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We investigate the relic density n� of nonrelativistic long-lived or stable particles � in nonstandard
cosmological scenarios. We calculate the relic abundance starting from arbitrary initial temperatures of
the radiation-dominated epoch, and derive the lower bound on the initial temperature T0 � m�=23,
assuming that thermally produced � particles account for the dark matter energy density in the Universe;
this bound holds for all � annihilation cross sections. We also investigate cosmological scenarios with
modified expansion rate. Even in this case an approximate formula similar to the standard one is capable
of predicting the final relic abundance correctly. Choosing the � annihilation cross section such that the
observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible
modifications of the expansion rate at T �m�=20, well before big bang nucleosynthesis.

DOI: 10.1103/PhysRevD.76.103524 PACS numbers: 98.80.Cq, 95.35.+d

I. INTRODUCTION

One of the most notable recent developments in cosmol-
ogy is the precise determination of cosmological parame-
ters from observations of the large-scale structure of the
Universe, most notably by the Wilkinson Microwave
Anisotropy Probe (WMAP). In particular, the accurate
determination of the nonbaryonic cold dark matter (DM)
density [1],

 0:08<�CDMh
2 < 0:12 �95% C:L:�; (1)

has great influence on particle physics models which pos-
sess dark matter candidates [2,3]. The requirement that the
predicted DM density falls in the range (1) is a powerful
tool for discriminating between various models and for
constraining the parameter space of surviving models.

Many dark matter candidate particles have been pro-
posed. In particular long-lived or stable weakly interacting
massive particles (WIMPs) with weak-scale masses are
excellent candidates. In standard cosmology WIMPs de-
coupled from the thermal background during the radiation-
dominated epoch after inflation. In this framework conve-
nient and accurate analytic approximate solutions for the
relic abundance have been derived [4,5]. One of the best
motivated candidates for WIMPs is the lightest neutralino
in supersymmetric (SUSY) models. Assuming that the
neutralino is the lightest supersymmetric particle (LSP)
stabilized due to R-parity, its relic abundance has been
extensively discussed [3]. Similar analyses have also
been performed for other WIMPs whose existence is postu-
lated in other extensions of the standard model (SM) of

particle physics. In many cases the cosmologically favored
parameter space of WIMP models can be directly tested at
the CERN Large Hadron Collider (LHC) in a few years [6].
The same parameter space often also leads to rates of
WIMP interactions with matter within the sensitivity of
near-future direct DM detection experiments.

This discussion shows that we are now entering an
interesting time where the standard cosmological scenario
can be examined by experiments at high-energy colliders
as well as DM searches [7]. In this respect we should
emphasize that the relic abundance of thermally produced
WIMPs depends not only on their annihilation cross sec-
tion, which can be determined by particle physics experi-
ments, but in general is also very sensitive to cosmological
parameters during the era of WIMP production and anni-
hilation. Of particular importance are the initial tempera-
ture T0 at which WIMPs began to be thermally produced,
and the expansion rate of the Universe H.

In the standard cosmological scenario, the expansion
rate is uniquely determined through the Friedmann equa-
tion of general relativity. In this scenario the density of
WIMPs with mass m� followed its equilibrium value until
the freeze-out temperature TF ’ m�=20. Below TF, inter-
actions of WIMPs are decoupled, and thus the present
density is independent of T0 as long as T0 > TF.1

It should be noted that in nonstandard scenarios the relic
density can be larger or smaller than the value in the
standard scenario. One example is the case where T0 is
smaller than or comparable to TF, which can be realized in
inflationary models with low reheat temperature. Since in
many models the inflationary energy scale must be much
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1Note that TF can be formally defined in the standard way even
if T0 < TF. In this case WIMPs never were in full equilibrium,
and correspondingly never ‘‘froze out.’’
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higher than m� in order to correctly predict the density
perturbations [8], the standard assumption T0 > TF is not
unreasonable. On the other hand, the constraint on the
reheat temperature from big bang nucleosynthesis (BBN)
is as low as T0 * MeV [9,10]. From the purely phenome-
nological viewpoint, it is therefore also interesting to in-
vestigate the production of WIMPs in low reheat
temperature scenarios [9,11–14].

The standard scenario also assumes that entropy per
comoving volume is conserved for all temperatures T �
TF. Late entropy production can dilute the predicted relic
density [15,16]. The reason is that the usual calculation
actually predicts the ratio of the WIMP number density to
the entropy density. On the other hand, if late decays of a
heavier particle nonthermally produce WIMPs in addition
to the usual thermal production mechanism, the resulting
increase of the WIMP density competes with the dilution
caused by the decay of this particle into radiation, which
increases the entropy density [13,17–21].

Another example of a nonstandard cosmology changing
the WIMP relic density is a modified expansion rate of the
Universe. This might be induced by an anisotropic expan-
sion [16], by a modification of general relativity [16,22], by
additional contributions to the total energy density from
quintessence [23], by branes in a warped geometry [24], or
by a superstring dilaton [25].

These examples show that, once the WIMP annihilation
cross section is fixed, with the help of precise measure-
ments of the cold dark matter density we can probe the very
early stage of the Universe at temperatures of O�m�=20� �
10 GeV. This is reminiscent of constraining the early
evolution of the Universe at T � O�100� keV using the
primordial abundances of the light elements produced by
BBN.

The goal of this paper is to investigate to what extent the
constraint (1) on the WIMP relic abundance might allow us
to derive quantitative constraints on modifications of stan-
dard cosmology. So far the history of the Universe has been
established by cosmological observations as far back as the
BBN era. In this paper we try to derive bounds on cosmo-
logical parameters relevant to the era before BBN. Rather
than studying specific extensions of the standard cosmo-
logical scenario, we simply parametrize deviations from
the standard scenario, and attempt to derive constraints on
these new parameters. Since we only have the single con-
straint (1), for the most part we only allow a single quantity
to differ from its standard value. We expect that varying
two quantities simultaneously will allow us to get the right
relic density for almost any WIMP annihilation cross
section. This has been shown explicitly in [13] for the
case that both late entropy production and nonthermal
WIMP production are considered, even if both originate
from the late decay of a single scalar field.

We first analyze the dependence of the WIMP abun-
dance on the initial temperature T0 of the conventional

radiation-dominated epoch. We showed in [14] that for
fixed T0 the predicted WIMP relic density reaches a maxi-
mum as the annihilation cross section is varied from very
small to very large values. A small annihilation cross
section corresponds to a large TF > T0; in this case the
relic density increases with the annihilation cross section,
since WIMP production from the thermal plasma is more
important than WIMP annihilation. On the other hand,
increasing this cross section reduces TF; once TF < T0 a
further increase of the cross section leads to smaller relic
densities since in this case WIMPs continue to annihilate
even after the temperature is too low for WIMP production.
Here we turn this argument around, and derive the lower
bound on T0 � m�=23 under the assumption that all
WIMPs are produced thermally. Note that we do not
need to know the WIMP annihilation cross section to
derive this bound.

We then examine the dependence of the predicted
WIMP relic density on the expansion rate in the epoch
prior to BBN, where we allow the Hubble parameter to
depart from the standard value. The standard method of
calculating the thermal relic density [2,4] is found to be
still applicable in this case. Our working hypothesis here is
that the standard prediction for the Hubble expansion rate
is essentially correct, i.e. that the true expansion rate differs
by at most a factor of a few from the standard prediction.
We then simply employ a generic Taylor expansion for the
temperature dependence of this modification factor; note
that the success of standard BBN indicates that this factor
cannot deviate by more than �20% from unity at low
temperatures, T & 1 MeV. Similarly, we assume that the
WIMP annihilation cross section has been determined
(from experiments at particle colliders) to have the value
required in standard cosmology. Our approach is thus quite
different from that taken in [7], where present upper
bounds on the fluxes of WIMP annihilation products are
used to place upper bounds on the Hubble expansion rate
during WIMP decoupling. The advantage of their approach
is that no prior assumption on the WIMP annihilation cross
section needs to be made, whereas we assume a cross
section that reproduces the correct relic density in the
standard scenario. On the other hand, the bounds derived
in Refs. [7] are still quite weak, allowing the Hubble
parameter to exceed its standard prediction by a factor
* 30; moreover, no lower bound on H can be derived in
this fashion.

The remainder of this paper is organized as follows: In
Sec. II we will briefly review the calculation of the WIMP
relic abundance assuming a conventional radiation-
dominated universe, and derive the lower bound on the
initial temperature T0. In Sec. III we discuss the case where
the pre-BBN expansion rate is allowed to depart from the
standard one. Using approximate analytic formulas for the
predicted WIMP relic density for this scenario, we derive
constraints on the early expansion parameter. Finally,
Sec. IV is devoted to summary and conclusions.
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II. RELIC ABUNDANCE IN THE RADIATION-
DOMINATED UNIVERSE

We start the discussion of the relic density n� of stable or
long-lived particles � by reviewing the structure of the
Boltzmann equation which describes their creation and
annihilation. The goal of this section is to find the lowest
possible initial temperature of the radiation-dominated
universe, assuming that the present relic abundance of
cold dark matter is entirely due to thermally produced �
particles.

As usual, we will assume that � is self-conjugate,2 � �
��, and that some symmetry, for example, R parity, forbids
decays of � into SM particles; the same symmetry then
also forbids single production of � from the thermal back-
ground. However, the creation and annihilation of � pairs
remains allowed. The time evolution of the number density
n� of particles � in the expanding universe is then de-
scribed by the Boltzmann equation [2],

 

dn�
dt
� 3Hn� � �h�vi�n

2
� � n

2
�;eq�; (2)

where n�;eq is the equilibrium number density of �, and
h�vi is the thermally averaged annihilation cross section
multiplied with the relative velocity of the two annihilating
� particles. Finally, the Hubble parameter H � _R=R is the
expansion rate of the Universe, R being the scale factor in
the Friedmann-Robertson-Walker metric. The first (sec-
ond) term on the right-hand side of Eq. (2) describes the
decrease (increase) of the number density due to annihila-
tion into (production from) lighter particles. Equation (2)
assumes that � is in kinetic equilibrium with standard
model particles.

It is useful to rewrite Eq. (2) in terms of the scaled
inverse temperature x � m�=T as well as the dimension-
less quantities Y� � n�=s and Y�;eq � n�;eq=s. The en-
tropy density is given by s � �2�2=45�g	sT3, where

 g	s �
X

i�bosons

gi

�
Ti
T

�
3
�

7

8

X
i�fermions

gi

�
Ti
T

�
3
: (3)

Here gi denotes the number of intrinsic degrees of freedom
for particle species i (e.g. due to spin and color), and Ti is
the temperature of species i. Assuming that the Universe
expands adiabatically, the entropy per comoving volume,
sR3, remains constant, which implies

 

ds
dt
� 3Hs � 0: (4)

The time dependence of the temperature is then given by

 

dx
dt
�

Hx

1� x
3g	s

dg	s
dx

: (5)

Therefore the Boltzmann equation (2) can be written as

 

dY�
dx
� �

h�vis
Hx

�
1�

x
3g	s

dg	s
dx

�
�Y2
� � Y

2
�;eq�: (6)

Thermal production of WIMPs takes place during the
radiation-dominated epoch, when the expansion rate is
given by

 H �
�T2

MPl

������
g	
90

r
; (7)

with MPl � 2:4
 1018 GeV being the reduced Planck
mass and

 g	 �
X

i�bosons

gi

�
Ti
T

�
4
�

7

8

X
i�fermions

gi

�
Ti
T

�
4
: (8)

In the following we use Hst to denote the standard expan-
sion rate (7). If the postinflationary reheat temperature was
sufficiently high, WIMPs reached full thermal equilibrium.
This remains true for temperatures well below m�. We can
therefore use the nonrelativistic expression for the � equi-
librium number density,

 n�;eq � g�

�m�T

2�

�
3=2

e�m�=T: (9)

In the absence of nonthermal production mechanisms,
n� � n�;eq at early times. The annihilation rate � �
n�h�vi then depends exponentially on T, and thus drops
more rapidly with decreasing temperature than the expan-
sion rate Hst of Eq. (7) does. When the annihilation rate
falls below the expansion rate, the number density of
WIMPs ceases to follow its equilibrium value and is frozen
out.

For T � m� the annihilation cross section can often (but
not always [5]) be approximated by a nonrelativistic ex-
pansion in powers of v2. Its thermal average is then given
by

 h�vi � a� bhv2i �O�hv4i� � a�
6b
x
�O

�
1

x2

�
: (10)

In this standard scenario, the following approximate for-
mula has been shown [2,4,5] to accurately reproduce the
exact (numerically calculated) relic density:

 Y�;1 � Y��x! 1� ’
1

1:3m�MPl

��������������
g	�xF�

p
�a=xF � 3b=x2

F�
;

(11)

with xF � m�=TF, TF being the decoupling temperature.
For WIMPs, xF ’ 22. Here we assume g	 ’ g	s and
dg	=dx ’ 0. It is useful to express the � mass density as
�� � ��=�c, �c � 3H2

0M
2
Pl being the critical density of

the Universe. The present relic mass density is then given
by �� � m�n�;1 � m�s0Y�;1; here s0 ’ 2900 cm�3 is the

2The case � � �� differs in a nontrivial way only in the
presence of a �� �� asymmetry, i.e. if n� � n ��.
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present entropy density. Equation (11) then leads to

 ��h2 � 2:7
 1010Y�;1

� m�

100 GeV

�

’
8:5
 10�11xF GeV�2��������������
g	�xF�

p
�a� 3b=xF�

; (12)

where h ’ 0:7 is the scaled Hubble constant in units of
100 km sec�1 Mpc�1. We defer further discussions of this
expression to Sec. III, where scenarios with modified ex-
pansion rate are analyzed. Note that in the standard sce-
nario leading to Eq. (12), the present � relic density is
inversely proportional to its annihilation cross section and
has no dependence on the reheat temperature. Recall that
this result depends on the assumption that the highest
temperature in the postinflationary radiation-dominated
epoch, which we denote by T0, exceeded TF significantly.

On the other hand, if T0 was too low to fully thermalize
WIMPs, the final result for �� will depend on T0. In
particular, if WIMPs were thermally produced in a com-
pletely out-of-equilibrium manner starting from vanishing
initial abundance during the radiation-dominated era, such
that WIMP annihilation remains negligible, the present
relic abundance is given by [14]

 Y0�x! 1� ’ 0:014g2
�g
�3=2
	 m�MPle

�2x0x0

�
a�

6b
x0

�
:

(13)

Note that the final abundance depends exponentially on T0,
and increases with increasing cross section.

In in-between cases where WIMPs are not completely
thermalized but WIMP annihilation can no longer be ne-
glected, we have shown [14] that resumming the first
correction term � enables us to reproduce the full tempera-

ture dependence of the density of WIMPs:

 Y� ’
Y0

1� �=Y0
� Y1;r: (14)

Here � < 0 describes the annihilation of WIMPs produced
according to Eq. (13):
 

��x! 1� ’ �2:5
 10�4g4
�g
�5=2
	 m3

�M
3
Ple
�4x0x0

�
a�

3b
x0

�




�
a�

6b
x0

�
2
: (15)

Since � is proportional to the third power of the cross
section, the resummed expression Y1;r is inversely propor-
tional to the cross section for large cross section. In
Ref. [14] we have shown that this feature allows the
approximation (14) to be smoothly matched to the standard
result (12). Not surprisingly, as long as we only consider
thermal � production, decreasing T0 can only reduce the
final � relic density.

With the help of these results, we can explore the
dependence of the � relic density on T0 as well as on the
annihilation cross section. Some results are shown in
Fig. 1, where we take (a) a � 0, b � 0, and (b) a � 0, b �

0. We choose Y��x0� � 0, m� � 100 GeV, g� � 2 and
g	 � 90.

The results depicted in this figure can be understood as
follows. For small T0, i.e. large x0, Eq. (13) is valid, leading
to a very strong dependence of ��h2 on x0. Recall that in
this case the relic density is proportional to the cross
section. In this regime one can reproduce the relic density
(1) with quite small annihilation cross section, a�
6b=x0 & 10�9 GeV�2, for some narrow range of initial
temperature, x0 & 22:5. Note that this allows much smaller

FIG. 1. Contour plots of the present relic abundance ��h
2. Here we take (a) a � 0, b � 0, and (b) a � 0, b � 0. We choose

Y��x0� � 0, m� � 100 GeV, g� � 2, g	 � 90. The shaded region corresponds to the WMAP bound on the cold dark matter
abundance, 0:08<�CDMh

2 < 0:12 (95% C.L.).
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annihilation cross sections than the standard result, at the
cost of a very strong dependence of the final result on the
initial temperature T0.

In this section we set out to derive a lower bound on T0.
In this regard the region of parameter space described by
Eq. (13) is not optimal. Increasing the � annihilation cross
section at first allows us to obtain the correct relic density
for larger x0, i.e. smaller T0. However, the correction �
then quickly increases in size; as noted earlier, once j�j>
Y0 a further increase of the cross section will lead to a
decrease of the final relic density. The lower bound on T0 is
therefore saturated if ��h2 as a function of the cross
section reaches a maximum. From Fig. 1 we read off

 T0 � m�=23; (16)

if we require ��h
2 to fall in the range (1).

We just saw that in the regime where this bound is
saturated, the final relic density is (to first order) indepen-
dent of the annihilation cross section, @���h2�=@h�vi �
0. If T0 is slightly above the absolute lower bound (16), the
correct relic density can therefore be obtained for a rather
wide range of cross sections. For example, if x0 � 22:5, the
entire range 3
 10�10 GeV�2 & a & 2
 10�9 GeV�2 is
allowed. Of course, the correct relic density can also be
obtained in the standard scenario of (arbitrarily) high T0, if
a� 3b=22 falls within �20% of 2
 10�9 GeV�2.

III. RELIC ABUNDANCE FOR MODIFIED
EXPANSION RATE

In this section we discuss the calculation of the WIMP
relic density n� in modified cosmological scenarios where
the expansion parameter of the pre-BBN universe differed
from the standard valueHst of Eq. (7). For the most part we
will assume that WIMPs have been in full thermal equi-
librium. Various cosmological models predict a nonstan-
dard early expansion history [22–25]. Here we analyze to
what extent the relic density of WIMP dark matter can be
used to constrain the Hubble parameter during the epoch of
WIMP decoupling. As long as we assume large T0 we can
use a modification of the standard treatment [2,4] to esti-
mate the relic density for given annihilation cross section
and expansion rate. We will show that the resulting ap-
proximate solutions again accurately reproduce the nu-
merically evaluated relic abundance.

Let us introduce the modification parameter A�x�, which
parametrizes the ratio of the standard value Hst�x� to the
assumed H�x�:

 A�x� �
Hst�x�
H�x�

: (17)

Note that A> 1 means that the expansion rate is smaller
than in standard cosmology. Allowing for this modified
expansion rate, the Boltzmann equation (6) is altered to

 

dY�
dx
�

4�������
90
p G�x�m�MPl

h�viA�x�

x2 �Y2
� � Y2

�;eq�; (18)

where

 G�x� �
g	s�����
g	
p

�
1�

x
3g	s

dg	s
dx

�
: (19)

Following Refs. [2,4], we can obtain an approximate
solution of this equation by considering the differential
equation for � � Y� � Y�;eq. For temperatures higher
than the decoupling temperature, Y� tracks Y�;eq very
closely and the �2 term can be ignored:

 

d�

dx
’ �

dYeq

dx
�

4�������
90
p m�MPl

G�x�h�viA�x�

x2 �2Y�;eq��:

(20)

Here dY�;eq=dx ’ �Y�;eq for x 1. In order to keep j�j
small, the derivative d�=dx must also be small, which
implies

 � ’
x2

�8�=
������
90
p
�m�MPlG�x�h�viA�x�

: (21)

This solution is used down to the freeze-out temperature
TF, defined via

 ��xF� � �Y�;eq�xF�; (22)

where � is a constant of order of unity. This leads to the
following expression:
 

xF � ln
� ������

45

�5

s
�m�MPlg�

h�viA�x���������������
xg	�x�

p �
1�

x
3g	s

dg	s
dx

����������x�xF

;

(23)

which can e.g., be solved iteratively. In our numerical
calculations we will choose � �

���
2
p
� 1 [2,4].

On the other hand, for low temperatures (T < TF), the
production term / Y2

�;eq in Eq. (18) can be ignored. In this
limit, Y� ’ �, and the solution of Eq. (18) is given by

 

1

��xF�
�

1

��x! 1�
� �

4�������
90
p m�MPlI�xF�; (24)

where the annihilation integral is defined as

 I�xF� �
Z 1
xF

dx
G�x�h�viA�x�

x2 : (25)

Assuming ��x! 1� � ��xF�, the final relic abundance
is

 Y�;1 � Y��x! 1� �
1

�4�=
������
90
p
�m�MPlI�xF�

: (26)

Plugging in numerical values for the Planck mass and for
today’s entropy density, the present relic density can thus
be written as
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 ��h2 �
8:5
 10�11

I�xF� GeV2 : (27)

The constraint (1) therefore corresponds to the allowed
range for the annihilation integral

 7:1
 10�10 GeV�2 < I�xF�< 1:1
 10�9 GeV�2: (28)

The standard formula (12) for the final relic density is
recovered if A�x� is set to unity and G�x� is replaced by
the constant

��������������
g	�xF�

p
.

The further discussion is simplified if we use the nor-
malized temperature z � T=m� � 1=x, rather than x.
Phenomenologically A�z� can be any function subject to
the condition that A�z� approaches unity at late times in
order not to contradict the successful predictions of BBN.
We need to know A�z� only for the interval from around the
freeze-out to BBN: zBBN � 10�5–10�4 & z & zF � 1=20.
This suggests a parametrization of A�z� in terms of a power
series in (z� zF;st):
 

A�z� � A�zF;st� � �z� zF;st�A0�zF;st�

�
1

2
�z� zF;st�

2A00�zF;st�; (29)

where zF;st is the normalized freeze-out temperature in the
standard scenario and a prime denotes a derivative with
respect to z. The ansatz (29) should be of quite general
validity, so long as the modification of the expansion rate is
relatively modest. This suits our purpose, since we wish to
find out what constraints can be derived on the expansion
history if standard cosmology leads to the correct WIMP
relic density.

We further introduce the variable

 k � A�z! 0� � A�zF;st� � zF;stA
0�zF;st� �

1

2
z2
F;stA

00�zF;st�;

(30)

which describes the modification parameter at late times.
Since zBBN is almost zero, we treat k as the modification
parameter at the era of BBN in this paper.3 Deviations from
k � 1 are conveniently discussed in terms of the equivalent
number of light neutrino degrees of freedom N�. BBN
permits that the number of neutrinos differs from the
standard model value N� � 3 by �N� � 1:5 or so [26].
We therefore take the uncertainty of k to be 20%. In the
following we treat A�zF;st�, A0�zF;st� and k as free parame-
ters; A00�zF;st� is then a derived quantity.

Note that we allow A�z� to cross unity, i.e. to switch from
an expansion that is faster than in standard cosmology to a
slower expansion or vice versa. This is illustrated in Fig. 2,
which shows examples of possible evolutions of A�z� as a
function of z for zF � 0:05. Here we take k � 1:2 (left
frame) and k � 0:8 (right). In each case we consider
scenarios with A�zF� � 1:3 (slower expansion at TF than
in standard cosmology) as well as A�zF� � 0:7 (faster
expansion); moreover, we allow the change of A at z �
zF to be either positive or negative. However, we insist that
H remains positive at all times, i.e. A�z� must not cross
zero. This excludes scenarios with very large positive
A0�zF;st�, which would lead to A< 0 at some z < zF.

FIG. 2. Examples of possible evolutions of the modification parameter A�z� as a function of z for zF � 0:05. Here we take k � 1:2
(left frame) and k � 0:8 (right). In each frame we choose A�zF� � 1:3, A0�zF� � �3 (thick line), A�zF� � 1:3, A0�zF� � 9 (dashed),
A�zF� � 0:7, A0�zF� � �3 (dotted), A�zF� � 0:7, A0�zF� � 9 (dot-dashed).

3Presumably the Hubble expansion rate has to approach the
standard rate even more closely for T < TBBN. However, since
all WIMP annihilation effectively ceased well before the onset of
BBN, this epoch plays no role in our analysis.
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Similarly, demanding that our ansatz (29) remains valid for
some range of temperatures above TF excludes scenarios
with very large negative A0�zF;st�. We will come back to this
point shortly.

Equation (23) shows that zF � zF;st (xF � xF;st) if
A�zF� � 1. This is illustrated by Fig. 3, which shows the
difference between xF and xF;st in the �A�zF;st�; A0�zF;st��

plane. Here we take parameters such that ��h
2 � 0:099 in

the standard cosmology, which is recovered for A�zF;st� �
1, A0�zF;st� � 0. Because of the logarithmic dependence on
A, xF (or zF) differs by at most a few percent from its
standard value if A�zF;st� is O�1�. Since TF only depends on

the expansion rate at TF, it is essentially insensitive to the
derivative A0�zF;st�.

In our treatment the modification of the expansion pa-
rameter affects the WIMP relic density mostly via the
annihilation integral (25). In terms of the normalized tem-
perature z, the latter can be rewritten as

 I�zF� �
Z zF

0
dzG�z�h�viA�z�: (31)

One advantage of the expansion (29) is that this integral
can be evaluated analytically:
 

I�zF� ’ G�zF�
�
k�azF � 3bz2

F� � �A
0�zF;st� � zF;stA

00�zF;st��




�
a
2
z2
F � 2bz3

F

�
�
A00�zF;st�

2

�
a
3
z3
F �

3b
2
z4
F

��
:

(32)

Here we have assumed that G�z� varies only slowly.
Before proceeding, we first have to convince ourselves

that the analytic treatment developed in this section still
works for A � 1. This is demonstrated by Fig. 4, which
shows the ratio of the analytic solution obtained from
Eqs. (27) and (32) to the exact one, obtained by numeri-
cally integrating the Boltzmann equation (18), assuming
constant g	. We see that our analytical treatment is accu-
rate to better than 1%, and can thus safely be employed in
the subsequent analysis.

We are now ready to analyze the impact of the modified
expansion rate on the WIMP relic density. In Fig. 5, we
show contour plots of ��h2 in the �A�zF;st�; A0�zF;st�� plane.
Recall that large (small) values of A correspond to a small
(large) expansion rate. Since a smaller expansion rate
allows the WIMPs more time to annihilate, A> 1 leads

FIG. 4. Ratio of the analytic result of the relic density to the exact value in the �A�zF;st�; A0�zF;st�� plane for a � 2:0
 10�9 GeV�2,
b � 0 (left frame) and for a � 0, b � 1:5
 10�8 GeV�2 (right). The other parameters are as in Fig. 3.

FIG. 3. Contour plot of xF � xF;st in the �A�zF;st�; A0�zF;st��
plane. Here we take a � 2:0
 10�9 GeV�2, b � 0, m� �

100 GeV, g� � 2, g	 � 90 (constant) and k � 1. This parame-
ter set produces xF;st � 22:0 and ��h

2 � 0:099 for the standard
approximation.
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to a reduced WIMP relic density, whereas A < 1 means
larger relic density, if the cross section is kept fixed.

However, unlike the freeze-out temperature, the annihi-
lation integral is sensitive to A�z� for all z � zF. Note that
A0�zF;st�> 0 implies A�z�< A�zF;st� for z < zF;st ’ zF. A
positive first derivative, A0�zF;st�> 0, can therefore to some
extent compensate for A�zF;st�> 1; analogously, a negative
first derivative can compensate for A�zF;st�< 1. This ex-
plains the slopes of the curves in Fig. 5. Recall also that
A0�zF;st� � 0 does not imply a constant modification factor
A�z�; rather, the term / A00�zF;st� in Eq. (29) makes sure
that A approaches k as z! 0. This explains why a change
of A by some given percentage leads to a smaller relative
change of ��h2, as can be seen in the figure. This also
illustrates the importance of ensuring appropriate (near-

standard) expansion rate in the BBN era. Finally, since the
expansion rate at late times is given by Hst=k, bigger
(smaller) values of k imply that the � relic density is
reduced (enhanced).

Figure 5 shows that we need additional physical con-
straints if we want to derive bounds on A�zF;st� and/or
A0�zF;st�. Once the annihilation cross section is known,
the requirement (1) will single out a region in the space
spanned by our three new parameters (including k) which
describe the nonstandard evolution of the Universe, but this
region is not bounded. Such additional constraints can be
derived from the requirement that the Hubble parameter
should remain positive throughout the epoch we are con-
sidering. As noted earlier, requiringH > 0 for all T < TF;st

leads to an upper bound on A0�zF;st�; explicitly,

FIG. 5. Contour plots of the relic abundance in the �A�zF;st�; A0�zF;st�� plane. Here we choose (a) a � 2:0
 10�9 GeV�2, b � 0,
k � 1; (b) a � 0, b � 1:5
 10�8 GeV�2, k � 1; (c) a � 2:0
 10�9 GeV�2, b � 0, k � 1:2; (d) a � 2:0
 10�9 GeV�2, b � 0,
k � 0:8. The other parameters are as in Fig. 3.
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 A0�zF;st�<
2�A�zF;st� �

������������������
kA�zF;st�

q
�

zF;st
: (33)

On the other hand, a lower bound on A0�zF;st� is obtained
from the condition that the modified Hubble parameter is
positive between the highest temperature Ti where the
ansatz (29) holds and TF;st:

 

A0�zF;st�>�
�

1

zi � zF;st

�
2�

zi
zF;st

�
A�zF;st�

� k
�

1

zF;st
�

1

zi

��
; (34)

for �1� zF;st=zi�
2k < A�zF;st�, and

 A0�zF;st�>
2�A�zF;st� �

������������������
kA�zF;st�

q
�

zF;st
; (35)

for A�zF;st�< �1� zF;st=zi�2k, where zi � Ti=m�.
Evidently the lower bound on A0�zF;st� depends on zi, i.e.

on the maximal temperature where we assume our ansatz
(29) to be valid. In Ref. [14] we have shown that in
standard cosmology (A � 1) essentially full thermalization
is already achieved for xi & xF � 0:5, even if n��xi� � 0.
However, it seems reasonable to demand that H should
remain positive at least up to xi � xF � (a few). In Fig. 6
we therefore show the physical constraints on the modifi-
cation parameter A�z� for xF;st � xi � 4, 10 and k � 1. The
dashed and dotted lines correspond to the upper and lower
bounds on A0�zF;st�, described by Eqs. (33)–(35), respec-

tively. We see that when xF;st � xi � 4 the allowed region
is 0:4 & A�zF;st� & 6:5 with �60 & A0�zF;st� & 400 for
b � 0 (left frame), and 0:4 & A�zF;st� & 4:5 with �60 &

A0�zF;st� & 300 for a � 0 (right frame). When xF;st � xi �
10, the lower bounds are altered to 0:6 & A�zF;st�, �10 &

A0�zF;st� for b � 0 (left frame), and 0:6 & A�zF;st�, �20 &

A0�zF;st� for a � 0 (right frame). Note that the lower
bounds on A�zF;st�, which depend only weakly on xi so
long as it is not very close to xF, are almost the same in
both cases, which also lead to very similar relic densities in
standard cosmology. However, the two upper bounds differ
significantly. The reason is that large values of A�zF;st�, i.e.
a strongly suppressed Hubble expansion, require some
degree of fine-tuning: One also has to take large positive
A0�zF;st�, so that A becomes smaller than 1 for some range
of z values below zF, leading to an annihilation integral of
similar size as in standard cosmology. Since the b terms
show different zF dependence in the annihilation integral
(32), the required tuning between A�zF;st� and A0�zF;st� is
somewhat different than for the a terms, leading to a
steeper slope of the allowed region. This allowed region
therefore saturates the upper bound (33) on the slope for
somewhat smaller A�zF;st�.

The effect of this tuning can be seen by analyzing the
special case where A00�zF;st� � 0. The modification pa-
rameter then reads

 A�z� �
A�zF;st� � k

zF;st
z� k: (36)

Note that A is now a monotonic function of z, making large
cancellations in the annihilation integral impossible.
Imposing that A�z� remains positive for zF;st � z � zi

FIG. 6. Contour plots of the relic abundance ��h
2 in the �A�zF;st�; A

0�zF;st�� plane. The dashed line corresponds to the upper bound
on A0�zF;st�. The dotted lines correspond to the lower bounds calculated for xF;st � xi � 4, 10. We take a � 2:0
 10�9 GeV�2, b � 0
(left frame) and a � 0, b � 1:5
 10�8 GeV�2 (right frame). The other parameters are as in Fig. 3.
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leads to the lower limit

 A�zF;st�>
�
1�

zF;st

zi

�
k: (37)

There is no upper bound, since A�z� is now automatically
positive for all z 2 �0; zF;st� if A�zF;st� and A�0� � k are
both positive. Figure 7 shows constraints on the relic
abundance in the �A�zF;st�; k� plane for A00�zF;st� � 0. The
dotted lines correspond to the lower bounds (37) on A�zF;st�
for xF;st � xi � 4, 10. As noted earlier, k is constrained by
the BBN bound. This leads to the bounds 0:5 & A�zF;st� &

1:8 for b � 0 (left frame), and 0:65 & A�zF;st� & 1:6 for
a � 0 (right frame), when xF;st � xi � 10. Evidently the
constraints now only depend weakly on whether the a or b
term dominates in the annihilation cross section. As the
initial temperature is lowered, the impact of the constraint
(37) disappears.

So far we have assumed in this section that the reheat
temperature was high enough for WIMPs to have attained
full thermal equilibrium. If this was not the case, the initial
temperature as well as the suppression parameter affects
the final relic abundance. Here we show that the lower
bound on the reheat temperature derived in the previous
section survives even in scenarios with altered expansion
history as long as WIMPs were only produced thermally.

This can be understood from the observation that the
Boltzmann equation with modified expansion rate is ob-
tained by replacing h�vi in the radiation-dominated case
by h�viA. Increasing (decreasing) A therefore has the same
effect as an increase (decrease) of the annihilation cross
section. Since the lower bound on T0 was independent of �

(more exactly: we quoted the absolute minimum, for the
optimal choice of�), we expect it to survive even if A�z� �

1 is introduced.
This is borne out by Fig. 8, which shows the relic

abundance ��h2 in the �A�zF;st�; x0� plane for the simpli-
fied case A00�zF;st� � 0; similar results can be obtained for
the more general ansatz (29). The shaded region corre-
sponds to the bound (1) on the cold dark matter abundance.
As expected, this figure looks similar to Fig. 1 if the

FIG. 8. Contour plot of the relic abundance ��h
2 in the

�A�zF;st�; x0� plane. Here we choose a � 2:0
 10�9 GeV�2,
b � 0, k � 1, A00�zF;st� � 0. The other parameters are as in
Fig. 3. The shaded region corresponds to the WMAP bound on
the cold dark matter abundance, 0:08<�CDMh2 < 0:12 (95%
C.L.).

FIG. 7. Contour plots of the relic abundance ��h
2 in the �A�zF;st�; k� plane for A00�zF;st� � 0. The dotted lines correspond to the lower

bounds of A�zF;st�, calculated for xF;st � xi � 4, 10. We take a � 2:0
 10�9 GeV�2, b � 0 (left frame) and a � 0, b � 1:5

10�8 GeV�2 (right frame). The other parameters are as in Fig. 3.
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annihilation cross section in Fig. 1 is replaced by A�zF;st�.
The maximal value of x0 consistent with the WMAP data
remains around 23 even in these scenarios with modified
expansion rate. Figure 8 also shows that A�zF;st� � 1
is allowed for some narrow range of initial temperature
T0 < TF. This is analogous to the low cross section branch
in Fig. 1.

IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated the relic abundance of
WIMPs �, which are nonrelativistic long-lived or stable
particles, in nonstandard cosmological scenarios. One mo-
tivation for studying such scenarios is that they allow us to
reproduce the observed dark matter density for a large
range of WIMP annihilation cross sections. Our motivation
was the opposite: we wanted to quantify the constraints
that can be obtained on parameters describing the early
universe, under the assumption that thermally produced
WIMPs form all dark matter. Wherever necessary, we fixed
particle physics quantities such that standard cosmology
yields the correct relic density.

Specifically, we first considered scenarios with low post-
inflationary reheat temperature, while keeping all other
features of standard cosmology (known particle content
and Hubble expansion parameter during WIMP decou-
pling; no late entropy production; no nonthermal WIMP
production channels). If the temperature was so low that
WIMPs could not achieve full thermal equilibrium, the
dependence of the abundance on the mass and annihilation
cross section of the WIMPs is completely different from
that in the standard thermal WIMP scenario. In particular,
if the maximal temperature T0 is much less than the
decoupling temperature TF, n� remains exponentially sup-
pressed. By applying the observed cosmological amount of
cold dark matter to the predicted WIMP abundance, we
therefore found the lower bound of the initial temperature
T0 * m�=23. One might naively think that this bound
could be evaded by choosing a sufficiently large WIMP
production (or annihilation) cross section. However, in-
creasing this cross section also reduces TF. For sufficiently
large cross section one therefore has TF � T0 again; in this
regime the relic density drops with increasing cross sec-
tion. Our lower bound is the minimal T0 required for any
cross section; once the latter is known, the bound on T0

might be slightly sharpened. As a by-product, we also
noted that the final relic density depends only weakly on
the annihilation cross section if T0 is slightly above this
lower bound.

We also investigated the effect of a nonstandard expan-
sion rate of the Universe on the WIMP relic abundance. In
general the abundance of thermal relics depends on the
ratio of the annihilation cross section to the expansion rate;
the latter is determined unambiguously in standard cos-
mology. We found that even for nonstandard Hubble pa-

rameter the relic abundance can be calculated accurately in
terms of an annihilation integral, very similar to the case of
standard cosmology. We assumed that the WIMP annihi-
lation cross section is such that the standard scenario yields
the observed relic density, and parametrized the modifica-
tion of the Hubble parameter as a quadratic function of the
temperature. In this analysis it is crucial to make sure that
at low temperatures the Hubble parameter approaches its
standard value to within�20%, as required for the success
of big bang nucleosynthesis (BBN).

Keeping the annihilation cross section fixed and allow-
ing a 20% variation in the relic density, roughly corre-
sponding to the present ‘‘2�’’ band, we found that the
expansion of the Universe at T � TF might have been
more than 2 times faster, or more than 6 times slower,
than in standard cosmology. These large variations of
H�TF� can only be realized by fine-tuning of the parame-
ters describing H�T < TF�. However, even if we forbid
such fine-tuning by choosing a linear parametrization for
the modification of the expansion rate, a 20% variation of
��h

2 allows a difference between H�TF� and its standard
expectation of more than 50%. This relatively weak sensi-
tivity of the predicted ��h2 onH�TF� is due to the fact that
the relic density depends on all H�T < TF�; as stressed
above, we have to require that H�T � TF� approaches its
standard value to within �20%. The fact that determining
��h2 will yield relatively poor bounds on H�TF� remains
true even if the annihilation cross section is such that a
nonstandard behavior of H�T� is required for obtaining the
correct � relic density. Finally, we showed that the absolute
lower bound on the temperature required for thermal �
production is unaltered by allowing H�T� to differ from its
standard value.

Of course, in order to draw the conclusions derived in
this article, we need to convince ourselves that WIMPs do
indeed form (nearly) all dark matter. This requires not only
the detection of WIMPs, e.g. in direct search experiments;
we also need to show that their density is in accord with the
local dark matter density derived from astronomical obser-
vations. To that end, the cross sections appearing in the
calculation of the detection rate need to be known inde-
pendently. This can only be done in the framework of a
definite theory, using data from collider experiments. For
example, in order to determine the cross section for the
direct detection of supersymmetric WIMPs, one needs to
know the parameters of the supersymmetric neutralino,
Higgs and squark sectors [3]. We also saw that inferences
about H�TF� can only be made if the WIMP annihilation
cross section is known. This again requires highly non-
trivial analyses of collider data [27], as well as a consistent
overall theory. We thus see that the interplay of accurate
cosmological data with results obtained from dark matter
detections and collider experiments can give us insight into
the pre-BBN universe, which to date remains unexplored
territory.
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