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We consider the hypothesis that dark energy and dark matter are the two faces of a single dark
component, a unified dark matter (UDM) that we assume can be modeled by the affine equation of state
(EoS) P � p0 � ��, resulting in an effective cosmological constant �� � �p0=�1� ��. The affine EoS
arises from the simple assumption that the speed of sound is constant; it may be seen as an approximation
to an unknown barotropic EoS P � P���, and may as well represent the tracking solution for the dynamics
of a scalar field with appropriate potential. Furthermore, in principle the affine EoS allows the UDM to be
phantom. We constrain the parameters of the model, � and ��, using data from a suite of different
cosmological observations, and perform a comparison with the standard �CDM model, containing both
cold dark matter and a cosmological constant. First considering a flat cosmology, we find that the UDM
model with affine EoS fits the joint observations very well, better than �CDM, with best-fit values � �
0:01� 0:02 and �� � 0:70� 0:04 (95% confidence intervals). The standard model (best-fit �� �
0:71� 0:04), having one less parameter, is preferred by a Bayesian model comparison. However, the
affine EoS is at least as good as the standard model if a flat curvature is not assumed as a prior for �CDM.
For the latter, the best-fit values are �K � �0:02�0:01

�0:02 and �� � 0:71� 0:04, i.e. a closed model is
preferred. A phantom UDM with affine EoS is ruled out well beyond 3�.
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I. INTRODUCTION

In the past few years, evidence that the Universe is going
through a phase of accelerated expansion has become
compelling [1–4]. The cause for the acceleration, however,
remains mysterious, and might be regarded as the most
outstanding problem in contemporary cosmology. The fa-
vored working hypothesis is to consider a dynamical, al-
most homogeneous component with negative pressure,
dubbed dark energy [5–8]. Such a framework helps alle-
viating a number of fundamental problems arising when an
ad hoc cosmological constant � term in Einstein equations
is interpreted as the energy density of the vacuum [9–11].
Alternatives include modifications of gravity and extra
dimensions [12–14].

Here, within the framework of general relativity (GR),
we explore the hypothesis that dark energy (the source for
the observed acceleration of the Universe) and dark matter
(DM, required to explain structure formation) are the two
faces of a single dark component, a unified dark matter
(UDM) that we assume can be modeled by a simple 2-
parameter barotropic equation of state (EoS). In turn, this
EoS can be derived from the simple assumption that the
UDM speed of sound is constant.

Recent analyses of cosmological data suggest that
within the standard �CDM scenario (cold dark matter
plus �) a slightly closed, positively curved model is pre-
ferred [15]. With this in mind, motivated by a theoretical
bias in favor of a flat inflationary scenario, we compare our
UDM model, assumed to be flat, with both flat and curved
�CDM models, using Bayesian methods [16,17].

II. THE MODEL

Let us consider a flat Friedmann-Robertson-Walker uni-
verse in GR, with radiation, baryons, and a single UDM
component with energy density �X. The dynamics of this
model is governed by the Friedmann equation

 H2 �
8�G

3
��r � �b � �X� (1)

and the energy conservation equations of the three compo-
nents. Here H is the Hubble expansion scalar related to the
scale factor a by H � _a=a, and no ad hoc cosmological
constant � term is assumed in Eq. (1).

With the usual scaling laws �b / a�3 and �r / a�4 for
the density of baryons and radiation, we now assume that
the dark component is represented by a barotropic fluid
with EoS PX � PX��X�, satisfying the conservation equa-
tion

 _� X � �3H��X � PX�: (2)

It is clear from Eq. (2) that, if there exists an energy density
value �X � �� such that PX���� � ���, then �� has the
dynamical role of an effective cosmological constant:
_�� � 0 (see [18] for a detailed discussion).

In order to provide for acceleration, our UDM compo-
nent must violate the strong energy condition (SEC) (see
e.g. [19]): PX <��X=3 at least below some redshift. This
can be achieved by a constant wX � PX=�X, which is
indeed allowed by observational tests based only on the
homogeneous isotropic background evolution, see e.g.
[20,21] (tests of the same kind we are going to consider
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here, see below). In this case, however, one would have
c2
s � dPX=d�X � w< 0 for the adiabatic speed of sound,

and this would have nasty consequences for structure for-
mation in an adiabatic fluid scenario.1 Instead, given that
the EoS PX � PX��X� is unknown, the next simplest ap-
proximation we can make to model it is to assume a
constant speed of sound dPX=d�X ’ �, leading to the 2-
parameter affine form [18]

 PX ’ p0 � ��X: (3)

This allows for violation of SEC even with c2
s � � � 0.

Then, using (3) in (2) and asking for _�� � 0 leads to the
effective cosmological constant �� � �p0=�1� ��.
Equation (3) may also be regarded (after regrouping of
terms) as the Taylor expansion, up to O�2�, of any EoS
PX � PX��X� about the present energy density value �Xo
[25]. In addition, it may also represent the exact tracking
solution for the dynamics of a scalar field with appropriate
potential [26].

The EoS (3), if taken as an approximation, could be used
to parametrize a dark component (either UDM or DE) at
low and intermediate redshift. In the following we are
going to make a more radical assumption, that is we are
going to extrapolate the validity of Eq. (3) to any time. In
doing this we are therefore going to build a cosmological
model based on a UDM component with EoS (3), to be
tested against observables at low and high redshift, as
described in the next section.

Using the EoS (3) in the conservation equation (2) leads
to a simple evolution for �X�a�:

 �X�a� � �� � ��Xo � ���a�3�1���; (4)

where today ao � 1. Formally, with the EoS (3) we can
then interpret our UDM as made up of the effective cos-
mological constant �� and an evolving part with present
‘‘density’’ ~�m � �Xo � ��. We may then dub it ��DM.2

A priori, no restriction on the values of � and po is
required, but one needs po < 0 and �>�1 in order to
satisfy the conditions that �� > 0 and �! �� in the
future, i.e. to have that �� is an attractor for Eq. (3).
Then, our UDM is phantom if ~�m < 0, but without a
‘‘big rip,’’ cf. [18]. Last, but not least, it follows from
Eq. (4) that, with ~�m > 0 and � � 0, our model is equiva-

lent to a �CDM. This allows for a straightforward com-
parison of models, done in Sec. IV.

Finally, the EoS of our ��DM model can be character-
ized by its parameter wX � PX=�X:

 wX � ��1� ��
��

�X
� �; (5)

 wXo ’ ��� � ��1���� ����1��Xo� � � � � ; (6)

where today’s value wXo is approximated using �Xo 	 1
and assuming j�j 
 1. Hence at leading order wXo ’
���, while wX ! �1 asymptotically in the future.

III. OBSERVABLES

In order to constrain the affine EoS (3) we perform
maximum likelihood tests on its parameters, using differ-
ent cosmological probes. We assume a flat cosmological
model, � � 1, and we hold the baryon density fixed to the
best-fit value derived from the analysis of Wilkinson
Microwave Anisotropy Probe (WMAP) 3 yr data �bh2 �
0:022 29� 0:000 75 [15]. We also fix the Hubble parame-
ter to the value measured by the Hubble Space Telescope
(HST) Key Project H0 � 72� 8 km=s=Mpc [27] (but see
below about marginalization). This leaves only two free
parameters in our analysis, i.e. those characterizing the
affine EoS: the constant speed of sound c2

s � � and �� �
8�G��=�3H2

o�. Given that our model contains an effective
cosmological constant parametrized by �� and that for
~�m > 0 in (4) and c2

s � � � 0 this model is equivalent to a
�CDM, in essence we are going to constrain with observ-
ables the possible variations of the speed of sound of the
overall dark component from the value it takes in the
�CDM case, under the simple assumption that c2

s � � is
a constant.

The observables we use have become the standard tools
to probe the background cosmology, through their depen-
dence on the expansion rate of the Universe (see, e.g.
[20,21]). They are:

(a) The present age of the Universe, t0. This is obtained
directly from the definition of H. We compared the
theoretical prediction on t0 with its best estimate
t0 � 12:6�3:4

�2:4 Gyr, derived from a combination of
different astrophysical probes in [28].

(b) The luminosity distance of type Ia supernovae. Type
Ia SNe light curves allow a determination of an
extinction-corrected distance moduli,

 �0 � m�M � 5 log�dL=Mpc� � 25; (7)

where dL � �L=4�F�1=2 � �1� z�
Rz

0 dz
0=H�z0� is

the luminosity distance. We compare our theoretical
predictions to the values of�0 estimated in [4] using
a sample of 182 type Ia SNe (the new Gold data set
[4] containing the old Gold sample [3], the
Supernovae Legacy Survey (SNLS) [29], and 12
new SNe observed by the HST).

1The EoS with constant w may as well represent a scalar field
with exponential potential [22], and this would have a unitary
effective speed of sound, c2

eff � 1, see e.g. [23,24] and references
therein.

2It should be clear that, for ~�m > 0 and starting from c2
s �

� � const, our model is formally totally equivalent to a model
where a standard cosmological constant � � 8�G�� is as-
sumed a priori in Einstein equations, i.e. in (1)), together with
a standard fluid with linear EoS w � � and present density ~�m.
Indeed, by definition _�� � 0, thus it is easy to check that �� and
�m � �X � �� in (4) separately satisfy their own conservation
equations, so that there is no coupling between the dark energy
part �� and the dark matter part �m of our UDM fluid.
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(c) The location of cosmic microwave background
(CMB) acoustic peaks. When the geometry of the
Universe is held fixed at � � 1, this only depends
on the amount of dark matter, through the shift
parameter R defined as

 R � �1=2
m H0DA�zls�; DA�zls� �

Z zls

0

dz0

H�z0�
;

(8)

where DA is the distance to the last scattering sur-
face. We have identified �m � ~�m for our model, i.e.
�m � 8�G~�m=�3H

2
o�, and the redshift of the last

scattering has been estimated using the fit function
from [30], which for our choice of �bh

2 gives zls �
1089. We derived a value of R using five
Monte Carlo Markov chains produced in the most
recent analysis of the WMAP data.3 We estimated a
value R � 1:71� 0:03. Our new analysis updates
previously published values of R, e.g. [31].

(d) Baryon acoustic oscillations. The recent detection
of acoustic features in the matter power spectrum
measured with the Sloan Digital Sky Survey (SDSS)
galaxy survey constrains the A parameter defined as

 A �
�1=2
m H0

0:35c
DV; DV �

�
D2
A�z�

cz
H�z�

�
1=2

z�0:35
;

(9)

where DV is the distance to z � 0:35 taking into
account the distortion along the line of sight due to
the redshift. The value of the A parameter adopted in
our analysis is the one measured from the SDSS
luminous red galaxy survey: A � 0:469� 0:017
(for ns � 0:98) [32].

We perform our likelihood analysis by sampling the
parameter space in the range ��0:3; 0:3 for � (where the
upper limit is due to the requirement that the UDM fluid
does not scale faster than radiation) and ��0:3; 0:9 for
��. The size of our parameter space does not pose any
serious problem in terms of computational time. Thus, we
preferred to perform a direct evaluation of the likelihood
on a predefined grid in the volume under consideration,
rather than adopting the now popular Monte Carlo Markov
chain approach. When calculating confidence interval in
the �-�� plane from the SNe data, we always marginalize
over a calibration uncertainty (treated as a nuisance pa-
rameter) on the absolute magnitude. Note that marginaliz-
ing over calibration uncertainty is completely equivalent to
marginalizing over H0, since both parameters effectively
act as an additional term in the distance modulus (7).

A final caveat on the use of the R and A parameters. The
numerical values adopted in our analysis were both derived
assuming an underlying �CDM cosmology. In principle,

one might question whether it is a good assumption to
adopt the same numerical values when constraining a
different class of models. We believe that this is a reason-
able approximation when comparing the evolution of the
expansion rate with observations, and one that has been
adopted in many other previous analyses of nonstandard
dark energy models [20,21,33,34].

Indeed, the physical motivation for adopting this ap-
proximation lies in the fact that both observables mostly
depend only on the expansion rate of the Universe. The
CMB peak position is defined by a standard ruler (the
sound horizon at recombination) which is very weakly
affected by the dark energy component (first, because
dark energy has essentially no influence before recombi-
nation; second, because the sound speed which enters into
consideration here is that of the baryon-photon fluid, re-
gardless of the other components). This standard ruler is
then seen under different angles depending on the angular
diameter distance at recombination. This, in turn, depends
only weakly on the equation of state of dark energy, and
more strongly on its density: in our model, at least for the
values of the � parameters considered here, this follows
very closely that of �CDM, hence it is reasonable to
believe that the approximation does not introduce signifi-
cant errors. The same considerations apply to the A pa-
rameter. On this basis, we are then confident that the errors
we are making by extending the �CDM approximation to
our model lie well within the present accuracy of our
analysis.

IV. RESULTS

Figure 1 shows the confidence levels derived from the
different cosmological observations used in our analysis,
together with the joint confidence levels from the com-
bined data sets. The combined levels are also shown sepa-
rately in more detail in Fig. 2. A fairly narrow area of the
parameter space is identified by our analysis, encompass-
ing models which are close to the standard cosmological
constant case with �� 	 0:7. However, there is a prefer-
ence for values of � larger than zero. Our best fit is �� �
0:70� 0:04 and � � 0:01� 0:02, both at 95% C.L.; for
these values, we find �2 � 157:64 with 185 data points.
The marginalized likelihood functions for the �� parame-
ter are shown in Fig. 3. As said above, when � � 0 is
assumed as a prior, our model describes a flat �CDM
model. In this case, we find a result which is consistent
with a previous analysis: �� � 0:71� 0:04 at 95% C.L.,
with �2 � 158:83. We note that, for � � 0, the SNe data
seem to prefer a slightly smaller value of �� (see Fig. 3,
top panel). This agrees with similar results (see e.g. [35],
which also suggests that this might be due to some system-
atic effect in the latest SNe data).

In order to assess the statistical significance of our
findings, we compare the ��DM model with the flat
�CDM using the Akaike and the Bayesian Information3See the Lambda web site: http://lambda.gsfc.nasa.gov.
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Criteria (AIC and BIC, [16]), as well as the Bayesian
evidence E [17] (see also [36,37]). In essence, all these

can be used as model selection criteria, i.e. they estimate
how much adding a new parameter to the cosmological
model (in our case, the � parameter) is justified by the
increased goodness of fit (cf. also [20]). BIC improves on
AIC taking also into account the number of data points.
BIC should be a crude approximation to E, where the latter
is a further refinement as it averages the likelihood of the
model in the prior: E �

R
L�p�P�p�dp where p are the

free parameters of the model and P is the prior distribution
of the parameters. E is precisely the likelihood of the
model given the data, according to Bayes theorem, and
as such gives positive weight to a ‘‘good on average’’ fit
over a larger volume in parameter space. The model com-
parison is achieved through computing the quantity
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FIG. 2 (color online). Likelihood contours at 68%, 95%, and
99% C.L. in the �-�� plane, obtained from the combined data
sets. The dot represents the combination of parameters which
best fits our data. The vertical line locates the models describing
flat �CDM models.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

AGE
GOLD
CMB
BAO
TOT

AGE
GOLD
CMB
BAO
TOT

0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

AGE
GOLD
CMB
BAO
TOT

AGE
GOLD
CMB
BAO
TOT

0.01

FIG. 3. Marginalized likelihood functions for �� derived from
each data set and from their combination. Top panel: the flat
�CDM model, obtained when � � 0 is assumed as a prior.
Bottom panel: the likelihood obtained by assuming the best-fit
value � � 0:01 for the � parameter.

TABLE I. Model comparison with information criteria and
Bayesian evidence: the �’s compare the flat ��DM and the
nonflat �CDM against the standard flat �CDM model.

Model �2 �AIC �BIC � lnE

flat �CDM 158.83 0 0 0
flat ��DM 157.64 0.8 4 3.9
curved �CDM 161.53 4.7 7.9 3.4

FIG. 1 (color online). UDM likelihood contours at 68%, 95%,
and 99% C.L. (shaded regions), in the �-�� plane, obtained
from the age of the universe, type Ia supernovae (SN Ia), the
location of cosmic microwave background acoustic peaks, and
baryon acoustic oscillations (BAO). Also shown (continuous
curves) are the likelihood contours obtained from combining
the data sets.
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� lnE � lnE�0 � lnE��. We find � lnE � 3:9, which has
to be regarded as a rather strong evidence in favor of the
flat �CDM model, given the present data [17]. Using AIC
and BIC gives milder results (evidence but not strong
evidence, cf. [16]), summarized in Table I.

However, our analysis shows rather clearly that the best-
fit model in our class is not a flat �CDM and, as said in the
introduction, recent results favor a slightly closed universe
within the �CDM models [15]. Then, a question worth
investigating is which model performs better in terms of
AIC, BIC, and E if we add an extra parameter to the flat
�CDM, either by allowing for curvature in the �CDM
scenario, or through our ��DM models, i.e. adding �K or
�, respectively. We find that for nonflat �CDM models the
best fit is achieved for �� � 0:71� 0:04 and �K �
�0:02�0:01

�0:02, see Fig. 4, and again there is evidence in favor
of the flat �CDM, see Table I. A direct comparison of the
not nested [16] nonflat �CDM and the ��DM models is
possible in terms of AIC and BIC: in terms of the latter, we
see from Table I that there is positive evidence in favor of
the ��DM model. An indirect comparison of the � lnE’s
suggests, however, that the two models are statistically
almost equivalent.

V. CONCLUSIONS

Today’s standard model for the homogeneous isotropic
universe is the 1-parameter flat �CDM, based on GR as the
theory of gravity, a flat spatial geometry as it follows from
the inflationary paradigm, cold dark matter, and an ad hoc

cosmological constant � as the only two relevant constit-
uents apart from baryons and radiation. However, the now
well-established accelerated expansion of the Universe
calls for an explanation beyond the ad hoc � term in
Einstein equations. In the game of models testing and
selection, in the absence of really compelling models
from fundamental physics, that of simplicity of models—
the Occam’s razor—remains a critical ingredient.
Quantitatively, this can be implemented using Bayesian
methods in the statistical analysis of data, thereby measur-
ing the worth of models by favoring those that give a good
fit with fewer parameters. On the other hand, it does makes
sense in our view to consider models built on some physi-
cal basis, and compare models with equal number of
parameters but different physical motivations, in an at-
tempt to establish which model performs better.

Here we have assumed a single dark component with
barotropic EoS PX � PX��X� to make up for a total � � 1
(i.e. a flat model) and the acceleration of the Universe.
Assuming a constant speed of sound c2

s � � the 2-
parameters affine EoS (3) then follows: we then dub our
model as ��DM, as it admits an effective cosmological
constant and thus it is formally equivalent to having a �
term and an evolving part characterized by �. For � � 0,
our UDM is formally equivalent to �CDM for today’s
density value �Xo > �� in (4). On the other hand, for
any �>�1 and for �Xo < �� our UDM would be phan-
tom, with no ‘‘big rip’’ [18].

Simple parametrizations of the EoS may lead to mis-
leading results [4,38]. Comparing 2-parameter EoS’s, in
our view barotropic forms4 like (3) have at least the ad-
vantage over the common scale factor or redshift parame-
trizations of relating directly PX and �X. This seems more
physical for an EoS: one wants the parametrization to
express an intrinsic and realistic relation between the fluid
or field [39] variables, disentangling it from universe evo-
lution. In addition, an EoS of the form PX � PX��X� has a
validity that goes beyond that of the homogeneous iso-
tropic background. It can indeed be easily carried forward
to study inhomogeneities: at perturbative order one can use
it assuming adiabatic perturbations with �p � c2

s��, rep-
resenting either a barotropic fluid or a k-essence field [26],
or else to formally describe a scalar field with unitary
effective speed of sound, c2

eff � 1 [23,24,26]. We are ad-
dressing the growth of perturbations and their CMB sig-
natures for all these cases in a forthcoming paper [40].

Constraining the ��DM model with various observ-
ables we find that it fits the data well, better than
�CDM, with best-fit values � � 0:01� 0:02 and �� �
0:70� 0:04. From Eq. (6) we then get wX0 ’ �0:7 at
leading order: indeed we find that values of � and ��

corresponding to a phantom dark component are ruled out

– 0.06 – 0.04 – 0.02 0 0.02 0.04
Ω k

0.6

0.65

0.7

0.75

0.8

ΩΛ

FIG. 4 (color online). �CDM models: likelihood contours at
68%, 95%, and 99% C.L. in the �K-�� plane for the combined
data set. The dot represents the combination of parameters which
best fits our data. The vertical line locates the flat (�K � 0)
models.

4See e.g. [20] for a recent observational test of the Chaplygin
gas and other examples.
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well beyond 3�’s. Our results for model comparison are
summarized in Table I. The flat �CDM model is still
preferred, with a ‘‘rather strong’’ evidence [17].
Comparing our model with a nonflat �CDM shows, how-
ever, that the two are, all in all, almost statistically equiva-
lent. Then, one would advocate our model, which is
assumed to be flat, on the basis of an inflation motivated
theoretical bias.

Beyond this factual analysis, we may as well look at
Fig. 1 from a different perspective. It is indeed rather clear
that BAO and SNe data alone prefer a larger c2

s � � value
than our best-fit value. Indeed, we find that the BAO�
SNe best fit is � 	 0:1. On the other hand, it is also clear
from Fig. 1 that the CMB strongly constrains �, and forces
it to take a very small value (cf. [40,41]). This seems to
suggest that high redshift data (CMB) favor c2

s ’ 0, while
low and intermediate redshift data (BAO and SNe) allow
for a larger c2

s , i.e. that the speed of sound of a UDM
component should be variable. This is indeed in line with
the findings of an analysis of models such as the general-
ized Chaplygin gas, which shows indeed a very good fit to
data [20]. As we have shown here, the standard �CDM can
be seen as a UDM with vanishing speed of sound at all
redshifts, c2

s � � � 0. Thus, If proved by future observa-
tions, a nonvanishing speed of sound at low and intermedi-
ate redshift for the whole dark component in the Friedmann
equation (1) would provide a sort of observational ‘‘no-go
theorem’’ for the standard �CDM in GR.

In this paper, in order to consider a minimalist 2-
parameter model, we have assumed a single UDM compo-
nent with constant speed of sound c2

s � � in addition to
baryons and radiation. It could well be that the absence of
collisionless CDM is going to spoil structure formation in
this model, or else, that our model is subject to much
stronger constraints, forcing it to coincide with �CDM in
practice, when a full CMB analysis is carried out
(cf. [40,41]). On the other hand the simple ��DM com-
ponent, derived assuming a constant speed of sound, may
turn out to be a useful and physically motivated model for
dark energy (cf. [42,43]), additional to CDM. In any case,
it can be shown [26] that the affine EoS (3) corresponds to
an exact solution for a quintessence scalar field with ap-
propriate potential, as well as to the general dynamics of a
k-essence field. The quintessence field, in particular, is
going to have different perturbations than the correspond-
ing fluid (see e.g. [23,24]), which then need to be sepa-
rately analyzed. All these problems can only be settled
with future work.

ACKNOWLEDGMENTS

We thank members of ICG, Portsmouth, for useful dis-
cussions, in particular, Robert Crittenden. M. B. thanks
MIUR for a ‘‘Rientro dei Cervelli’’ grant and the Galileo
Galilei Institute for Theoretical Physics (Florence) for
hospitality while part of this work was carried out, and
the INFN for partial support during the visit.

[1] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A.
Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S.
Jha, and R. P. Kirshner et al., Astron. J. 116, 1009 (1998).

[2] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P.
Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar,
and D. E. Groom et al., Astrophys. J. 517, 565 (1999).

[3] A. G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H. C.
Ferguson, B. Mobasher, P. Challis, A. V. Filippenko, S.
Jha, and W. Li et al., Astrophys. J. 607, 665 (2004).

[4] A. G. Riess, L.-G. Strolger, S. Casertano, H. C. Ferguson,
B. Mobasher, B. Gold, P. J. Challis, A. V. Filippenko, S.
Jha, and W. Li et al., arXiv:astro-ph/0611572.

[5] P. J. E. Peebles and B. Ratra, Astrophys. J. 325, L17
(1988).

[6] C. Wetterich, Nucl. Phys. B302, 668 (1988).
[7] R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev.

Lett. 80, 1582 (1998).
[8] L. Wang, R. R. Caldwell, J. P. Ostriker, and P. J. Steinhardt,

Astrophys. J. 530, 17 (2000).
[9] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

[10] P. J. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
[11] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[12] V. Sahni, arXiv:astro-ph/0502032.
[13] R. Maartens, J. Phys. Conf. Ser. 68, 012046 (2007).

[14] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006).

[15] D. N. Spergel, R. Bean, O. Doré, M. R. Nolta, C. L.
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