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We study a five-dimensional perfect fluid coupled with Kaluza-Klein gravity. By dimensional
reduction, a modified form of Maxwell’s equation is obtained, which is relevant to the equation of state
of the source. Since the relativistic magnetohydrodynamics and the three-dimensional formulation are
widely used to study space matter, we derive the modified Maxwell’s equations and relativistic
magnetohydrodynamics in 3� 1 form. We then take an ideal Fermi gas as an example to study the
modified effect, which can be visible under high-density or high-energy conditions, while the traditional
Maxwell’s equation can be regarded as a result in the low density and low temperature limit. We also
indicate the possibility to test the state-relevant effect of Kaluza-Klein theory in a telluric laboratory.
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I. INTRODUCTION

A unified formulation of Einstein’s theory of gravitation
and Maxwell’s theory of electromagnetism in four-
dimensional (4D) spacetime was first proposed by Kaluza
and Klein (KK) using a five-dimensional (5D) geometry
[1,2]. A free test particle in 5D KK spacetime shows its
electricity in the reduced 4D spacetime when it moves
along the fifth dimension. Moreover, a 5D dust field
coupled with KK gravity can curve the 5D spacetime in
such a way that it provides exactly the source of the
electromagnetic field in the 4D spacetime after the reduc-
tion [3]. In this paper we study the coupling of a 5D perfect
fluid with KK gravity. It turns out that the 5D Einstein
equation with a source gives a modification of Maxwell’s
equation (see Sec. II), which can show its state-relevant
effect on high-density or high-temperature conditions (see
Sec. IV). Thus this effect provides intriguing possibilities
for the experimental test of the KK theory. Note that the
KK theory which we are considering is purely classical.
The KK theory has also been studied from the particle
physics point of view (see e.g. [4]), which can show its
effects in the high-energy scale of TeV, whereas the energy
scale needed for testing our state-relevant effect is only
around keV (see Sec. IV).

In order to reveal the physical implication of the
modification more clearly, both the modified Maxwell’s
equations and the corresponding general relativistic mag-
netohydrodynamics (MHD) are reformulated in 3� 1
form (see Sec. III). The formalism is also useful for evolv-
ing numerically a relativistic MHD fluid in a spacetime
characterized by a strong gravitational field. Taking an
ideal Fermi gas as an example, the modification term is
studied as a function of degeneracy and temperature pa-
rameters (see Sec. IV). Moreover, the modification terms

for different components of the perfect fluid may be differ-
ent. This would result in a net negative charge excess in
high-temperature plasma. Recall that the electrical neutral-
ity of atoms and of bulk matter has been examined pre-
cisely by a number of experiments [5]. However, in those
experiments, either the objects considered are not ionized,
or the ions in the objects cannot be regarded as a perfect
fluid. Therefore, these experiments cannot provide definite
opposite evidence to the classical KK theory since they do
not satisfy our premise, but they do cast some doubts on it.
Taking account of the state-relevant character, we suggest
high-temperature plasma in a telluric laboratory or a dense-
matter white dwarf in outer space as candidates to test the
possible effects of the modified Maxwell’s equation.

II. KALUZA-KLEIN GRAVITY COUPLED WITH 5D
PERFECT FLUID

Using a 5D geometry, Kaluza and Klein proposed a
unified formulation of gravity and electromagnetism in
4D spacetime [1,2]. The original KK theory assumed the
so-called ‘‘cylinder condition,’’ which means that there
exists a spacelike killing vector field �a on the 5D space-
time (M̂; ĝab) [6–8]. Note that the abstract index notation
[9] is employed throughout the paper and the signature of
the 5-metric is of the convention ��;�;�;�;��. In addi-
tion, Kaluza also demanded that �a be normalized, i.e.,

 � � ĝab�a�b � 1: (1)

Later research shows that the Ansatz (1) may be dropped
out and the � may play a key role in the study of cosmol-
ogy [10–13]. Being an extra dimension, the orbits of �a are
geometrically circles. The physical consideration that any
displacement in the usual ‘‘physical’’ 4D spacetime (de-
noted as M) should be orthogonal to the extra dimension
implies that the physical 4D metric should be defined as*mayg@bnu.edu.cn
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 gab � ĝab ���1�a�b; (2)

and the projection operator onto M is

 gab � ĝab ��
�1�a�b: (3)

For practical calculation, it is convenient to take a coor-
dinate system fzM � �x�; y�j� � 0; 1; 2; 3g with coordi-
nate basis �eM�a � f�e��a; �e5�

ag on M̂ adapted to �a,
i.e., �e5�

a � � @@y�
a � �a. Then the 5-metric components

ĝMN take the form

 ĝ MN �
g�� ��B�B� �B�

�B� �

� �
; (4)

where ĝ�5 � �B�. So, locally, the physical spacetime can
be understood as a 4-manifold M with the coordinates fx�g
endowed with the metric gab. The whole theory is gov-
erned by the 5D Einstein-Hilbert action

 SG � �
1

2k̂

Z
M̂
d4xdy

�������
�ĝ

p
R̂: (5)

Suppose the range of the fifth coordinate to be 0 � y � L
and denote k � k̂=L. Let B� � fA�, f2 � 2k; then Eq. (5)
becomes a coupling action on M as

 Ŝ G �
Z
M
d4x

�������
�g
p ����

�
p �

�
1

2k
R�

1

4
�Fab�A�Fab�A�

�
;

(6)

where R is the curvature scalar of gab on M and Fab�A� �
2@�aAb	. Thus, it results in a 4D gravity gab coupled to an
electromagnetic field Aa and a scalar field �. It is clear
that, under the Ansatz (1), 5D KK theory unifies the
Einstein gravity and the source-free Maxwell’s field in
the standard formalism.

Now we consider a 5D perfect fluid

 T̂ ab � �p̂� �̂�V̂aV̂b � p̂ĝab: (7)

The 5-velocity V̂a can be projected onto the physical
spacetime �M;gab� as

 ua � gabV̂
b � V̂��e��

a � �B�V̂
���e5�

a: (8)

Note that we have V̂aV̂a � �1; hence it is easy to show
that

 V̂ �V̂� � ĝabu
aub � gabV̂

aV̂b � �1�
Q2

�
; (9)

where Q � V̂5 � ĝ5aV̂
a [3]. The energy-momentum ten-

sor can be projected on M as ~Tab � ga
cgb

dT̂cd. In order to
obtain the observed 4D energy-momentum tensor Tab on
M, we have to integrate ~Tab along the extra dimension. In
the light of (8) and (9) we obtain

 Tab � ��� p�vavb � pgab; (10)

where

 p � p̂
����
�

p
L; � �

�̂L�Q2 �������
�
p � p̂L

Q2����
�
p ;

va �
ua������������������
�V̂�V̂�

q :
(11)

It is clear that Tab is the energy-momentum tensor of a 4D
perfect fluid in M, where � and p are, respectively, the
energy density and pressure density observed by a comov-
ing observer in M.

We now consider the reduction of the 5D Einstein
equation

 R̂ ab �
1
2ĝabR̂ � k̂T̂ab; (12)

which is equivalent to

 R̂ ab � k̂�T̂ab �
1
3T̂

c
cĝab�: (13)

It is not difficult to show from Eq. (5) that the components
of the 5D Ricci tensor R̂ab can be expressed as [12]

 R̂ 55 �
1

2
k�2F��F�� �

1

2
r�r���

1

4�
�r���r��;

(14)

 

R̂�5 �
f
2

�
�r�F�� �

3

2
F��r��

�
� B�

�
1

2
k�2F��F��

�
1

2
r�r���

1

4�
�r���r��

�
; (15)

 

R̂�� � R�� � k�F��F�� �
1

2�
r�r��

�
1

4�2 �r���r��� B�B�

�
1

2
k�2F��F��

�
1

2
r�r���

1

4�
�r���r��

�

�
f
2
B�

�
�r�F�� �

3

2
F��r

��
�

�
f
2
B�

�
�r�F�� �

3

2
F��r��

�
; (16)

wherera is the 4D covariant derivative operator associated
with gab. Substituting Eq. (14) into Eq. (13), we obtain a
coupling equation for the matter fields as
 

1

2
k�2FabFab �

����
�

p
rara

����
�

p
� k

����
�

p
�
�
1�

2�

3���Q2�

�

� k
����
�

p
p

Q2 ��

3�Q2 ���
: (17)

Substituting Eq. (15) into Eq. (13) and using Eq. (17), we
obtain an electromagnetic field equation with a source as

 �rbFab �
3

2
Fabrb� � ~�

�
1�

p
�

�
Ja: (18)
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Here we have defined ~� �
�����������������������������������������
�1�Q2�=���Q2�

p
, � �

f�Q���������������
��1�Q2�
p , and Ja � �va [3]. Substituting Eq. (16) into

Eq. (13) and using Eqs. (17) and (18), we obtain a 4D
Einstein equation with a source as

 Gab �
k����
�
p

�
��� p�vavb � gabp��

3=2

�
FcaFbc

�
1

4
gabFcdFcd

�
�

1

k
�gabrcrc

����
�

p
�rarb

����
�

p
�

�
;

(19)

where Gab is the Einstein tensor of gab. More generally, if
the 5D perfect fluid consists of m components, T̂ab then
reads

 T̂ ab �
Xm
��1

��p̂� � �̂��V̂a���V̂b��� � p̂�ĝab�: (20)

By similar calculations, Eqs. (17)–(19) become, respec-
tively,
 

1

2
k�2FabFab �

����
�

p
rara

����
�

p
� k

����
�

p Xm
��1

����




�
1�

2�

3���Q���2�

�

� k
����
�

p Xm
��1

p���
Q���2 ��

3�Q���2 ���
; (21)

 �rbFab �
3

2
Fabrb� �

Xm
��1

~����
�
1�

p���
����

�
Ja���;

(22)

 

Gab �
k����
�
p

�Xm
��1

������ � p����va���vb��� � gabp����

��3=2

�
FcaFbc �

1

4
gabFcdFcd �

1

k
�gabrcrc

����
�

p

�rarb
����
�

p
�

�
: (23)

It is interesting to see the results when � � 1.
Equations (17)–(19) become, respectively,

 

1

2
kFabFab � k�

�
1�

2

3�1�Q2�

�
� kp

Q2 � 1

3�Q2 � 1�
;

(24)

 rbFab �
�

1�
p
�

�
Ja; (25)

 Gab � k�T�fluid�
ab � T�em�

ab �; (26)

where T�fluid�
ab � ��� p�vavb � pgab and T�em�

ab �

FcaFbc �
1
4 gabF

cdFcd are, respectively, the usual energy-
momentum tensors of the 4D perfect fluid and electromag-
netic field. Equation (26) is the standard 4D Einstein
equation, while Eq. (25) is not the same as the standard
4D Maxwell’s equation rbFab � Ja. The new term �1�
p
�� brings an effective charge which can be considered as a
state-relevant effect, as will be discussed later. We thus call
Eq. (25) the state-relevant Maxwell’s equation.

III. MAXWELL’S EQUATIONS AND
RELATIVISTIC MHD IN 3� 1 FORM

Since relativistic MHD is widely used to study space
matter and 3D formulation is frequently applied to dealing
with specific issues [14], we now derive the modified
results of Maxwell’s equations and relativistic MHD in 3�
1 form. The 4D spacetime M is foliated into a family of
nonintersecting spacelike 3-surfaces �, which arise, at
least locally, as level surfaces of a scalar time function t.
The spatial metric �ab on the three-dimensional hyper-
surfaces � is induced by the spacetime metric gab accord-
ing to

 �ab � gab � nanb; (27)

where na is the unit normal vector to the slices and thus
na � �	rat. Here the normalization factor 	 is called the
lapse function. The time vector ta is dual to the foliation 1-
form rat and can be decomposed as

 ta � 	na � 
a; (28)

where the shift vector
 is spatial, i.e., na
a � 0. Since the
extrinsic curvature Kab of � can be written as

 Kab � �ranb � naab; (29)

where aa � nbrbna, the divergence of na satisfies

 ran
a � �K: (30)

Here K is the trace of Kab.
First we write the modified Maxwell’s equations in 3�

1 form. The Faraday tensor Fab can be decomposed as

 Fab � naEb � nbEa � �abcBc; (31)

where Ea and Ba are the electric and magnetic fields
observed by a normal observer na. Both fields are purely
spatial, whereby

 Eana � 0 and Bana � 0; (32)

and the three-dimensional Levi-Civita symbol �abc is de-
fined by

 �abc � nd�dabc or �abc � nd�
dabc: (33)

The electromagnetic current 4-vector Ja is decomposed as

 Ja � na�e � ja; (34)

where �e and ja are the charge density and 3-current as
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observed by a normal observer na. Note that ja is purely
spatial, i.e., jana � 0. With these definitions, the modified
Maxwell’s equations (17) and (18) and r�aFbc	 � 0 can be
cast into 3� 1 form as
 

k�2�B2 � E2� �
����
�

p
�DaDa

����
�

p
� �	�1�@t �L
��

2
����
�

p
� K	�1�Da

����
�

p
��Da ln	��@t �L
�

����
�

p
�

� k
����
�

p
�
�
1�

2�

3���Q2�

�

� k
����
�

p
p

Q2 ��

3���Q2�
; (35)

 DaE
a � ��1

�
~�
�
1�

p
�

�
�e �

3

2
EaDa�

�
; (36)

 

�LtE
a � ��	KEa �L
E

a � �abcDb�	Bc��

� 	~�
�
1�

p
�

�
ja

�
3

2
	��abcBbDc�� Ea	�1�@t �L
���; (37)

 DaB
a � 0; (38)

 L tB
a � ��abcDb�	Ec� � 	KE

a �L
B
a: (39)

Here L
 denotes the Lie derivative along 
a, and Da is
the covariant derivative operator associated to �ab. Note
that the Lie derivative of a spacelike tensor Aa���bc���d

along sa is defined conventionally as ~LsAa���bc���d �

�ae � � ��bf�
g
c � � ��hdLsAe���fg���h, and we write ~Ls as Ls

for short. Note also that the formula nbrbna � aa �
Da ln	 is used in the above calculation [15]. If one con-
sidered a 5D perfect fluid consisting of m components, the
terms ~��1� p

���e and ~��1� p
��j

a in Eqs. (36) and (37)

would be replaced by
Pm
��1 ~�����1� p���

������e��� andPm
��1 ~�����1� p���

�����j
a. When � � 1, one can see from

Eq. (36) that ~�e � �1� p=���e is the effective charge
density serving as the source of the electric field. This
effective charge density is state relevant; i.e., it is depen-
dent on p=�. Its significance will be discussed later.

Second we rewrite the modified relativistic MHD in 3�
1 form. Note that the total energy-momentum tensor in M
can be read off from the right-hand side of Eq. (19) as

 Tab � Tab
�fluid� �

~Tab�em� � T
ab
���; (40)

where

 

~T ab
�em� � �3=2Tab

�em� � �3=2�FacFbc �
1
4g
abFcdFcd�; (41)

 Tab��� � �
1

k
�gabrcrc

����
�

p
�rarb

����
�

p
�: (42)

It is straightforward to see that [16]

 rbTab�em� � FacrbFbc: (43)

In the light of Eqs. (27)–(33), we obtain the 3� 1 form

 

rbTab�em� � na��KE2 � 	�1Eb�Lt �L
�Eb � 	�1�bcdEbDc�	Bd�� � EaDbEb � �abcBc	�1�Lt �L
 � 	K�Eb

� 	�1BbDa�	Bb� � 	�1BbDb�	Ba�; (44)

 

Tab
�em�rb�

3=2 �
3
����
�
p

2

�
1

2
�B2 � E2��Da�� na	�1�@t �L
��� � �EaEb � BaBb�Db�

� EcBd�na�bcdDb�� �acd	�1�@t �L
���
�
: (45)

Here E2 � EaE
a and B2 � BaB

a. Recall that the relation between the three-dimensional Riemann tensor 3Rdabc and the 4D
one Rdabc reads

 

3Rdabc � �ea�
f
b�

l
c�

d
mR

m
efl � 2Kc�aKb	

d: (46)

Using

 �rarb �rbra�r
c
����
�

p
� �Rcabdr

d
����
�

p
; (47)

a lengthy but straightforward calculation gives
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rbTab��� �
1

2k
����
�
p �3RabDb�� 	�1�DbKab �DaK��@t �L
��� �Db���	�1�Lt �L
�Ka

b � K
acKbc

�DaDb ln	� �Da ln	�Db ln	� � na�	�1��@t �L
�����KbcKbc �DbDb ln	� a2 � 	�1�@t �L
�K�

� �DbKbc�Dc�� �DbK�Db�� Kbc�Db��Dc ln	��; (48)

where 3Rab is the three-dimensional Ricci tensor and a2 �
aaaa. For a perfect fluid, the energy-momentum tensor
Tab
�fluid� can also be written as

 Tab�fluid� � �hvavb � pgab; (49)

where � is the rest-mass density as seen by an observer
comoving with the fluid va, p is the pressure, and h the
specific enthalpy

 h � 1� �� p=�: (50)

Hence one has � � �1� ���. The local conservation of
the 4D Einstein tensor Gab leads to

 rb�Tab=
����
�

p
� � 0: (51)

We assume that Tab
��� does not contribute to the number of

baryons. Thus we have the conservation of baryons as

 ra��va� � 0; (52)

which is decomposed into 3� 1 form as
 

Da��~va��	�1�@t�L
���W���WK��~vaDa ln	� 0;

(53)

where ~va � va �Wna. The equation for the conservation
of energy is obtained by contracting Eq. (51) with nb as

 

H � 	�1�@t �L
�p�W��~vaDah�W	�1�@t �L
�h�

� �h�W	�1�@t �L
�W � ~vaDaW �W ~vaDa ln	

� Kab~va~vb�; (54)

and the Euler equation is obtained by projecting Eq. (51)
onto � as

 

�h~vaDb~va � �h�2WKab~vb �W2Da ln	�

� �hW	�1�Lt �L
�~va

� �~va�W	�1�@t �L
�h� ~vbDbh�

�Dap�Ma; (55)

where

 

H � �3=2��KE2 � 	�1Ea�Lt �L
�E
a � 	�1�abcEaDb�	Bc�� �

����
�
p

2
�B2 � E2�	�1�@t �L
���

����
�

p
�abcEaBbDc�

�
1

2k
����
�
p �	�1�@t �L
����KabKab �DaDa ln	� a2 � 	�1�@t �L
�K� � �DaKab�Db�� �DaK�Da��

�
W
2�
��� p�~vbDb��

1

2k�
�Da���	�1�Lt �L
�Da

����
�

p
� KabDb

����
�

p
�

�
1

2�
	�1

�
�W2��� p� � p�

1

k
�DaDa

����
�

p
� K	�1�@t �L
�

����
�

p
� �Da

����
�

p
�Da ln	�

�
�@t �L
�� (56)

and
 

Ma � �
����
�

p �
1

2
�B2 � E2�Da�� �EaEb � BaBb�Db�� �abcEbBc	�1�@t �L
��

�
��3=2EaDbEb

��3=2	�1��abcBc�Lt �L
 � 	K�Eb � BbD
a�	Bb� � BbD

b�	Ba��

�
1

2k
����
�
p �3RabDb�� 	�1�DbKab �DaK��@t �L
��� � �Db���	�1�Lt �L
�Ka

b � K
acKbc

�DaDb ln	� �Da ln	�Db ln	� �
1

2�
��� p��~vbDb��W	�1�@t �L
���~va �

1

2�
pDa�

�
1

2k�
�Da���DbDb

����
�

p
� �	�1�@t �L
��

2
����
�

p
� K	�1�@t �L
�

����
�

p
� �Db

����
�

p
�Db ln	�

�
1

2k�
��Db��D

aDb
����
�

p
� �	�1�@t �L
�

����
�

p
�KabDb�� �	

�1�@t �L
���D
a�	�1�@t �L
�

����
�

p
��: (57)
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Here �	�1�@t �L
��
2
����
�
p

denotes 	�1�@t �L
�

�	�1�@t �L
�

����
�
p
�. Note that Eqs. (53)–(55) comprise

the basic formulas for the modified relativistic MHD in
three-dimensional form. In the special case � � 1, we
have

 H � �KE2 � 	�1Ea�Lt �L
�E
a

� 	�1�abcEaDb�	Bc�; (58)

 

Ma � �EaDbEb � 	�1�abcBc�Lt �L
 � 	K�Eb

� 	�1�BbDa�	Bb� � BbDb�	Ba��; (59)

which accord with the conventional form [14].

IV. DISCUSSION ON THE EFFECTIVE CHARGE

From the state-relevant Maxwell’s equation (25) and its
3� 1 form Eq. (36), we can see that ~�e � �1� p=���e is
the effective charge density of a perfect fluid. Such an
effective charge density is relevant to the equation of state
of the fluid, and its rationality should be carefully checked.
In this section, we adopt an ideal Fermi gas as an example
to see under what condition the modified term p=� can
show a visible effect. We employ in terms of the dimen-
sionless degeneracy and temperature parameters

 � �
~�
kBT

; 
 �
kBT

mc2 ; (60)

where ~� is the chemical potential, m is the mass of the
fermion, and kB is the Boltzmann constant. The gas is
degenerate for �� 0 and nondegenerate for � 0. On
the other hand, the gas is extremely relativistic for 
� 1
and nonrelativistic for 
 1 [17]. The zero of energy for
the particles is chosen so that the thermodynamic potential
reads

 � � �VkBT
Z gd3 ~p

h3 ln
�

1� exp
~�� "
kBT

�
; (61)

where ~p is the momentum, g is the statistical weight, and

 " �
��������������������������������
�~pc�2 � �mc2�2

q
�mc2 (62)

is the kinetic energy. The number density n, pressure p,
and internal energy density E (per volume) of an ideal
Fermi gas are, respectively,

 n � K
3=2�F1=2��;
� � 
F3=2��;
�	; (63)

 p � mc2K
5=2�23F3=2��;
� �
1
3
F5=2��;
�	; (64)

 E � mc2K
5=2�F3=2��;
� � 
F5=2��;
�	; (65)

where K � 4
���
2
p
�g�mc=h�3, and the Fermi integral is

 Fk��;
� �
Z �1

0

zk�1� 1
2
z�

1=2dz

ez�� � 1
�k >�1�: (66)

Then we have

 

p
� �

p

E� nmc2

�
1

3� 3F1=2��;
�=�2
F3=2��;
� � 
2F5=2��;
��
:

(67)

The relation between p=� and ��;
� is shown in Fig. 1.
One can see clearly that both degenerate and relativistic
conditions can lead to the value of p=� comparable to 1=3
(which is the value of p=� for radiation).

Now we study the two kinds of conditions, respectively.
For a nondegenerate ideal Fermi gas (for example, � �
�30), the value of p=� is drawn from the nonrelativistic
(
 � 0) to the relativistic (
 � 2) regime in Fig. 2. It is
obvious that we need not go to an extremely relativistic
condition since p=� is already close to 1=3 when 
 � 2.
In the specific calculation for an electron gas, we set
p=� � 0:002 when kBT � 1 keV. This result indicates
the possibility of testing the theory in a telluric laboratory.
For a nondegenerate electron gas at T � 273 K, one may
estimate the modification term as p=�� kBT=mec2 �
10�8. On the other hand, in the experiments on the equality
of the electric charges of protons and electrons, these
charges in a conductor are found to be equal within
10�19 or better (see e.g. [18]). However, the proton system

FIG. 1. Modified term p=� as a function of the degeneracy
parameter � and relativistic parameter 
.
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in a conductor cannot be seen as a perfect fluid and hence
does not satisfy our premise. Hence the effective charges of
protons in a conductor cannot be directly obtained by our
modified equations. So, those experiments are not in severe
contradiction with the KK theory. For similar reasons, the
experiments reported in Ref. [5] cannot provide definite
opposite evidence to the KK theory either. But these kind
of experiments do cast some doubts on the classical KK
theory. Note that both the electron system and the ion
system could be regarded as a perfect fluid in high-
temperature plasma. In a thermal equilibrium state the
electron and ion in a plasma have the same temperature.
Hence they would have different values of p=�. Actually
the value of p=� for the ion is much smaller than the one
for the electron when kBT takes a value from keV to MeV.
It turns out that the two important physical parameters for
the description of plasma-Debye length and plasma fre-
quency [19] have to be modified in our 5D theory as

 D �
�

�0kBT

nee
2�1� pe=�e�

�
1=2

(68)

and

 !p �

�
nee

2�1� pe=�e�

me�0

�
1=2
; (69)

where ne is the number density of the electron and �0 the
permittivity of the vacuum. Since the electromagnetic
wave whose frequency is lower than !p will be reflected
while others can transmit through the plasma, the plasma
frequency can be measured accurately [20]. Therefore it is
possible to test the prediction from the 5D KK theory in a
telluric laboratory. For a degenerate idea Fermi gas, the
relation between p=� and � is demonstrated in Fig. 3.
Recall that the white dwarf is known to resist the gravity
by an electronic degenerate pressure. It is also possible to
test the 5D theory by certain relevant phenomena in
outerspace.

Note that the vacuum polarization in quantum electro-
dynamics (QED) also leads to an effective charge of a
pointlike particle [21,22], so the effective charge viewpoint
does not merely come from the KK theory. For the Fermi
gas in KK theory, the larger the density and the tempera-
ture, the larger the effective charge factor ~�e=�e, which
approaches 4=3 as a limit, whereas for QED the higher the
energy scale (or shorter the distance), the larger the effec-
tive charge eeff=e, which approaches infinity as a limit.
Therefore the state-relevant Maxwell’s equation and QED
give similar results of larger effective charges. However,
the state-relevant effect in KK theory is a pure classical
effect due to the extra dimension of spacetime, whereas the
QED effect is a quantum effect irrespective of any extra
dimension. Hence, one does not expect them to be the
same. It is easy to distinguish the two effects by comparing
their character.

In summary, the coupling of 5D perfect fluid to KK
gravity is fully studied. The 4D effective equations of
this 5D coupling system are derived. In particular, the
modified Maxwell’s equation which is relevant to the
equation of state of the source is obtained. To facilitate
applications, we also derive the 3� 1 form of the modified
Maxwell’s equations and the relativistic MHD. It turns out
that the effective charge density in the KK theory can be
written as ~�e � �1� p=���e. Moreover, using an ideal
Fermi gas model, we study the modification term p=� as a
function of the degeneracy parameter � and the relativity
parameter 
. It reveals that the traditional Maxwell’s
equation is the low density and low temperature limit of
the state-relevant Maxwell’s equation. We thus indicate the
possibility to test the state-relevant effect both in a telluric
laboratory and in astrophysical phenomena.
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