and that in the geometry B is the @ term
only.
(1) Outer region [ K r (p, K p)]
With
(3.42)

p=wr,  pp,= o

the equation in the geometry B (black 3-brane) is

50* — piy p*ll +4)
92 + o0, —
o? p(p* = p}) o® p* — pj ¢
p*(p* + (wR)?)
= b =0. (3.43)

When p < R, the equation in the outer region of the
geometry B (black 3-brane background) is

5 (wR) I(I+4)
a§¢+—ap¢+<1+ = 5
p P p

>¢ =0.
(3.44)

From the low energy condition

) (AR I (0
P M 7T
(3.45)

the R term can be ignored. When ignoring the R
term, the equation of the motion is the same as that in
the flat space. Thus the equation in the geometry B is
equal to that in the geometry A.
When p ~R or R<u, the equation in the
geometry B is the same as the equation in flat space-
time from the condition of the outer region. Thus the
equation in the geometry B is equal to that in the
geometry A again.
In summary, for every case of R and u, the equation
in the geometry A and that in the geometry B are
equal in the outer region.

(ii) Inner region [£~ O(1) and u = r]
When u < r, the equation in the geometry B (black

3-brane) is
4
2 + (é T L)w
(-5
1+ & I(1+ 4
+< T w? — ( )4 >¢=0. (3.46)
(1—4)2 (1 —5)

The R term can be ignored since 7 < 1. The equa-
tion in the geometry A is
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The R term also can be ignored because 7 < 1.
Thus the equation in the geometry A and that in
the geometry B is the same, in the region of u < rin
the inner region.
In the region of w ~ r, the R term cannot be ignored
in both geometries, but g’" is the same in the region
of w ~ r. The R term in both equations agree since
the R term is actually (1/g™)?. Thus both equations
agree in the inner region.

In summary,

(i) pu < r: Both equations are the equation in flat space.

(i) pm <r: Both equations agree by the low energy
condition.

(iii) u ~ r: Both equations agree since the 1/g™ is the
same in the vicinity of the horizon.

Thus the equation in the geometry A and that in the
geometry B are equal in all the regions.

The geometry A is a parameter changed near extremal
geometry (R — R + w3) in the near horizon region.
Since the scalar field equation in both geometries are the
same, the absorption probability of ‘‘far from extremality”
region is obtained by replacing R§ — R + u§ in the near
extremal absorption probability. As we explained, this
replacement corresponds to the replacement N —

VN? + n? + n, where n is determined by the maximiza-
tion of entropy in our model. The characteristic 5 of our
thermodynamical model ansatz is as follows: When we
substitute the “freedom of the gas” f(N, n) and the tem-
perature to the near extremal black 3-brane result of ab-
sorption probability, we get the correct absorption
probability and graybody factor of the nonextremal black
3-brane. This is caused by the above equality of the equa-
tion in the geometry A and B.

C. Appropriateness of the thermodynamical model
1. Gas term (after maximization of entropy)

As we have shown, nonextremal p-brane geometry is
similar to ““parameter changed near extremal p-brane ge-
ometry”’ in the vicinity of the horizon. This leads to the
agreement of entropy, temperature, and absorption proba-
bility in both the geometry A and B. Hence, we can
describe thermodynamics of nonextremal p-brane by the
near extremal p-brane model with replacement N —

VN? + n? + n, which results in the second term (gas
term) of

PHYSICAL REVIEW D 76, 104011 (2007)

= (WN? +n* = N)7,V + f(N, n)VT/0=4),
(3.48)

thermal

where n is determined by the maximization of entropy in
our model.

The original explanation of the black hole Hawking
radiation [30] is derived by considering the behavior of
massless scalar field in black hole background. In order to
examine physical appropriateness of our model more
strictly, we have to examine the action of massless scalar
field (in this case, dilaton field) in black p-brane back-
ground. We show below that the action in the geometry A
and the geometry B actually agree in low energy region for
p=23.

The Lagrangian of massless scalar field in nonextremal
black 3-brane background (geometry B) is

L = /—gg"0,40,¢ (3.49)
_s(_H 2 2 \ 2
= (=T @8R + 2,07 + 3 HEi)
i=1
2
Z 291(91’ s P) (3.50)
where
4 4
H( =1+ I:—4, f=1- “—4 (3.51)
r?();: the metric for the angular directions 6;. (3.52)

On the other hand, for massless scalar field in the
“parameter changed near extremal black 3-brane” back-
ground, H(r) = R % is the same for both
backgrounds at the vicinity of the horizon.

If the x; direction (3 dimensional directions) are com-
pactified and the size of the compactified manifold is small
enough compared to the energy scale of ¢, the (9;¢)? term
can be dropped from the Lagrangian. Then the difference is
only in the (9,¢) term, and this term is the same in the
vicinity of the horizon for both backgrounds.

Now, consider the low energy limit wwp — 0. The
Lagrangian of the massless scalar field at the energy scale
of wu — 0 vanishes in almost all the region of the space,
except near the horizon, where f(r) diverges. The domi-
nant contribution to the Euclidean action is the action near
the horizon, thus in the low energy limit wu — 0, the
Euclidean action in the geometry A and that in the
geometry B are approximately the same. The agreement
of the Euclidean action means the same quantum phe-
nomena of the same temperature. Hence, applying the
thermodynamical model of the geometry A to the thermo-
dynamics of the geometry B is regarded to be valid in this
limit.
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The limit wu — O corresponds to blackbody radiation
region, as one can see that the graybody factor (2.14) is
nonzero only for / = 0 where it does not depend on the
energy. Thus our thermodynamical model successfully
reproduces the blackbody radiation of the nonextremal
black 3-brane.

2. Total energy and maximization of entropy

The gas term we explained in the previous subsection
requires specific value of n. However, our model does not
require n as an input.

The total energy of our model is

Etpermal = (\/m - N)TPV + f(N’ n)VTl/(]*)\)’
(3.53)

where n is a free parameter. When we maximize the
entropy by n under fixed £ and N, the value of n is
automatically determined. The n at the maximum entropy
yields correct entropy, temperature, and absorption proba-
bility. This property is nontrivial, because free parameters
like this generally do not yield correct entropy, as discrep-
ancies found in [10,12,13].

In addition, our model smoothly reaches to near ex-
tremal model [3,9] when § < 1. The coefficient in the
gas term [the second term of the energy (3.53)] is deter-
mined by comparing with the near extremal models. Once
we take the near extremal coefficient into our model, our
model yields correct entropy and temperature through all
the nonextremal region beyond the near extremal region,
and does not yield any additional discrepancy.

PHYSICAL REVIEW D 76, 104011 (2007)
IV. CONCLUSION AND DISCUSSION

In this paper, we introduced an ansatz of thermodynam-
ical model for nonextremal black p-brane thermodynam-
ics, which yields the correct entropy and temperature and
graybody factor when the entropy is maximized. We have
shown that the geometrical similarity between nonextremal
black p-brane and near extremal black p-brane is related to
the various properties of the model. This fact implies that
the model is appropriate, and we have actually shown the
appropriateness of the model for p = 3 by considering the
action of massless scalar field.

Comparing with the models proposed in the past, our
model can smoothly reach to the near extremal models
[3,9] and does not need any additional condition (like equal
gas energies on brane and antibrane), and reproduces cor-
rect entropy and temperature through all the nonextremal
region.

Since the supersymmetry is broken in the nonextremal
region, the definite argument including quantum correction
is difficult. Our ansatz certainly reproduces the entropy and
the temperature of the nonextremal black p-brane, how-
ever further study is needed for the explanation beyond the
geometrical similarity.
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