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We propose a scenario in which the dark components of the Universe are manifestations of a single bulk
viscous fluid. Using dynamical system methods, a qualitative study of the homogeneous, isotropic
background scenario is performed in order to determine the phase space of all possible solutions. The
specific model which we investigate shares similarities with a generalized Chaplygin gas in the
background but is characterized by nonadiabatic pressure perturbations. This model is tested against
supernova type Ia and matter power spectrum data. Different from other unified descriptions of dark
matter and dark energy, the matter power spectrum is well behaved, i.e., there are no instabilities or
oscillations on small perturbation scales. The model is competitive in comparison with the currently most
popular proposals for the description of the cosmological dark sector.
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I. INTRODUCTION

The crossing of observational data from high redshift
supernovae of type Ia (SNe Ia) [1–4], cosmic microwave
background (CMB) radiation [5], matter power spectra [6],
x rays from clusters of galaxies [7,8], and weak gravita-
tional lensing [9] strongly suggests that the present
Universe is dynamically dominated by a dark sector which
is responsible for about 96% of its total energy content. It is
usually assumed that this dark sector has two different
components: (i) dark matter, which is supposed to consist
of weakly interacting massive particles (WIMPS) with zero
effective pressure and (ii) dark energy, a mysterious entity
which is equipped with a negative pressure. Dark matter
candidates include axions (a particle present in the multi-
plet of grand unified theories) and neutralinos (light parti-
cles present in broken supersymmetric models), but none
of these particles could be detected until now. The most
natural dark energy candidate is a cosmological constant
which arises as the result of a combination of quantum field
theory and general relativity. However, its theoretical value
is between 60–120 orders of magnitude greater than the
observed value for the dark energy. An alternative to the
cosmological constant is a self-interacting scalar field,
known as quintessence. For a brief but enlightening review
of these and other proposals, see [10] and references
therein.

There exists another route of investigations in which
dark matter and dark energy are described within a one-
component model. According to this idea, dark matter and
dark energy are just ‘‘different faces’’ of a single, exotic
fluid. To the best of our knowledge, the first proposal along

this line was the Chaplygin gas in its original and modified
forms [11–13]. However, this unified description of dark
energy and dark matter, in spite of many attractive features,
seemed to suffer from a major drawback: it predicted
strong small scale oscillations or instabilities in the matter
power spectrum, in complete disagreement with the obser-
vational data [14]. (On the other hand, the observed matter
power spectrum corresponds to the baryonic matter distri-
bution which does not exhibit strong oscillations [15], so
that this point is still controversial.) The apparently unre-
alistic predictions of the unified Chaplygin gas type models
are the result of an adiabatic perturbation analysis. It has
been suggested that nonadiabatic perturbations may alle-
viate or even avoid this problem [16–18].

This paper explores to what extent a viscous fluid can
provide a unified description of the dark sector of the
cosmic medium. The general influence of shear and bulk
viscosity on the character of cosmological evolution has
been studied, e.g. in [19], in the context of Bianchi type I
models. Under the conditions of spatial homogeneity and
isotropy, a scalar bulk viscous pressure is the only admis-
sible dissipative phenomenon. The cosmological relevance
of bulk viscous media has been investigated in some detail
for an inflationary phase in the early universe (see [20–24]
and references therein). However, as was argued in [16,25],
an effective bulk viscous pressure can also play the role of
an agent that drives the present acceleration of the
Universe. (Notice that the possibility of a viscosity domi-
nated late epoch of the Universe with accelerated expan-
sion was already mentioned in [26]). For a homogeneous
and isotropic universe, the �CDM model and the (gener-
alized) Chaplygin gas models can be reproduced as special
cases of this imperfect fluid description [16]. Moreover, in
a gas dynamical model the existence of an effective bulk
pressure can be traced back to a nonstandard self-
interacting force on the particles of the gas. While these
investigations were performed for the homogeneous and
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isotropic background dynamics (a study of the background
dynamics which is similar to the setup of the present paper
was recently performed in [27]), a first perturbation theo-
retical analysis for a unifying viscous fluid description of
the dark sector was performed in [28].

The bulk viscous pressure pvisc will be described by
Eckart’s expression [29] pvisc � ��u

�
;�, where the (non-

negative) quantity � is the (generally not constant) bulk
viscosity coefficient and u�;� is the fluid expansion scalar
which in the homogeneous and isotropic background re-
duces to 3H, whereH � _a

a is the Hubble parameter and a is
the scale factor of the Robertson-Walker metric. By this
assumption we ignore all the problems inherent in Eckart’s
approach which have been discussed and resolved within
the Israel-Stewart theory [30,31] (see also [21–24] and
references therein). We expect that for the applications
we have in mind here, the differences are of minor
importance.

It is obvious that the bulk viscosity contributes with a
negative term to the total pressure and hence a dissipative
fluid seems to be a potential dark energy candidate.
However, a cautionary remark is necessary here. In tradi-
tional nonequilibrium thermodynamics the viscous pres-
sure represents a (small) correction to the (positive)
equilibrium pressure. This is true both for the Eckart and
for the Israel-Stewart theories. Here we shall admit the
viscous pressure to be the dominating part of the pressure.
This is clearly beyond the established range of validity of
conventional nonequilibrium thermodynamics. As already
mentioned, nonstandard interactions are required to sup-
port such type of approach [16,25]. Of course, this reflects
the circumstance that dark energy is anything but a ‘‘stan-
dard’’ fluid. (We mention that viscosity has also been
suggested to have its origin in string landscape [32]). To
successfully describe the transition to a phase of acceler-
ated expansion, preceded by a phase of decelerated expan-
sion in which structures can form, it is necessary that the
viscous pressure is negligible at high redshifts but becomes
dominant later on.

In Ref. [28] a one-component bulk viscous model (BV
model) of the cosmic medium was investigated in which
baryons were not taken into account. As far as the SNe Ia
data are concerned, the results of this model were similar to
those obtained for a generalized Chaplygin gas (GCG)
model. But while GCG models predict small scale insta-
bilities and oscillations at the perturbative level, the corre-
sponding matter power spectrum of the BV model turned
out to be well behaved. Of course, the results of a model
that does not include baryons cannot be seen as conclusive;
after all, the observed power spectrum describes the dis-
tribution of baryonic matter. In the present paper, we
perform an advanced analysis which properly includes a
separately conserved baryon component. Thus we estab-
lish a more realistic viscous fluid scenario of the cosmic
substratum.

For the quantitative calculations we will use a constant
coefficient of bulk viscosity. A qualitative analysis with the
help of dynamical system methods is applied to visualize
the space of more general cosmological background sce-
narios. The corresponding phase space reveals interesting
new features compared with those generally found in simi-
lar models (see, for example, [33] and references therein).
In the present approach there is an entire singular axis.
Solutions of the desired type are generated, i.e., solutions
for which an initial subluminal expansion is followed by
superluminal expansion. These solutions are characterized
by a bulk viscosity coefficient with a power law depen-
dence on the energy density, � � �0��, where �0 � const
and � < 1=2.

We test the results of our model both against SNe Ia data
and the observed matter power spectrum. Both the results
for type Ia supernovae and for the matter power spectrum
show that the BV model is competitive with the �CDM
model as well as with quintessence and different Chaplygin
gas type models. In particular, our minimum �2 value for
the SNe Ia data is similar to the �2 values of those models.
Furthermore, the matter power spectrum represents a good
fit to the corresponding observational data. We argue that
the absence of oscillations and instabilities is a conse-
quence of the fact that the pressure perturbations in our
model are intrinsically nonadiabatic.

The paper is organized as follows. In Sec. II we define
our model and specify the homogeneous and isotropic
background dynamics. Section III performs a qualitative
analysis using dynamical system methods. In Sec. IV, the
SNe Ia data are used to restrict the values of the physically
relevant free parameters. In Sec. V the matter power spec-
trum is determined and compared with large scale structure
observations. In Sec. VI we present our conclusions.

II. BACKGROUND RELATIONS

A bulk viscous fluid is characterized by an energy
density � and a pressure p which has a conventional
component p� � �� and a bulk viscosity component
pvisc � �����u

�
;�, such that

 p � ��� ����u�;�: (1)

On thermodynamical grounds the bulk viscosity coefficient
���� is positive, assuring that the viscosity pushes the
effective pressure towards negative values. In fact, the
expression (1) is the original proposition for a relativistic
dissipative process [29]. As already mentioned, it follows
from the more general Israel-Stewart theory [30,31] in the
limit of a vanishing relaxation time. We shall assume this
approximation to be valid throughout the paper.

Let us consider the cosmic medium to consist of a
viscous fluid of the type (1), which is supposed to charac-
terize the dark sector, and of a pressureless fluid that
describes the baryon component. Hence, the relevant set
of equations is
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 R�� �
1
2g��R � 8�GfTv�� � T

b
��g; (2)

 T��v ;� � 0; T��v � ��v � pv�u�u� � pvg��; (3)

 p � pv � ��v � ���v�u
�

;�; (4)

 T��b ;� � 0; T��b � �mu�u�: (5)

The (super)subscripts v and b indicate the viscous and the
(baryonic) matter components, respectively. Since the mat-
ter is pressureless, the total pressure p of the cosmic
medium coincides with the pressure pv of the viscous fluid.
For the homogeneous and isotropic background dynamics
we shall restrict ourselves to the flat Friedmann-Lemaı̂tre-
Robertson-Walker (FRLW) metric,

 ds2 � dt2 � a2�t��dx2 � dy2 � dz2�; (6)

favored by the CMB anisotropy spectrum [5]. The dynamic
equations then are:

 

�
_a
a

�
2
�

8�G
3
��b � �v�; (7)

 2
�a
a
�

_a2

a2 � �8�Gpv (8)

 _� v � 3
_a
a
��v � pv� � 0; (9)

 _� b � 3
_a
a
�b � 0; (10)

 pv � ��v � 3
_a
a
�0��v; (11)

where the bulk viscosity coefficient was assumed to have a
power law dependence on the energy density �v according
to ���v� � �0�

�
v with �0 � const. The dot denotes differ-

entiation with respect to the cosmic time. Of course, not all
these equations are independent. Equation (10) is de-
coupled and leads to

 �b �
�b0

a3 : (12)

Here and in the following, quantities with a subscript 0
refer to the present epoch and we have used a0 � 1. From
now on we will set � � 0, thus assuming the dissipative
pressure to be the dominating contribution.

With a change of variables,

 _� v �
d�v
dt
�
d�v
da

da
dt
� �0v _a; (13)

where the prime means derivative with respect to the scale
factor a, and using relation (7), the conservation equation
for the viscous component becomes

 �0v �
3

a

�
�v � 3

_a
a
�0��v

�
� 0: (14)

This equation can be recast in an integral form:

 

Z d"
"��"� 1�

�
2k

3�1� 2��
a�3=2��1�2��; � �

1

2
; (15)

 

Z d"
"� 1

� k lna; � �
1

2
; (16)

 " �
�v
�b
; k � 9

����������
8�G

3

s
�0�

���1=2�
b0 : (17)

We will be mainly interested in the case � � 1
2 .

There is a simple, direct relation between �v and the
scale factor a for � � 0. In this particular case, we find,

 �v � �b

��
B�

k
3
a�3=2�

�
2
� 1

�
; �� � 0�; (18)

where B is an integration constant. It can easily be verified
that �v ! a�3 when a! 0 (pressureless matter) and
�v ! cte (cosmological constant) when a! 1. It is ex-
pedient to notice that for � � 0 the total energy density
� � �v � �b coincides with the energy density of a spe-
cific GCG [11–13]. Generally, a GCG is characterized by
an equation of state (E � const> 0)

 pGCG � �
E

��GCG

; (19)

which corresponds to an energy density

 �GCG �

�
E�

F

a3�1���

�
1=�1���

; (20)

where F is another (non-negative) constant. With the iden-
tifications E � k

3�
1=2
b0 and F � B�1=2

b0 it becomes obvious
that for � � �1=2 the energy densities � � �v � �b from
(18) and �GCG in (20) coincide. The analogy between
dissipative and GCG models was also pointed out in [27].

The structure of the total energy density � � �v � �b
allows us to perform a decomposition of the viscous-
baryon system into three noninteracting components plus
the baryonic fluid:

 � � �1 � �2 � �3 � �b; (21)

with
 

�1 � E2; �2 � 2
EF

a3=2
;

�3 �
F2 � �b0

a3 ; �b �
�b0

a3 ;
(22)

and

 E �
k
3

��������
�b0
p

; F �
��������
�b0
p

B: (23)
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The individual equations of state of the different compo-
nents are:

 p1 � ��1; p2 � �
1
2�2; p3 � 0; pb � 0:

(24)

Consequently, our system is equivalent to a mixture of two
dark energy type fluids, one dark matter fluid and the
baryon component. While the BV model is a unified de-
scription of dark matter/energy, the option of a decompo-
sition may be useful in comparing the scenario with some
observational data. The x-ray measurement of galactic
clusters [34] is an example which requires a separation of
a matter component of the cosmic medium. For a
Chaplygin gas, different decompositions have been pro-
posed in the literature [18,35]. Moreover, the decomposi-
tion (21) with (22)–(24) reveals that the background
dynamics of our model differs from that of the �CDM
model (including a baryon component) by the existence of
the second dark energy component with energy density �2.

The relevant cosmological quantities are the present
density parameters �v0 and �b0 which represent the frac-
tions of the viscous fluid and of the pressureless matter,
respectively, with respect to the total density (remember
that we restrict ourselves to the flat case), the Hubble
parameter today H0, the present value of the deceleration
parameter q0, and the age of the universe t0. The apparently
new parameter of the present model, the viscosity coeffi-
cient, can be expressed in terms of the other quantities. In
fact, the relation (18) can be rewritten in a more convenient
way. Using Friedmann’s equation today, we have

 H2
0 �

8�G
3
��b0 � �v0� ) �v0 ��b0 � 1; (25)

 �b0 �
8�G

3H2
0

�b0; �v0 �
8�G

3H2
0

�v0: (26)

Combining (18) with (25) and (26) we obtain the relation

 B�
k
3
�

1���������
�b0

p : (27)

Now, if we use Eq. (8) with p � pv � �3�0
_a
a and the

definition of the deceleration parameter q0 � �
�aa
_a2 , we

find

 � 2q0 � 1 �
24�G�0

H0
: (28)

From the definition of k in Eq. (17) we have

 k �
24�G�0

H0

1���������
�b0

p : (29)

Using Eq. (8), evaluated today, it follows that

 k �
1� 2q0���������

�b0

p ; (30)

which leads to

 B �
2

3

1� q0���������
�b0

p : (31)

Hence, the viscous fluid energy density becomes
 

�v � �bff
2�a� � 1g;

f�a� �
1

3
���������
�b0

p �2�1� q0� � �1� 2q0�a3=2�:
(32)

All these relations will be useful for defining the observ-
ables that will be constrained later on by the SNe Ia and
matter power spectrum data.

III. A DYNAMICAL SYSTEM ANALYSIS

The relations of the previous section that will be used to
compare the theoretical predictions of our model with
observational data are valid under the restriction � � 0.
It is important to have an idea of how serious this restric-
tion is. If the case � � 0 is very particular, our results will
not be conclusive. Therefore it is desirable to have at least a
qualitative analysis of the general case (7)–(11) which,
because of its complexity, cannot be solved analytically.
Such an analysis could reveal whether or not the case � �
0 is, in a sense, typical. To this purpose we shall use
dynamical system techniques for a system of nonlinear
differential equation [36].

The system of equations (7)–(11) can be recast in a more
convenient form by using geometric unities 8�G � 1 and
fixing the scale so that �0 � 1. Defining x � _a

a and y � �v,
the following system of equations is obtained:

 _x � �3
2x�x� y

�� � P�x; y�; (33)

 _y � �3xy�1� 3xy��1� � Q�x; y�: (34)

Since the density �b � 3x2 � y of the baryonic matter
must be non-negative, the solutions that have physical
meaning are those which satisfy y � 3x2.

In a first step we have to identify the critical points
�x0; y0� for which P�x0; y0� � Q�x0; y0� � 0. These points
are either attractors or repellers or saddle points. The
nature of a critical point is determined by the eigenvalues
of the matrix

 

Px�x0; y0� Py�x0; y0�

Qx�x0; y0� Qy�x0; y0�

� �
;

where Pxi �
@P
@xi , x

i � x, y and Qxi �
@Q
@xi . In general, there

are two eigenvalues 	1;2 for the characteristic equation of
this matrix. If both eigenvalues are positive, than the
critical point is a repeller; if both are negative, the critical
point is an attractor; if one is positive and the other one is
negative, then the critical point is a saddle. With the help of
a suitable transformation [36], the critical points at infinity
can be studied. A projection onto the Poincaré sphere [36]
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will then allow us to represent the entire phase space in a
finite region in the x-y plane.

It turns out that the entireOy axis is a stationary solution
for the system, representing a static space-time. A singular
point, denoted by �, is �x0; y0� � �3

�=�1�2��; 31=�1�2���
where � � 1

2 . The characteristic equation for this critical
point is given by 	2 � �0�

3
2� ��	� �

2
0�

1
2� �� � 0 where

�0 � 3�1���=�1�2��. The eigenvalues are 	1 � ���
1
2��0

and 	2 � ��0. The phase diagram depends on the value
of the parameter �. If � < 1=2, the critical point � is an
attractor: all solutions converge to it. This point represents
the de Sitter phase. Hence, all solutions approach a de
Sitter phase asymptotically.

If 1=2< �< 3=2, the point � becomes a saddle point
and all solutions approach a Minkowski space-time in the
origin. If � > 3=2, � is still a saddle point, but the direc-
tions of the curves change: all solutions leave the
Minkowski space-time. These different behaviors are
shown in Fig. 1. For the point � we have 3x2

0 � y2
0, which

corresponds to a vanishing baryon density. (Recall that the
range y > 3x2 is unphysical.) The deceleration parameter q
can be written as q � �1�

_H
H2 , equivalent to q � �1�

_x
x2 . Combination with Eq. (33) shows that there is accel-
erated expansion q < 0 for x < 3y�. The special case � �
0 has �x0; y0� � �1; 3� and accelerated expansion for x < 3.
This solution is of the type of the curves that approach the
point � from right below in the left panel of Fig. 1. Notice
that there is a projection effect due to the circumstance that
infinity is mapped onto one single point on the x axis. The
curve that points from the origin towards � in the left part
of Fig. 1 corresponds to a phantom scenario with �b � 0
which separates the physical and unphysical regions. We
are not interested here in this type of models.

IV. CONSTRAINING THE MODEL USING SNE IA
DATA

The type Ia supernovae allow us to obtain information
about the Universe at high redshifts. Today, observers have
detected about 300 of these objects with redshifts up to

almost 2. In what follows, we will use the more restricted
sample of 182 SNe Ia of the Gold06 data set which consists
of objects for which the observational data are of very high
quality [37]. The relevant quantity for our analysis is the
moduli distance �, which is obtained from the luminosity
distance DL by the relation

 � � 5 log
�
DL

Mpc

�
� 25: (35)

The computation of the luminosity distance follows the
standard procedure [1,38]. First, we recall its definition
[39,40],

 DL �
r
a
� �1� z�r; (36)

where r is the comoving coordinate of the source and z is
the redshift, z � �1� 1

a . The coordinate r can be obtained
by considering the propagation of light ds2 � 0. This
implies

 ds2 � c2dt2 � a2dr2 � 0) r � �c
Z a

1

da
a _a
: (37)

From Friedmann’s equation one obtains

 _a �

����������
�m0

a

s
H0f�a�: (38)

In terms of the redshift z, the luminosity distance may be
expressed as

 DL � 3�1� z�
c
H0

Z z

0

dz0

2�1� q0��1� z
0�3=2 � �1� 2q0�

;

(39)

or, using B and �m0,

 DL � �1� z�
c
H0

Z z

0

dz0

1�
����������
�m0

p
B��z0 � 1�3=2 � 1�

: (40)

In order to compare the theoretical results with the
observational data, the first step is to compute the quality
of the fitting through the least square fitting quantity �2.
We adopt the HST (Hubble Space Telescope) prior [41] for
H0, as well as the cosmic nucleosynthesis prior for the
baryonic density parameter �b0h

2 (where h is H0 divided
by 100 km/s/Mpc), which leads to

 �2 �
X
i

��o
0;i ��

t
0;i�

2


2
�0;i

�
�h� 0:72�2

0:082

�
��b0h2 � 0:0214�2

0:00202 : (41)

The quantities�o
0;i are the distance moduli, observationally

measured for each supernova of the 182 Gold06 SNe Ia
data set [37] and the �t

0;i are the corresponding theoretical
values. The 
2

�0;i
represent the measurement errors and

include the dispersion in the distance moduli, resulting

x0
x

y0

y

x0
x

y0

y

FIG. 1. Phase diagrams for � < 1=2 (upper panel) and for
1=2< �< 3=2 (lower panel). For � > 3=2 the directions of
the arrows in the lower panel have to be reversed.
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from the galaxy redshift dispersion which is due to the
peculiar velocities of the objects (cf. [3,37]).

The smaller the �2, the better the agreement between the
theoretical model and the observational data. Table I shows
that the �2 value for the BV model is competitive with the
GCG model (cf. Eq. (20)), the traditional Chaplygin gas
model (cf. Eq. (20) with � � 1) and the �CDM model.
Compared with the �CDM and the (generalized)
Chaplygin gas models, the age of the Universe is greater
for the bulk viscous model and its deceleration parameter is
less negative, i.e., the Universe is less accelerated.

Using Bayesian statistics, a probability distribution can
be constructed from the �2 parameter [38]. In the present
case, there are three free parameters: the Hubble parameter
todayH0, the pressureless baryonic density parameter �b0,
and the auxiliary quantity B which is connected to the
present value of the deceleration parameter (cf. (31)).
Marginalization over one or two of these parameters will
lead to corresponding two- or one-dimensional representa-

tions. The details of the Bayesian statistics and computa-
tional analysis, relying on BETOCS (BayEsian Tools for
Observational Cosmology using SNe Ia), are given in
Ref. [38].

The main feature of the parameter estimation for the
viscous fluid model is the Gaussian-like distribution
around the preferred value.

This can easily be seen both in Table II (almost sym-
metric error bars) and in the two and one-dimensional
diagrams of Figs. 2 and 3. In Fig. 2 we show the two-
dimensional probability distribution for the parameters B,
�b0, and H0 at one, two, and three sigma, corresponding,
respectively, to 68%, 95%, and 99% confidence levels. The
corresponding one-dimensional probability distributions
are shown in Fig. 3. The main features of the model are:
the age of the Universe is considerably larger than for the
�CDM and GCG models, around t0 	 16 Gy, with a small
dispersion; the baryon density is around 0.05, a little larger
than predicted by nucleosynthesis, but there is a marginal

TABLE I. The best-fitting parameters, i.e., when �2 is minimum, for the BV model, the GCG
model, the traditional Chaplygin gas model (� � 1), and the �CDM model (� � 0) for a flat
universe (�k0 � 0). H0 is given in km/Mpc.s, �E 
 E

E�F in units of c2 (c—speed of light) and t0
in Gy.

Bulk
viscosity

Generalized
Chaplygin gas

Traditional
Chaplygin gas �CDM

�2 162.71 157.52 157.88 160.07
B 1.81 — — —
� — 1.90 1 0
�E — 0.897 0.825 1
�b0 0.0550 0.0523 0.0530 0.054
�dm0 — — — 0.284
H0 62.38 63.97 63.56 62.8695
t0 15.92 13.83 14.09 14.83
q0 �0:364 �0:775 �0:672 �0:493

TABLE II. The estimated parameters for the BV model, the GCG model, the traditional
Chaplygin gas model, and the �CDM model for a flat universe (�k0 � 0). We use the Bayesian
analysis to obtain the peak of the one-dimensional marginal probability and the 2
 confidence
region for each parameter. H0 is given in km/s/Mpc, �E 
 E

E�F in units of c2 (c—speed of light)
and t0 in Gy.

Bulk
viscosity

Generalized
Chaplygin gas

Traditional
Chaplygin gas �CDM

B 1:81�0:38
�0:34 — — —

� — 1:25�4:24
�1:78 1 0

�E — 0:943�0:056
�0:265 0:825�0:057

�0:074 1
�b0 0:055�0:011

�0:011 0:053�0:011
�0:010 0:053�0:011

�0:010 0:054�0:011
�0:010

�dm0 — — — 0:284�0:082
�0:072

H0 62:34�1:75
�1:72 63:74�1:93

�2:07 63:45�1:76
�1:79 62:80�1:76

�1:75

t0 15:85�1:08
�0:91 13:72�1:21

�0:62 14:04�0:57
�0:05 14:80�0:73

�0:62

q0 �0:357�0:130
�0:123 �0:816�0:362

�0:133 �0:671�0:109
�0:087 �0:502�0:136

�0:103

p�q0 < 0� 6:22
 100% 100% 100%
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red dotted line, the 2
 (95, 45%) in the blue dashed line, and the 3
 (99, 73%) in the green dashed-dotted line.
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agreement; the Hubble constant is around 62 km/s/Mpc,
i.e. much smaller than the one predicted by the CMB,
which is around 72 km/s/Mpc, but in agreement with the
�CDM and GCG models when only the data from SNe Ia
are used; the deceleration parameter is bigger (smaller
absolute value) than in those models. For the parameter
estimations in the �CDM and in the GCG models, see
Ref. [38] and references therein.

The Gaussian nature of the distribution is responsible for
the fact that the best-fitting set of values is very close to the
marginalized parameter estimations, with a small disper-
sion. Generally, this is neither true for the �CDM model
nor for the GCG model. Again, the most remarkable dif-
ferences between the viscous model and the �CDM model
are the larger age of the Universe and the smaller absolute
value of the deceleration parameter.

V. THE MATTER POWER SPECTRUM

A. The perturbed equations

In order to write the first order perturbed equations, we
reexpress the field equations as

 R�� � 8�GfTv�� �
1
2g��T

vg � 8�GfTb�� �
1
2g��T

bg;

(42)

 T��v ;� � 0; T��v � ��v � pv�u�u� � pvg��; (43)

 pv � ��0u
�

;�; (44)

 T��b ;� � 0; T��b � �bu�u�: (45)

We introduce the quantities

 ~g �� � g�� � h��; ~� � �� ��;

~u� � u� � �u�;
(46)

where g��, �, and u� are the known background solutions
for the metric, the energy density, and the four velocity,
respectively, and h��, ��, and �u� are the corresponding
perturbations. We will perform the calculations using the
synchronous coordinate condition

 h�0 � 0: (47)

Since we will be interested mainly in perturbations that are
inside the horizon, the choice of the gauge is not really
essential.

The perturbed Ricci tensor takes the form

 �R�� � ����;� � �
�
��;�; (48)

where

 ���� �
g�


2
�h
�;� � h
�;� � h��;
�; (49)

are the perturbations of the Christoffel symbols. The rele-
vant nonvanishing components are

 �i0j � �
1

2

�hij
a2

�
�

; (50)

 �0
ij � �

_hij
2
; (51)

 �kij � �
1

2a2 fhik;j � hij;k � hij;kg: (52)

For the components of the perturbed energy-momentum
tensor we have

 �T00 � ��; (53)

 �T0i � ��� p��ui; (54)

 �Tij � hijp� gij�p: (55)

Using the definitions
 

h �
hkk
a2 ; � � �i;i; �b �

��b
�b

; �pv �
�pv
�0

;

(56)

and performing a plane wave decomposition of all per-
turbed functions according to

 �f� ~x; t� � �f�t�ei ~k� ~x; (57)

where ~k is the wave vector, we find, after a long but
straightforward calculation, the following set of first order
perturbed equations:

 

�h� 2
_a
a

_h � 8�G���v � 3�pv� � 8�G�b�b; (58)

 � _�v � 3
_a
a
���v � �pv� � ��v � pv�

�
��

_h
2

�
� 0;

(59)

 

� _�v� _pv�����v�pv� _��5
_a
a
��v�pv���

k2

a2�pv� 0;

(60)

 

_� b �
_h

2
: (61)

Replacing _h by using the last relation, we obtain
 

��b � 2
_a
a

_�b � 4�G�b�b � 4�G��v � 12�G�0�pv � 0;

(62)

 � _�v � 3
_a
a
���v � �0�pv� � ��v � pv��pv � 0; (63)
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� _�v � _pv��� ��v � pv� _�� 5
_a
a
��v � pv��

�
k2

�0
a2�pv � 0; (64)

 �� _�b � �pv � 0: (65)

With the help of the constraint (65), this system can be
further reduced to a set of three coupled differential equa-
tions:
 

��b� 2
_a
a

_�b� 4�G�b�b� 4�G��v� 12�G�0�pv � 0;

(66)

 � _�v � 3
_a
a
���v � �0�pv� � ��v � pv��pv � 0; (67)

 

� _�v � _pv� _�b � ��v � pv� ��b � 5
_a
a
��v � pv� _�b

� � _�v � _pv��pv � ��v � pv�� _pv � 5
_a
a
��v � pv��pv

�
k2

�0
a2�pv: (68)

Now it is convenient to introduce the background equations
and the quantities in Eq. (32) from which we find

 

4�G�b
H2

0

�
3

2

�b0

a3 ; (69)

 

4�G�v
H2

0

�
3

2

�b0

a3 �f�a�
2 � 1�; (70)

 

12�G�0

H0
�

1

2
�1� 2q0�: (71)

The following relations will be useful later on:

 

pv
�v

 g�a� � �

1

3

f�a�

f�a�2 � 1

1� 2q0���������
�b0

p a3=2; (72)

 _� v � �3
_a
a
��v � pv�; (73)

 _p v �
1� 2q0

2
��v � �b � pv�: (74)

In a next step we divide the set of equations (66)–(68) by
H2

0 and redefine H�1
0 �pv ! �pv. Again, after a fairly

long calculation, the perturbed equations reduce to the
following system of coupled linear differential equations:
 

��b � 2
_a
a

_�b �
3

2

�b0

a3 ��
3

2

�b0

a3 �f
2 � 1��v

�
1

2
�1� 2q0��pv � 0; (75)

 

_� v � 3
_a
a
g�v � �1� 2g��pv � 0; (76)

 

�1� g� ��b �
�
2

_a
a
�1� g� �

1� 2q0

2

�
f2

f2 � 1
� g

��
_�b

� �1� g�� _pv �
�
2

_a
a
�1� g� �

1� 2q0

2

�
f2

f2 � 1
� g

�

� �klH�
2 �1� 2q0�a

9�b0�f2 � 1�

�
�pv; (77)

where lH � c=H0.
Now, we reexpress the perturbed equations in terms of

the variable a according to (13), which implies

 

_� � �0 _a; �� � _a2�00 � �a�0: (78)

We also need the following relations, which result from the
background equations:

 _a 2 � �b0
f2

a
;

�a

_a2 � �
1

2a

�
3g
f2 � 1

f2 � 1
�
: (79)

With the redefinition �v �
�pv

_a , the final form for the set of
perturbed equations is

 �00b �
�
�

3

2
g
f2 � 1

f2a
�

3

2a

�
�0b �

3

2

�b
f2a2

�
3

2

f2 � 1

f2a2 �v �
3

2

g
a
f2 � 1

f2 �v; (80)

 �0v � 3
g
a
�v � �1� 2g��v � 0; (81)

 

�1� g��00b �
�
�

3

2

g
a
�1� 2g�

f2 � 1

f2 �
3

2a

�
�0b

� �1� g��0v �
�
�

3

2

g
a
�1� 2g�

f2 � 1

f2 �
3

2a

� �klH�2
g

3f2�b0

�
�v: (82)

B. Numerical integration

Evidently, Eqs. (80)–(82) are too complicated to admit
analytical solutions. Hence, we proceed integrating these
equations numerically. In order to do so, an important
problem is to fix the initial conditions. A scale invariant
primordial spectrum (as predicted by the inflationary sce-
nario) is assumed. But, since we are interested in the power
spectrum today, we have to follow the evolution of this
spectrum until the present phase.

The corresponding procedure for the �CDM model has
been carried out in terms of the BBKS transfer function
[42–44]. This function is characterized by

BULK VISCOUS COSMOLOGY PHYSICAL REVIEW D 76, 103516 (2007)

103516-9



 ~q � ~q�k� �
k

�h�� Mpc�1 ; � � �0
Mhe

��0
B���

0
B=�0

M�;

(83)

where �0
M and �0

B are the density parameters of dark
matter and baryonic matter of the �CDM model. The
baryonic transfer function is approximated by the numeri-
cal fit [42]:
 

T�k� �
ln�1� 2:34~q�

2:34~q
�1� 3:89~q� �16:1~q�2 � �5:46~q�3

� �6:71~q�4��1=4: (84)

The quantity of interest is the power spectrum for the
baryonic matter today. This spectrum is given by

 P�k� � j�b�k�j
2 � AkT2�k�

g2��0
T�

g2��0
M�
; (85)

where �0
T is the total density parameter of the �CDM

model. The function g in (85) is the growth function

 g��� �
5�

2

�
�4=7 ��� �

�
1�

�

2

��
1�

��

70

��
�1

(86)

in which �� represents the fraction of the total energy,
contributed by the cosmological constant. The normaliza-
tion coefficient A in (85) can be fixed by using the cosmic
background explorer (COBE) measurements of the CMB
anisotropy spectrum. This coefficient is connected to the
quadrupole momentum [43,44] Qrms of this spectrum by
the relation

 A � �2lH�4
6�2

5

Q2
rms

T2
0

; (87)

where T0 � 2:725� 0:001 is the present CMB tempera-
ture. The quadrupole anisotropy is taken as

 Qrms � 18�K: (88)

This value is obtained from the COBE normalization and is
consistent with the more recent results of the WMAP
measurements which use the prior of a scale invariant
spectrum [44,45]. Taking all these estimates into account,
one may fix

 A � 6:8 105h�4 Mpc4; (89)

which corresponds to the initial vacuum state for the
density perturbations used in the BBKS transfer function.

We recall that all the relations (83)–(89) are valid for the
�CDM model. Strictly speaking, we would have to redo all
the calculations to obtain the analogue of the expression
(85) for our bulk viscous model. However, since we are
interested in the shape of the spectrum, there exists a
simpler way which relies on the circumstance that the
growth function g in (86) is a pure background quantity.
Use of the �CDM growth function and the �CDM initial
values also for our model will result in an overall shift of
the spectrum P without affecting the structure of the latter.
The resulting data will then be a fit to a ‘‘wrong,’’ i.e.
unphysical �CDM model, in which the composition of the
dark sector differs from the standard one with roughly 30%
of dark matter and 70% of a cosmological constant.
However, this procedure provides us with the correct struc-
ture of the spectrum for our bulk viscous model. Keep in
mind that the background dynamics of our model differs
from that of the �CDM model by the existence of a second
dark energy component (component 2) in Eq. (22).

Well inside the matter dominated phase (say, z	 500),
we use the �CDM initial conditions, insert them in
Eqs. (80)–(82), and let this system evolve. Then we com-
pute the power spectrum P�k� � �2

b�k� at z � 0, equivalent
to a � 1. Finally, we compare the theoretical results with
the power spectrum obtained by the 2dFGRS observational
program. The spectrum depends essentially on two pa-
rameters: �b0 and q0. From now on, relying on the results
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FIG. 4 (color online). Predicted power spectrum for the dark viscous fluid compared with the 2dFGRS observational data for q0 �
�0:3 (left) and q0 � �0:4 (right). The initial conditions using the BBKS transfer function correspond to wrong ratios (see text) of dark
matter and dark energy: �dm0 � 0:49 and ��0 � 0:51 (left) and �dm0 � 0:52 and ��0 � 0:48 (right).
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of the type Ia SNe analysis and the primordial nucleosyn-
thesis constraint, we fix �b0 � 0:04 (according to the type
Ia SNe analysis of the previous section, this is marginally
satisfied at least at 2
).

In Figs. 4 and 5 we present the best fitting for q0 �
�0:3, �0:4, �0:5, �0:6. To have a good agreement, the
ratio between the quantity of dark matter/dark energy in the
wrong �CDM reference model has to be in the range from
1 for q0 � �0:3, to about 2=3 for q0 � �0:6. It is seen that
the baryonic matter power spectrum of the viscous fluid
model is in good agreement with the observational data for
values of q0 that are close to those predicted by the type Ia
SNe analysis, that is, q0 	�0:4. We remark en passant
that a variation of the value of �b0 within the interval
predicted by the type Ia SNe at 2
 does not change sub-
stantially the results presented in Figs. 4 and 5. In any case,
there is no instability in the computed power spectrum.
This is true not only for the baryonic fluid power spectrum
but also for dark viscous fluid power spectrum. We note,
however, that as q0 approaches zero, there is a power
depression at large scales (small k) compared with the
�CDM reference model.

C. A physical interpretation

In the homogeneous and isotropic background, the BV
model is equivalent to a GCG with � � �1=2. The quali-
tative differences between both models at the perturbative
level can be traced back to a difference in the pressures that
characterize the cosmic medium in each of these cases. In
the background both pressures coincide. But while the
perturbations for the GCG are entirely adiabatic, this is
not the case for our present model.

In the background we have p � pv � �3H�0 for the
viscous fluid and p � �E�1=2 for the GCG with � �
�1=2 (cf. (19)). Use of Friedmann’s equation 3H2 �
8�G� (for the spatially flat case) reveals that in both cases
we have an equation of state p / ��1=2, where the con-

stants are related by E � �0

�������������
24�G
p

. The first order pres-
sure perturbations for the GCG are

 �p �
_p
_�
�� �GCG model�; (90)

where

 

_p
_�
� ��

p
�

�GCG model� (91)

is the adiabatic sound speed square. For �> 0 the sound
speed square is positive, giving rise to a (nonobserved)
oscillatory behavior. For �< 0 (our case) this square is
negative which results in instabilities which are not ob-
served either.

For the viscous fluid the pressure perturbations are
qualitatively different. In particular, the propagation of
perturbations is no longer given by the adiabatic sound
speed. The perturbations are nonadiabatic. The nonadiaba-
ticity is characterized by

 �p�
_p
_�
�� � � _p

�
��

_�
�
�H

_H

�
�BV model�; (92)

where �H 
 ��u�;��=3. In general, the right-hand side of
(92) does not vanish (for a similar situation see [46]). It is
this nonadiabatic character of the perturbations which
makes the power spectrum well behaved on small scales
in contrast to the GCG case. A more detailed analysis of
this feature will be given elsewhere.

VI. CONCLUSIONS

We presented a two-component cosmological model in
which one component represents the dark sector, the other
one pressureless baryons. The dark sector is described by a
single bulk viscous fluid with a constant bulk viscosity
coefficient � � �0 � constant. A dynamical system analy-
sis was used to show that the assumption of a constant �
does not seem to be too restrictive and that this model
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FIG. 5 (color online). Predicted power spectrum for the dark viscous fluid compared with the 2dFGRS observational data for q0 �
�0:5 (left) and q0 � �0:6 (right). The initial conditions using the BBKS transfer function correspond to wrong ratios of dark matter
and dark energy: �dm0 � 0:44 and ��0 � 0:56 (left) and �dm0 � 0:52 and ��0 � 0:48 (right).
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embodies quite general features and does not represent a
very particular configuration. In the homogeneous and
isotropic background the total energy density (i.e., includ-
ing the baryons) is equivalent to that of a GCG with � �
�1=2. But while the perturbation dynamics of a GCG is
entirely adiabatic, the present model exhibits nonadiabatic
features. As a consequence, it can avoid the problems that
usually plague such type of unified dark matter/dark energy
models, namely, the appearance of (nonobserved) small
scale oscillations or instabilities. The predictions of our
model were compared with SNe Ia data and with the
2dFGRS results. For the comparison with SNe Ia data we
employed the so-called gold sample of 182 good quality
high redshift supernovae. Our Bayesian statistics analysis
leads to the following parameter evaluation at 2

level: q0 � �0:357�0:130

�0:123, �b0 � 0:055�0:011
�0:011, H0 �

62:34�1:75
�1:72 km=s=Mpc, and t0 � 15:85�0:91

�1:08 Gy. The main
differences in comparison with a similar analysis for the
�CDM and the GCG models [38] are: the age of the
Universe is considerably larger; the deceleration parameter
is larger (smaller in absolute value); the baryon density is
only marginally compatible with the primordial nucleosyn-
thesis result. A remarkable feature is the (almost) perfect
Gaussian distribution for all parameters with a quite small
dispersion.

To compare the results of our perturbation analysis with
the observed matter power spectrum we have used the
BBKS transfer function to fix the initial condition at a
very high redshift (z	 500), deep in the matter dominated
phase. Since the BBKS transfer function has been con-
ceived for a two-component description of the dark sector,
dark matter, and a cosmological constant, this must be seen
with some caution. We have argued that, in spite of this
problem, the resulting power spectrum preserves its shape
and can be compared with observations. A good fitting can
be obtained for values of q0 which are in agreement with
the type Ia SNe analysis. The best results are found for
�0:3 * q0 * �0:6. Qualitatively, our analysis confirms
previous results for a simplified model of the cosmic
medium, in which the baryon component was neglected
[28].
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