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Kination dominated quintessence models of dark energy have the intriguing feature that the relic
abundance of thermal cold dark matter can be significantly enhanced compared to the predictions from
standard cosmology. Previous treatments of such models do not include a realistic embedding of
inflationary initial conditions. We remedy this situation by constructing a viable inflationary model in
which the inflaton and quintessence field are the same scalar degree of freedom. Kination domination is
achieved after inflation through a strong push or ‘‘kick’’ of the inflaton, and sufficient reheating can be
achieved depending on model parameters. This allows us to explore both model-dependent and model-
independent cosmological predictions of this scenario. We find that measurements of the B-mode cosmic
microwave background polarization can rule out this class of scenarios almost model independently. We
also discuss other experimentally accessible signatures for this class of models.
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I. INTRODUCTION

The discovery that the universe is dominated by dark
energy strongly suggests that the predictions of standard
cosmology should be reevaluated. An intriguing possible
explanation of the nature of dark energy arises within the
quintessence paradigm, in which the dark energy takes the
form of a slowly evolving scalar field (see, e.g., [1–5]).
This scenario is extremely difficult (if not impossible) to
test directly in collider experiments, since quintessence
models generically require the quintessence field to have
gravitationally suppressed interactions with the fields of
the standard model (SM).

However, if the dark energy is in the form of quintes-
sence, the presence of the quintessence field can modify
the cosmological evolution and lead to significant depar-
tures from standard cosmology. A striking example is the
possible interconnection of dark matter (DM) and dark
energy within quintessence scenarios [6–10]. As first
pointed out by Salati [6], the freeze-out of thermal relics
can be strongly enhanced in scenarios in which the energy
density is dominated by the kinetic energy of the quintes-
sence field (kination domination) during the time of freeze-
out, but dilutes away by the time of big bang nucleosyn-
thesis (BBN). (Related scenarios were also suggested be-
fore by [11,12].) Such kination dominated freeze-out
scenarios are then consistent with standard cosmology
and predict that the standard relic abundance computed
from the parameters extracted from collider measurements

will be mismatched from the relic abundance deduced by
observational cosmology. This has implications for TeV
physics models with thermal dark matter candidates [e.g.,
models with low energy supersymmetry such as the mini-
mal supersymmetric extension of the SM (MSSM), techni-
color models, models with large/warped extra dimensions,
or certain classes of little Higgs models], which will be
probed at the LHC and other experiments in the foresee-
able future.

In most of the previous discussions of this class of
scenarios [6–9], the initial condition that the quintessence
field kinetic energy density is the dominant component was
put in as an ansatz, without a complete picture of the
inflationary dynamics. In this paper, we address this issue
by constructing an inflationary scenario that dynamically
leads to a kination dominated quintessence period. This
yields robust predictions which can be used to experimen-
tally support or rule out this class of scenarios.

To construct viable inflationary models which lead to
kination domination, the following constraints must be
satisfied:

(1) The energy density in a coherent quintessence field
must dominate over radiation after the end of
inflation.

(2) The quintessence field must be kinetic energy
dominated.

(3) The inflaton potential must satisfy the usual require-
ments of a sufficient number of e-foldings, the right
amplitude of density perturbations, and a nearly
scale invariant spectral index (with a slight prefer-
ence for a red spectrum [13]).

(4) There must not be too much reheating in the phase
transition at the end of inflation (when the quasi-
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de Sitter phase ends), such that the ratio of the
kination energy density to the radiation energy den-
sity can be large.

To satisfy these constraints, we build a model in which the
quintessence field is the inflaton field �, which has suffi-
ciently weak couplings to the SM fields at the end of
inflation such that most of the energy density responsible
for inflation gets converted to � coherent kinetic energy in
a runaway potential. Radiation domination is achieved
because the coherent kinetic energy dilutes as 1=a6, while
the suppressed radiation produced at the end of inflation
gets relatively amplified since it dilutes as 1=a4. The
choice of the inflaton as the quintessence field in kination
domination is natural in this framework, since the inflaton
possesses the required qualities for the kination domination
construction: energy dominance and coherence. Other
quintessence models have been constructed in which the
inflaton is the same field as the quintessence field (see, e.g.,
[14–18]), but we treat the reheating more precisely and
derive new predictions in the context of kination domi-
nated quintessence models relevant for dark matter. The
work [10] considers the connection between dark energy
and dark matter, but it differs from the present treatment in
that their scenario is model specific and has multiple infla-
tionary phases.

In addition to the prediction that the relic abundance
inferred from collider measurements can measurably dis-
agree with the cosmologically inferred dark matter relic
abundance (in the context of a thermal freeze-out sce-
nario), many experimentally accessible cosmological
predictions can be made by embedding the kination domi-
nation scenario in inflationary models. The most model-
independent nontrivial prediction is the absence of a mea-
surable tensor perturbation induced B-mode cosmic mi-
crowave background (CMB) polarization. Hence, the next
generation of CMB experiments can falsify this class of
models.

Other predictions include a shift in the peak of the
gravity wave signal from the electroweak phase transition,
shifts in the verifiable leptogenesis/baryogenesis scenarios
whose out of equilibrium ingredient is furnished by H, and
shifts in any residual annihilation effects. In general, the
indirect dark matter detection signals are enhanced in this
scenario [19]. In particular, it would be interesting to see
whether one can explain the positron excess as observed by
HEAT and other experiments near 7 GeV within this
scenario [20], since most attempts to explain this excess
in terms of dark matter annihilations require sufficiently
large cross sections that the relic abundance would be
negligible with standard cosmological assumptions.

The order of presentation will be as follows. We begin
by analyzing both analytically and numerically the con-
straints on quintessence potentials to achieve a period of
kination domination, and look for equation of state signa-

tures. In Sec. III, we construct a class of inflationary
models embedding the kination domination scenario and
discuss a robust prediction that can observationally falsify
this class of models. In Sec. IV, we discuss other observa-
tionally accessible cosmological predictions which may
corroborate this class of scenarios. We then summarize
and conclude. In the Appendix, we provide the details of
the particle production computation for the unusual reheat-
ing scenario associated with this class of inflationary
scenarios.

Throughout this paper, we use the convention of Mp to
denote the reduced Planck mass of approximately 2:4�
1018 GeV.

II. MAPPING KINETIC BEHAVIOR TO
QUINTESSENCE POTENTIALS

The standard procedure in constructing scenarios of
quintessence dynamics is to focus on potentials, which is
a sensible approach since a negative equation of state
requires potential energy domination. However, when con-
sidering quintessence dynamics with a period of kination
domination, it is more natural to focus on the behavior of
the field velocity, as this is the quantity which characterizes
the energy density of the quintessence field. Here we
develop a formalism to map the desired behavior of the
kinetic energy to a class of scalar potentials. Our results
show that the allowed quintessence potentials are not se-
verely restricted by the requirement of a period of kination
domination, since the time at which the equation of state is
close to �1 is necessarily much later than the time of dark
matter freeze-out due to the strong constraints from BBN.
In what follows, we will not restrict ourselves to ‘‘tracker’’
models, in order to separate the difficulties of constructing
good trackers from the constraints imposed by kination
domination. It is worth noting that kination dominated
initial conditions can be obtained in tracking potentials,
as discussed in [8,21], although clearly there will be con-
straints depending on the exact form of the potential.

To carry out the engineering of quintessence potentials
which match the desired kinetic term histories, we begin
with the familiar equations of motion for the quintessence
field � and the Friedmann-Robertson-Walker scale factor
H � _a=a:

 

��� 3H _�� V0��� � 0 (1)

 H �

����������������������������������������������������������
1

3M2
p

�
1

2
_�2 � V��� � �RM

�s
; (2)

in which �RM � �R � �M corresponds to the energy den-
sities of radiation and matter. Using the following defini-
tions,

 q��� � lna3��� (3)
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 f��� � _��t� (4)

 � �
1

3M2
p
; (5)

we rewrite Eqs. (1) and (2) as follows:

 q0��� � �
�
V0���

f2���
�
f0���
f���

�
(6)

 q0��� �
3
����
�
p

f���

���������������������������������������������������������������
1

2
f2��� � V��� � �RM�q����

s
: (7)

In the above, we have assumed that _� is a single valued
function of � (which would exclude, e.g., the situation of
oscillations). For the scenarios considered here this is
typically not a good assumption throughout the entire
evolution, since the kinetic energy is usually large enough
that � can overshoot the minimum and eventually hit the
‘‘other side’’ of the potential before the quintessence equa-
tion of state reaches �1. However, the condition on the
quintessence potential during kination domination does not
change even if this behavior is properly accounted for since
the ‘‘bounce’’ occurs long after the kination period is over.

We can use Eqs. (6) and (7) to solve for q��� and f��� if
V��� is given; alternatively, we can solve for V��� and
q��� if the field velocity function f��� (i.e., the kinetic
energy) is specified. For generic potentials, there is no
obvious obstruction to achieving a period of kination
domination which leads to a period of potential energy
domination, as f��� can be chosen to vanish as � ap-
proaches a particular asymptotic value, and the Hubble
friction naturally allows for f��� to vanish without V
also vanishing.

In this paper, we restrict our attention to the specific case
of the quintessence field velocity function with the initial
behavior (during the time relevant for dark matter freeze-
out) of

 f � fieqi�q /
1

a3 ; (8)

in which fi and qi denote initial values of the functions
f��� and q���. This corresponds to the kination regime in
which the universe is driven by quintessence kinetic en-
ergy, with V 0=f2 playing a subdominant role compared to
f0=f in the equation of motion for � (i.e., the force term is
subdominant to the Hubble friction term). The reason of
course for this restriction is that kination domination gives
rise to an energy density which dilutes as 1=a6, which
allows the quintessence energy to be important during
DM freeze-out but disappear by the time of BBN as
required by phenomenology.

Let us now study what a potential that leads to the
kination behavior of Eq. (8) looks like by constructing it
using Eqs. (6) and (7). To obtain a closed form solution, we
take the ansatz of neglecting V0=f2, in which case we

obtain

 q � qi � ln
f���
fi

(9)

 V��� �
�1

2
f2��� � �RM�q���� �

1

9�
	f0���
2: (10)

One possible procedure is then as follows: choose any
desired behavior of f and obtain using Eqs. (9) and (10)
a corresponding expansion history (specified by q) and the
potential V, then check that V0=f2 can be neglected in the
equation of motion. The validity of neglecting V0=f2 can
be rewritten as

 

���������1�
1

f2

d�RM
dq

�
2

9�
f00

f

��������� 1: (11)

One trivial way to make V 0=f2 negligible is to have V
much smaller than any other energy component and to
have V be a smooth function. Another way to satisfy
Eq. (11) is to set its left-hand side equal to an arbitrary
small function h��� � 1 and solve for f���. For example,
if the universe is radiation dominated, we can write

 �RM�q� � �i

�
ai
a

�
4
� �ie

�4=3��qi�q� (12)

to obtain the following equation:

 f00��� � 6�
�
f���
fi

�
1=3
�fi �

9�
2
�1� h����f��� � 0;

(13)

in which

 � � �i=f2
i �

5� 10�7

��
; (14)

with �� � ��=��jT�1 MeV, and fi � f��i� �

6� 103 �������
��
p

GeV2 (the initial field velocity) as defined
at a temperature of approximately 1 GeV. Note that since
h��� � 1 is arbitrary, nearly any smoothly varying f���
can be obtained, which in turn means any smoothly varying
shape for the potential can be obtained even with the
constraint of Eq. (8). (This corresponds of course to the
case in which the V energy density is negligible during
kination domination.) To obtain intuition, if we set h��� �
h0 � const� 1 and define y � f���=fi and x � �

����
�
p

,
we can rewrite Eq. (13) in terms of a first order equation:

 

dy
dx
� �

�������������������������������������������������������
9�y4=3 �

9

2
�1� h0�y

2 � C

s
; (15)

in which C is an integration constant. Note that we have
chosen the negative square root to coincide with the con-
vention in this paper that � is moving in the positive
direction during kination domination (recall y is decreasing
by construction).
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Although Eq. (15) can be used to write the solution as a
single integral, the phase space of solutions can also be
visualized by examining this equation. As long as C � 0, y
moves towards y � 0 (y 2� 10�10 at the time of BBN).
The existence of a large class of solutions given by C � 0
is not surprising given that the Hubble expansion generi-
cally provides friction for the field velocity f. The time it
takes for the field to achieve a final velocity ff can be
written as an integral:

 �t �
1

fi
����
�
p

Z ff=fi

1

dy

y dydx
: (16)

As a consistency check, it can be seen from Eq. (15) that
generically it takes an infinitely long time to achieve ff �
0 (an infinite time is necessary since we are engineering
f / a�3). Although a larger C seems to correspond to a
shorter time to achieve the desired ff, it also implies that
the potential is larger, which places severe constraints on
C. More explicitly, it can be shown that the potential of
Eq. (10) implied by Eq. (15) is of the form

 V��� �
�
2C
9
� h0y

2�
����
�
p

��
�
f2
i

2
; (17)

where C is then explicitly seen to control the cosmological
constant. (If C< 0, the cosmological constant will be
negative, which will cause the universe to eventually con-
tract. This is consistent with the C � 0 condition described
above.) Note that the potential is independent of � except
through y�x�. It can be seen from this expression that if
h��� were not a constant h0, a richer shape of potentials
can easily be attained (i.e., it is easy to show that the y
dependent term generalizes to f2

i

R
dyyh when h is not a

constant). Furthermore, we see the condition that V��� be
a subdominant energy component to f2=2 implies that
C� 1. Specifically, if Cf2

i =9 is identified as the cosmo-
logical constant that persists to today, one would impose
the constraint C & 9���C=f2

i � 6� 10�54=��. If we
insist on this form of the potential until BBN, we have a
bound of

 C�
10�18

��
(18)

even if this piece of the potential were piecewise glued to
other functional forms for the potential once the evolution
has persisted past the kination dominated period. SinceC is
generally required to be small during kination domination,
we can now solve Eq. (15) exactly neglecting C, which
leads to the expression
 

y�x� �
1

64�1� h0�
3=2

exp��3
��������������
1� h0

p
�x� C2�=

���
2
p
�

� �1� 8� exp	
��������������������
2�1� h0�

q
�x� C2�
�

3; (19)

in which C2 is another integration constant that is specified

by y�xi� � 1:

 C2 � xi �

���
2
p��������������

1� h0

p ln	2�
��������������
1� h0

p
�

��������������������������
1� h0 � 2�

p
�
:

(20)

As expected, initially the radiation energy density encoded
in � is unimportant, but once the radiation catches up with
the quintessence kinetic energy, the potential must com-
pensate to (artificially) maintain the 1=a6 behavior for the
quintessence energy density while keeping the left-hand
side of Eq. (11), h���, a constant. Once again, it is im-
portant to note that the shape of the potential dictated by
Eq. (19) is not fundamental because this solution is only
valid for a constant h���.

The main lesson from the discussion thus far is that
potentials can be chosen to not interfere with 1=a6 behav-
ior of the quintessence energy density even past the point in
which the radiation starts to dominate. [As discussed ear-
lier, this follows from the fact that the solution to the �
equation of motion with V0��� � 0 is _� / a�3.] To obtain
a potential that is manifestly independent of �, we can
choose implicitly a nonconstant h���. For example, in-
spired by Eq. (19), we can choose the potential to be

 V � ���c	1� bcosh2����
; (21)

in which

 � �

����������������������
9�
2
�1� b�

s
; (22)

with b� 1. This form of the potential results in V 0���
being unimportant during the � evolution until the tem-
perature reaches
 

T  10�10b2=9�1� b�1=9 exp
�
�10

������������
1� b
p

�
4n
9

�
� ��1=9��2=3�

�������
1�b
p

� GeV; (23)

where the initial value of � was parametrized as �n=�.
The values n � 30, b � 10�6, and �� � 1 result in a
temperature during matter domination but close to the
matter-radiation equality (i.e., long after the end of
BBN). Therefore, this potential provides the desired kin-
ation behavior. We will be using this form of the potential
for the rest of the paper.

To check the stability of the background scalar field
solutions, we set � � �B�t� � a�3=2� ~��t; ~x�, in which
�B�t� is the background solution, and note that upon
neglecting the metric fluctuations to a leading order ap-
proximation, the equations of motion for the field fluctua-
tions take the form

 � ~��
1

a2 �@i�
~��2 �

�
V00��B� �

9

4
�P

�
� ~� � 0; (24)

in which P is the pressure of an ideal fluid (our stress tensor
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approximation). The condition for stability on all length
scales is

 V00��B� �
9

4
�P> 0: (25)

Therefore, if V 00��B�> 0 [which is true, for example, in
the case of constant h��� in Eq. (17) if h0 > 0 or in the case
of Eq. (21) if b > 0], the solution will always be stable for
the case of P> 0 relevant for kination domination
scenarios.

The viability of the quintessence picture also requires
that the background solution tends toward a potential
energy dominated regime with V��� ���c, in which
�c is the critical energy density today. Since the equation of
state can be written as

 w �
1� 2V=f2 � 2

3�R=f
2

1� 2V=f2 � 2��M � �R�=f2 ; (26)

it is straightforward to see that as long as V asymptotically
dominates the energy density as the universe expands, the
kination scenario naturally leads to the desired late time
quintessence behavior of w! �1. The phenomenological
requirement is that w � �1 by redshift of about z � 1.

A final issue to address is the underlying dynamics
which leads to the required initial conditions to achieve
the desired fi. We will return to this question later and will
discuss interesting observational consequences, but first
analyze an explicit example numerically to illustrate the
possible resulting equation of state.

In solving the quintessential cosmology specified by
Eq. (21) numerically, we choose the following representa-
tive parameters: �� � 0:72, �M � 0:28 (including bary-
ons), �R � 4:6� 10�5, and H0 � 73 km s�1 Mpc�1. We
further set b � 10�6, ���tinitial� � f�30;�20;�10g,
�� � ��=��jT�1 MeV � 0:5, and � _��tinitial�> 0 (the
magnitude is fixed by ��). We also take the effective
degrees of freedom to evolve approximately as

 g��T� � g�S�T� �

8>>><>>>:
90 T > 1 GeV
60 1> T > 0:1 GeV
10:75 0:1> T > 10�4 GeV
3:36 10�4 GeV> T:

(27)

Although the relation g��T� � g�S�T� breaks down at late
times, these subtleties do not affect the main results for
kination domination. In evolving the coupled differential
equations for fa�t�;��t�g as given in Eq. (1) and (2), we
take

 �R�t� � �R�today�
� g��Ttoday�

g��Tapprox�t��

�
1=3
�
a�today�

a�t�

�
4

(28)

and

 �M�t� � �M�today�
�
a�today�

a�t�

�
3
: (29)

This neglects the fact that �M has a nontrivial time behav-
ior due to annihilations; however, the annihilation correc-
tions are negligible by the time �M becomes a significant
component of the energy density. We are also using an
approximate temperature,

 Tapprox�t� � Ttoday

atoday

a�t�
(30)

in g� in Eq. (28). This should be sufficiently accurate at the
current level of approximation, since g� is a very flat
function except in critical regions of Eq. (27) where the
transition temperatures are only accurate to an order of
magnitude.

The resulting evolution of � is shown in Fig. 1 as a
function of temperature. For ���tinitial� � �30, which we
denote as model C, the field does not reach the origin (the
minimum of the potential) by today. However, when the
initial value of �� is less negative, the field overshoots the
minimum and climbs up the potential for �> 0, and
eventually falls back towards the origin. An inspection of
Fig. 2, which shows the dark energy equation of state as a
function of redshift, demonstrates that acceptable
phenomenology can be obtained for the ‘‘overshooting’’
case of ���tinitial� � �20 (model B), but not for
���tinitial� � �10 (model A), where there is still too
much kinetic energy by redshifts of less than one. In fact,
the equation of state w for model A actually reaches �1
during the bounce and then a time period in whichw � 0 is
sustained until the kinetic energy is finally dissipated. This
nontrivial evolution of the equation of state for larger red-
shifts than those shown in Fig. 2 can be seen in Fig. 3.

FIG. 1 (color online). � as a function of T. The evolution for
���tinitial� � f�10;�20;�30g is depicted by the curves denoted
by models A, B, and C, respectively. The little jump in tempera-
ture at T � 10�1 GeV corresponds to the change in g� at that
temperature; a much smaller jump can be seen at T � 1 GeV.
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Furthermore, it can also be shown that the scalar field
energy density always dominates in model A, which makes
such scenarios incompatible with the successes of cold
dark matter large scale structure phenomenology. Clearly,
even with exactly the same potential function V��� and
initial value of quintessence kinetic energy, the dark energy
phenomenology crucially depends on the initial value of
�.

In all of these cases, the initial condition of
j���tinitial�j> 10 corresponds to situations in which the
initial displacement is trans-Planckian. This is not attrac-
tive from an effective field theory point of view since the

theory then is sensitive to all powers of the field operator;
however, such initial field values are typical in quintes-
sence scenarios [22]. Indeed, although quintessence is
generically not attractive as an effective field theory can-
didate, its classical dynamics may still be useful to pa-
rametrize vacuum dynamics, since effective field theory
has grossly failed as far as understanding the vacuum
structure is concerned, i.e., in giving a plausible explana-
tion for the cosmological constant problem. In fact, we
have implicitly been assuming throughout this paper that
the cosmological constant problem has been solved by
some unknown mechanism which leaves the quintessence
dynamics responsible only for the nontrivial vacuum en-
ergy dynamics.

The main lesson to be learned from this exercise is that
in viable kination scenarios, the dark energy equation of
state can exhibit a wide range of behavior both because of
the shape of the potential and because of the unknown
initial conditions. However, a typical behavior more likely
in quintessence scenarios with a period of kination domi-
nation than in generic quintessence models is the bounce or
turnaround behavior, in which � bounces off the ‘‘other’’
end of the potential barrier and slowly rolls toward the
minimum. With one bounce, the behavior of the model A
case in Fig. 2 in which dw=dz & 0 today is typical in
viable models. The complement, dw=dz > 0, is less ge-
neric for large initial kinetic energies, but may be possible
in models in which the kinetic energy during the kination
period is sufficiently small and tuned appropriately.
Multiple bounce scenarios may also be possible in kination
scenarios, but they require a special conspiracy between
the shape of the potential and initial conditions, as exem-
plified by the unsuccessful case shown in Fig. 2.

In the present model, we can compute the minimum
initial displacement j���tinitial�j to avoid the turnaround
behavior. The total displacement of � for the case in which
V0��� plays a negligible role in the equation of motion is

 �� �
���
6
p
Mp ln

�
a�tBBN�

a�ti�

�
� 3

�������
��
p

Mp; (31)

in which a�ti� is the scale factor at the time of the initial
position of �, and the second term on the right-hand side of
Eq. (31) arises from the movement of � after BBN. For
typical situations in which a�tBBN�=a�ti� �
a�tBBN�=a�tF� * 103, where a�tF� is the scale factor at
the time of freeze-out, we find

 �� * 	17� 3
�������
��
p


Mp: (32)

This result implies that most of the displacement of �
occurs during the kination period and not after BBN, and
that the numerical result of Fig. 1 is reasonable. In addition,
the field displacement is generically trans-Planckian (as
discussed previously).

Having discussed the consequences of having large
quintessence kinetic energy for late time cosmology, we

FIG. 3 (color online). The equation of state w of the �
component as a function of redshift z for large redshifts for
model A [���tinitial� � �10].

FIG. 2 (color online). The dark energy equation of state w as a
function of redshift z for the same cases shown in Fig. 1.
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now consider how such initial conditions can be estab-
lished within the context of inflationary cosmology.

III. INFLATIONARY COSMOLOGY

In this section, we address the issue of how kination
domination might be achieved within theories of cosmo-
logical initial conditions such as inflation. To demonstrate
an existence proof of a viable scenario, we construct an
inflationary model in which a single scalar field plays the
role of both the inflaton and the quintessence field. We will
not only show that kination domination can be achieved
after inflation, but that sufficient reheating can be achieved
as well. The main benefits of embedding quintessence
within an inflationary scenario are the resulting cosmologi-
cal predictions which can be experimentally verified or
falsified. We will see that a robust prediction of the kin-
ation scenario relevant for dark matter abundance is an
absence of a measurable B-mode CMB polarization signal.
Other predictions will include those connected to the fact
that the Hubble expansion rate during kination domination
is different from that within standard cosmological scenar-
ios even when the radiation is in equilibrium.

The basic idea we implement to construct this infla-
tionary model is the assumption that the inflaton receives
a kick (or a strong push) at the end of inflation to achieve
kination domination. Indeed, since slow roll inflationary
models already require a coherent homogeneous scalar
field to dominate the energy density in the universe, the
inflaton is an ideal candidate field to be converted into a
quintessence driving kination-dominated universe. By
comparing a multiscalar field system in which the inflaton
energy density converts efficiently into a coherent scalar
field kinetic energy of another field direction, it is straight-
forward to see that the only significant simplification being
made by considering one scalar field is in the neglect of the
acceleration of the field velocity vector direction in field
space.

To construct this model for kination cosmology in the
context of inflation, we will assume the following degrees
of freedom:

(1) Inflaton and quintessence. A real scalar field degree
of freedom � plays the role of both the inflaton and
quintessence. Of course, a complete supersymmet-
ric embedding of this scenario would require a
complex scalar degree of freedom. We neglect this
detail here for simplicity, as we are first concerned
with generic dynamical settings, and note that there
is no straightforward insurmountable obstacle to
extending this scenario into a fully supersymmetric
framework.

(2) MSSM fields. We assume the presence of electro-
weak to TeV-scale MSSM field degrees of freedom;
the lightest neutralinos are stable lightest supersym-
metric particles (LSPs). We will denote the neutra-
lino LSP as � and other generic fields as  .

(3) Couplings. We assume for simplicity that � is
coupled to MSSM fields only through the minimal
gravitational coupling. Scenarios with additional
couplings are of course plausible, but we do not
consider them in detail here because the resulting
constraints are highly model dependent. Fur-
thermore, since viable phenomenology requires the
quintessence field to be very weakly coupled to the
(MS)SM fields, the minimal gravitational coupling
scenario is ‘‘natural’’ within the quintessence para-
digm (of course, quintessence itself has a doubtful
status from the point of view of effective field
theory).

For simplicity, we will also functionally tune the potential
(i.e., assume a specific form of the nonrenormalizable
operators). Such simplifications are reasonable for this first
attempt at model building of this kind, given the current
incomplete understanding of possible UV completions of
the MSSM as well as the typical difficulties of embedding
inflation and quintessence in the context of effective field
theories. Future model-building attempts will need to ad-
dress this issue.

Our scenario is predicated on the physical picture that �
receives a kick at the end of the inflationary period. To this
end, we consider a scalar field potential with a step-func-
tion-like behavior, such that � is potential energy domi-
nated at the top of the step and then becomes kinetic energy
dominated when � drops off the cliff of the step. As an
example, consider the ansatz
 

V��� � ���c	1� bcosh2����


�

�
V0 � 	 ln

�
����c�

2


2 � �2

��
S���; (33)

in which 	 is a constant energy density scale controlling
the slow roll properties of the period of inflation, � is a
small constant inserted purely to regularize the logarithm
when ���c vanishes, and S��� is a steplike function. An
example would be S��� � �1� tanh	�����c�
�=2,
which is unity for �����c�< 1 and smoothly goes to
zero after �����c� � 1 for sufficiently large values of
�. This potential is identical to Eq. (21) except with the
addition of the 	V0 � 	 ln�����c�

2=
2�
S��� term re-
sponsible for the inflationary period, which in turn shuts off
at � � �c. Note that the constant � plays no important
role but to make the logarithmic function regular, and as
we will comment more explicitly later, we can choose a
sufficiently small � as not to change any of the inflationary
analysis. Hence, it can be dropped from the analysis of the
inflationary period.

Let us consider the constraints on the scales V0,�, and	
in this scenario (we will set 
 � �c without any loss of
generality). Inflation occurs for ����c�< 0, and ends
when the inflaton receives a hard kick at � � �c, leading
to kination domination. During the kick at the time te of the
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end of inflation, the nonadiabatic time variation of the
background gravitational field generates particles with en-
ergy density � �te� (a similar reheating scenario was con-
sidered in [23]). The mechanics of this is explained in the
Appendix. If the particles that are produced have masses
much smaller than the expansion rate He 

�����������
V0=3

p
=Mp at

the end of inflation, then

 � �te� 
�2

30
g��Te � He=2��

�
He

2�

�
4
; (34)

in which g� counts the number of light degrees of freedom.
This can be seen as the situation where the all of the species
which couple to the large � vacuum expectation value
(VEV) have decoupled and the others are lighter than
He. We have made a special simplifying assumption that
there is a large number of light species despite the large �
VEV. (Indeed, the lack of such light particles can lead to a
moduli problem as the VEV can induce large masses to the
fields to which it couples. Note that even in regions where
the � VEV is zero, large finite density masses can be
induced for what would otherwise be light fields
[24,25].) Because of the kick and the sudden drop of the
potential, the kinetic energy of � just after inflation ends
will be of order V0 and will dilute as 1=a6. Although the
relativistic species  initially is out of equilibrium, the
energy density can be characterized by an approximate
temperature Te  �� =g��Te��1=4. As we will discuss be-
low,  will eventually equilibrate and the relativistic en-
ergy density will dilute as 1=a4.

In this class of scenarios, the initial values of � and ��

are interconnected, such that for any given reheating en-
ergy density � , there is a predicted value of �� �

��=��jT�1 MeV, which is phenomenologically required to
be less than about 1 (at 2) by the time the photon
temperature is of order 1 MeV. Since ��=�� � a�2 / T2

during the kination period, �� is given by

 ��  33
�1 MeV�2V0

�3=2
 �Te�

��������������
g��Te�

p : (35)

Combining Eqs. (34) and (35), we find that in order to
obtain a desired ��, the inflationary energy density must
be of the form

 V0  �3:9� 1013 GeV�4��1=2
�

�
g��Te�

100

�
�1
: (36)

A larger �� requires a smaller V0, because the radiation
energy density at the end of inflation is proportional to V2

0 ,
and an increased radiation energy density corresponds to
an increased scale factor growth before the temperature
reaches 1 MeV.

Equation (36) is a remarkable result as it sets an ap-
proximate upper bound on V0 if a non-negligible �� is to
be achieved. Note that this did not depend on the details of
the inflationary model, but only on the fact that a period of

kination domination occurs just following inflation to-
gether with reheating. Although such upper bounds have
not been imposed in previous studies [6,8], this result
appears to be quite generic within a large class of infla-
tionary models.

An interesting ramification of this bound on V0 results
from the fact that the detection of inflationary tensor
perturbations in the foreseeable future requires V0 * �3�
1015 GeV�4 (corresponding to a tensor to scalar ratio of
about 10�4) [26–29]. Hence, if tensor perturbations are
detected, �� must satisfy the following approximate
bound:

 �� & 10�13

�
�
10

�
2
�
rmin

10�4

�
�2
�
g��Te�

100

�
�2
: (37)

In the above, � � V��N�=V��e� is the ratio of the poten-
tial between the time when the largest observable scales
left the horizon and the time when inflation ends, and rmin

is the minimum detectable tensor to scalar ratio defined as
16� evaluated at the 0:002 Mpc�1 Hubble crossing scale,
where � � �M2

p=2��V 0���=V����2 is the usual potential
expansion slow roll parameter. Therefore, larger values
of �� would be ruled out in this scenario if tensor pertur-
bations are measured. Note that a nonzero �� � 10�6

causes an O�106��� change in the prediction of the relic
abundance compared to the standard scenario [6,8,30]. In
the event of a positive tensor perturbation measurement,
�� would be bounded to be so small that kination domi-
nated scenarios cannot be effective in changing the thermal
relic abundance from the values obtained using standard
cosmology (i.e., the connection between collider measure-
ments and dark energy would be lost).

The constraint for obtaining the required number of
e-folds is given by

 N * ln
� ���
�
p He

H0

�
�

1

3
ln
�
g�S�TRH�
g�S�T0�

�
� ln

T0

TRH
; (38)

in whichH0 is the expansion rate today, and in our scenario
the reheating temperature TRH He=2�, indicating that
the explicit He dependence drops out of Eq. (38). The
requisite number of e-foldings is slightly larger than the
usual inflationary scenario with reheating during coherent
oscillations since there is no corresponding scale stretching
that would have occurred during the coherent oscillations
phase. As there is no explicit He dependence, for �
O�10� the required number of e-folds of inflation is

 N * 71; (39)

nearly independently of the inflationary potential. Note
that in the absence of an unusual initial state of the vacuum,
the number of e-folds required after the onset of inflation to
achieve the usual inflationary predictions is very small
[31].

Since V0 is fixed by Eq. (36) and � is fixed by the density
perturbation constraint
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 PR�0:002 Mpc�1� �
�V0

24�2�M4
p
� 2� 10�9; (40)

	 is approximately given by

 	 � �8:3� 1010 GeV�4
�
g�S�Te�

100

�
�2
�
�
��

�
: (41)

For this class of models V0 � 	, which implies that � � 1
during the approximate 70 e-foldings of interest since the
potential depends only logarithmically on � during infla-
tion. Nonetheless, it is still useful to keep the � dependence
explicitly to keep track of the model dependence, since
expressions like Eq. (37) are not strongly dependent on the
shape of the inflationary potential.

To determine the very model-dependent field value dur-
ing which k � 0:002 Mpc�1 leaves the horizon (corre-
sponding to about 68 e-foldings before the end of
inflation), we use the usual field integral over 1=

�������������
2����

p
,

which yields

 ���c � �8� 10�5����
�1=4

�
g�S�Te�

100

�
�1=2

Mp � �c:

(42)

Equation (42) implies that unless there is fine-tuning of
the initial conditions, the number of e-foldings will be
much larger than the requisite number of Eq. (39).
Finally, the end of inflation, which is determined by
jM2

pV00���=V���j � 1 (since afterwards � rolls quickly
to make � � 1), is given by

 �e ��c � �6� 10�6����
�1=4

�
g�S�Te�

100

�
�1=2

Mp; (43)

which means that inflation ends very close to �c (by
construction) and far away from scales of interest of
Eq. (42). This places a constraint on the steplike function
S, since the slow roll behavior should not be disrupted by
the slope of this steplike function before the required
number of e-foldings of inflation. For example, if S��� �
�1� tanh	�����c�
�=2, � is bounded by

 � *
106

Mp
�1=4

�

�
g�S�Te�

100

�
1=6
: (44)

It is also straightforward to show that in order for �
kination domination to occur at the end of inflation, the
potential that kicks � must satisfy the following condition:

 �
���
2
p
Mp

V 0���
V���

* 6; (45)

a much less stringent constraint than Eq. (44). Finally, as
we have commented near Eq. (33), we now see explicitly
that if we make � & 10�7 for j�cj=Mp * 10, � does not
change the inflationary analysis.

We have checked the details of this inflationary scenario
with explicit numerical computations. The analytic discus-
sion above is in good agreement with the numerical results.

A. Inflation to kination domination

The steplike feature in the potential presented in Eq. (33)
suggests an interesting new classical equation of motion
which is exactly solvable that is relevant for this class of
scenarios. If gravity is turned off and the ln term is ne-
glected, the equation of motion for the coherent state of �
at the end of inflation can be written as

 

���
V0�

2
sech2������c�� � 0; (46)

in which we have omitted the negligible contribution pro-
portional to ���c. This class of potentials allows us to
now rewrite this equation in the limit j��cj � 1 [the limit
of interest according to Eq. (44)] as follows:

 

��� V0�����c� � 0: (47)

The parameter � has disappeared from the equation of
motion; this is not surprising given the step-function-like
behavior of the potential in this limit. The beauty of
Eq. (47) is that it can be solved exactly. The solution is
given by
 

� � ��tc � t�f�i � �t� ti� _�ig

���t� tc�f�c � �t� tc��g; (48)

where ��x� is a step function, � �
���������������������
2V0 � _�2

i

q
, �i and _�i

are initial values of the field and its velocity at time ti, and
tc is the time at which � reaches �c. Therefore, since the
initial time variation of the field _�i is small compared to������
V0

p
, the field obtains a strong kick at t � tc to obtain the

final state velocity of _�
��������
2V0

p
.

B. Does dark matter ever reach equilibrium?

Another difference from more traditional inflationary
scenarios is that the dark matter is initially out of thermal
equilibrium after reheating (or more accurately, entropy
production) in this scenario. To see this, first consider the
more traditional inflationary paradigm. The neutralino �
self-annihilation rate behaves as

 ��  hvin
eq
�  �2T; (49)

where � is relativistic, and � � g2
W=�4�� is the weak

coupling expansion parameter. On the other hand, the
expansion rate after reheating in standard inflationary sce-
narios behaves as

 H 
�����
g�
p T2

Mp
; (50)

which means that the neutralinos are in equilibrium as long
as
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 T & 2:6� 1014 GeV
�
�

1=30

�
2
�
g�

100

�
�1=2

: (51)

In our scenario, however, H is governed by _� (not T)
during kination domination, which is also when � freezes
out:

 H �

����������
V0

3M2
p

s �
ae
a

�
3
�

����������
V0

3M2
p

s �
2�T
He

�
3
: (52)

In the above, we have used the fact that _�2 / 1=a6 during
kination domination. Hence, the neutralinos reach equilib-
rium through self-annihilations only for

 T & 8� 105 GeV
�
�

1=30

��
V0

	3:9� 1013 GeV
4

�
1=2
: (53)

Comparing this temperature with the original relativistic
species temperature of

 

He

2�
�

�
V0

	3:9� 1013 GeV
4

�
1=2

6� 107 GeV; (54)

we see that there is a long period in which the neutralino
self-annihilations are out of equilibrium after the entropy
in the universe has been produced. The fact that Eq. (53)
exists for T � 1 GeV is important, since our goal is to
embed the modified dark matter freeze-out scenario in
which the dark matter was originally in equilibrium.

IV. OTHER PREDICTIONS FOR COSMOLOGY

One of the main advantages of embedding the kination
domination scenario within an inflationary cosmological
setting is that other predictions for observables can be
made whose experimental confirmation would either sup-
port or rule out the scenario. We have already seen that if
tensor perturbations are measured in the near future, this
scenario is ruled out. There are many other observables
correlated with this dark matter scenario. Although an
exhaustive analysis of these signatures is beyond the scope
of this paper, we briefly discuss several possibilities here.

In the present scenario, an out of equilibrium effective
‘‘temperature’’ scale as high as 108��1=4

� GeV is reached
at the end of inflation and the equilibration of the (MS)SM
particles occurs by temperatures of about 106��1=4

� GeV.
During the time until the temperature is below 1 GeV,
the Hubble expansion rate differs significantly from the
usual radiation dominated universe value. This implies that
any physics which depends both on the temperature and the
Hubble expansion will be modified.

One testable example is the gravity wave production
during the electroweak phase transition (see for example
[32–37]), where the peak frequency of the gravity waves
are set by the Hubble scale. Since H is about 105 �������

��
p

of
the usual Hubble value (for the same temperature), the
effects can be large even for a very small ��. Exact details
will require a careful reanalysis of the gravity wave pro-

duction. The effects on electroweak baryogenesis are ex-
pected to be weaker since the out of equilibrium condition
is primarily provided by the bubble wall velocity [38,39].
A more careful investigation of this issue is left for future
work.

Another prediction of this scenario is that since the
temperature at which equilibrium is reached for any heavy
lepton number carrying particle (such as a right-handed
neutrino) will be relatively low as in Eq. (53), possible
leptogenesis mechanisms in this context will necessarily be
either nonthermal or nonstandard. It will be interesting to
explore what kinds of leptogenesis scenarios are viable for
this class of models.

There are also predictions associated with particle as-
trophysics. For example, it is well known that explaining
the HEAT measurement (and other cosmic ray positron
measurements) of excess positrons around and above
7 GeV requires an efficient annihilation of neutralinos (or
other thermal relics in the context of models of extra
dimensions, etc.) within our halo [40–42]. One of the
many problems associated with this efficient annihilation
scenario is that the relic abundance of neutralinos is ge-
nerically too low (by a factor of 10 to 100) to explain most
of the dark matter energy within the context of standard
thermal scenarios. The kination scenario can clearly give
the necessary boost to resurrect the neutralino dark matter
annihilation explanation of the excess positrons. There are
also other cosmic ray signatures which may shed light on
nonstandard H behavior [43,44].

Finally, there are other possible signatures such as the
change in BBN due to the effects of residual annihilations
after freeze-out [45], and the change in cosmic string
generated gravity wave signature [46,47] due to the change
in T=H involved in the scaling behavior of cosmic strings.
Since much of cosmology is about studying the out of
equilibrium phenomena generated by the expansion of
the universe within a finite temperature setting, further
signatures related to a nonstandard relationship between
T and H will appear as we learn more about the early
history of our universe.

V. CONCLUSIONS

The possibility of a new scalar is generic in extensions of
physics beyond the standard model of particle physics and
cosmology (particularly in those containing a dilatonic
field degree of freedom). It is natural to expect that the
dark energy density is connected with such a new scalar
field degree of freedom. However, the elusive nature of
dark energy, and its requisite small couplings to observable
fields, make such conjectures difficult to verify or disprove.

We have constructed a viable class of inflationary sce-
narios which exhibit a period of kination domination after
inflation where the inflaton plays the role of the quintes-
sence. Such scenarios have the intriguing feature that they
can lead to observable consequences for the dark matter
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freeze-out of thermal relics expected in many TeV-scale
extensions of the SM, which can be tested at the LHC and
ILC. We have focused here on supersymmetric scenarios as
prototype examples, for which the connections between
astroparticle and collider physics have been extensively
explored [48–65]. However, other WIMP candidates
have recently emerged in models with flat [66,67] or
warped [68,69] extra dimensions, in little Higgs theories
[70–74], or in technicolor models [75], to which the cos-
mological scenarios described in this paper could also be
applied.

The advantage of embedding kination dominated quin-
tessence models within an inflationary context is that it
allows for many other correlated cosmological predictions
which can corroborate or rule out such kination dominated
scenarios. The most robust, nearly model-independent,
signature of this class of models is the absence of measur-
able tensor perturbations, such that any positive detection
of tensor perturbations in upcoming experiments can rule
out this scenario (at least as far generating an observable
shift in the DM abundance is concerned). Other examples
are measurements of gravity waves from the electroweak
phase transition, shifts in the predictions for baryogenesis/
leptogenesis, implications for the cosmic ray flux from
dark matter annihilations, and other phenomena which
depend on the ratio of the photon temperature to the
Hubble expansion rate T=H.

The class of models in this paper is meant to be illus-
trative and represent early attempts at model building, and
as such certain features are not optimal. For example, one
might argue that the toy model presented here may not be
easily achievable from an effective field theory point of
view. However, it is reasonable to believe that this class of
models is as potentially viable as any quintessence and
most inflationary models that are considered seriously in
the current literature. Given that such scenarios may be
testable through their potentially dramatic interconnection
with dark matter predictions and TeV-scale particle phys-
ics, they represent an intriguing and potentially fruitful
ground for quintessence model building which warrants
further exploration.
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APPENDIX: PARTICLE PRODUCTION
COMPUTATION

In this Appendix, we consider the particle production
computation for a real scalar degree of freedom coupled to

gravity. We start with the perturbative expression for the
Bogoliubov coefficient as an integral over conformal time
[76]:

 	k �
Z
d�

w0k
2wk

exp
�
�2i

Z
wkd�

�

�
Z d�w2

k�

4w2
k

exp
�
�i

Z d�w2
k�

w0k

�
; (A1)

where

 w2
k � k2 � �16� ��Ra

2; (A2)

which assumes that the effective mass is dominated by the
Ricci scalar R� m2

� (note that � � 0 corresponds to
minimal gravitational coupling). Using the approximation

 H2 �

�
V0=�3M

2
p�; � < �c

V0�ae=a�6=�3M2
p�; � � �c

(A3)

we find
 

w2
k � �6

�
1

6
� �

�
a2

�
2V0

3M2
p

���c � ��

�
V0

3M2
p

�
ae
a

�
6
���� �c�

�
� k2; (A4)

 

w0k �
�1

2wk

jw2
k� k

2j3=2�����������
1
6��

q �
1���
3
p ���c���� 2

���
2

3

s
�����c�

�
;

(A5)

in which ��z� is a unit step function which evaluates to 1
for z > 0. For the limits of the integral over w2

k in Eq. (A1),
we have

 �

�
1

6
� �

�
a2
e

4V0

M2
p
� k2 � w2

k � k2 (A6)

during inflation, and

 k2 � w2
k �

�
1

6
� �

�
a2
e

2V0

M2
p
� k2 (A7)

after the end of inflation. The conformal time � is not a
single valued function of w2

k at the transition at the end of
inflation. However, since the nonsingle valued time period
is arbitrarily short (in the limit that the potential behaves
like a step function), this time period can be excised from
the computation without loss of numerical accuracy, as
long as a UV cutoff is imposed. The reason for the UV
cutoff is that the peak strength of the nonadiabaticity
responsible for particle production is precisely determined
by the detailed gravitational dynamics of the transition
time period, which we excise to simplify the computation.
Since the particle production is through gravitational cur-
vature, there will generically be an exponential cutoff in
momentum of the particles produced at He, the expansion
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rate at the end of inflation. With this simplification,
Eq. (A1) can be written as
 

	k �
1

4

Z x1

k2

dx
x

exp
�
�i2

���
3
p

������������
1

6
� �

s

�

�
2
���
x
p ��������������

k2 � x
p

x� k2 � 2 arctan
� ����������������
k2 � x2
p ���

x
p

x� k2

�

� C1�k2�

��
�

1

4

Z k2

x2

dx
x

exp
�
�i

���
3

2

s ������������
1

6
� �

s

�

�
�2

���
x
p��������������

x� k2
p � 2 ln	

��������������
x� k2

p
�

���
x
p
�
� C2�k

2�

��
;

(A8)

in which C1;2 are constant phase factors which are inde-
pendent of the integration variable x and depend on k2,
while

 x1 � k2 �
4V0

M2
p

�
1

6
� �

�
a2
e (A9)

 x2 � k2 �
2V0

M2
p

�
1

6
� �

�
a2
e; (A10)

which correspond to w2
k just before and after the end of

inflation (approximately a step function transition).
To obtain an estimate for j	kj2, we will neglect the

interference term in j	kj2, which means that we can ne-
glect the integration constants Ci. We will also utilize the
fact that the contribution to the dx integral in Eq. (A8) is
appreciable only when x is near xi and far away from k2

because of the damping phase oscillations near x � k2.
Finally, we will only account for contributions with w2

k >
0, so as to maintain the particle interpretation of the mass-
less modes produced. We then find
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where kmin �
�����������������������������������������
4V0=�M2

p��1=6� ��
q

is an appropriate in-

frared cutoff imposed to maintain the particle production
interpretation of the massless modes, and aHe

~� is the UV
cutoff, with ~�O�1� reflecting the uncertainty in the UV
cutoff function.

Taking the approximation that the log factors contribute
O�1�, the energy density of the real scalar degree of free-
dom that is produced is

 �
1
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k
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32�2 H
4
e �

~�4�2
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�
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4
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(A12)

Taking the parametrization of the thermal equilibrium
abundance of one real scalar degree of freedom as � �
��2=30�T4

eff , where Teff is the effective temperature and g�
counts the number of degrees of freedom, we find

 Teff 
He

2�
�2 ~��: (A13)

For an order of magnitude estimate, we will absorb the
uncertainty factor 2 ~� in the uncertainty in the effective
number of degrees of freedom during the ‘‘reheating’’ stage
at the end of inflation, and therefore write

 Te 
He

2�
(A14)

throughout the paper.
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