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MeV dark matter and small scale structure
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Weakly interacting massive particles with electroweak scale masses (neutralinos, etc.) remain in kinetic
equilibrium with other particle species until temperatures approximately in the range of 10 MeV to 1 GeV,
leading to the formation of dark matter substructure with masses as small as 10" *My to 10~ '2M,,.
However, if dark matter consists of particles with MeV scale masses, as motivated by the observation of
511 keV emission from the galactic bulge, such particles are naturally expected to remain in kinetic
equilibrium with the cosmic neutrino background until considerably later times. This would lead to a
strong suppression of small scale structure with masses below about 107 M, to 10*M,. This cutoff scale
has important implications for present and future searches for faint local group satellite galaxies and for
the missing satellites problem. We also summarize current constraints on the MeV dark matter scenario.
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I. INTRODUCTION

In the standard cosmology, featuring cold, collisionless
dark matter, structures form hierarchically with the small-
est mass objects forming first and progressively larger
objects forming via subsequent mergers and accretion.
This paradigm has been remarkably successful at describ-
ing the observed large scale structure.

Within this paradigm, the mass of the smallest dark
matter halos depends on the mass of the dark matter
particles, and on the temperature at which they decouple
kinetically from other particle species. For a typical weakly
interacting massive particle (WIMP) with an electroweak
scale mass, kinetic decoupling from the standard model
leptons occurs at a temperature in the range of roughly
10 MeV to 1 GeV, leading to the formation of structures
with masses as small as 10™*M, to 10~ 12M,, [1,2]. If dark
matter consists of particles which remain in kinetic equi-
librium with neutrinos until later times (lower tempera-
tures), the smallest dark matter halos will be considerably
more massive than are predicted for WIMPs with electro-
weak scale masses [3,4].

Dark matter particles with MeV scale masses have been
previously motivated by the observation of 511 keV emis-
sion from the galactic bulge [5,6]. In particular, annihilat-
ing MeV dark matter can inject the required rate of
positrons into the galactic bulge, and also be produced in
the early universe with the measured dark matter abun-
dance [6]. Dark matter in the form of MeV mass scalars, ¢,
annihilating through the exchange of a light gauge boson,
U, can accommodate these requirements [6—8]. Con-
straints on this scenario have been placed by colliders
[9,10], neutrino experiments [11], atomic physics experi-
ments [12], observations of supernova 1987A [13], the
511 keV line width [14] and big bang nucleosynthesis
(BBN) [15].
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In this article, we revisit the MeV dark matter scenario,
and calculate the resulting matter power spectrum. We find
that if the U boson’s couplings to neutrinos is similar to its
couplings to electrons, the matter power spectrum is sup-
pressed on small scales, leading to an absence of dark
matter halos with masses below about 10’M, to 10*M,,.
We show that this suppression scale is consistent with the
region of parameter space where the MeV dark matter has
the correct relic abundance as determined by recent cos-
mological observations [16].

II. THE MEV DARK MATTER POWER SPECTRUM

To calculate the power spectrum for MeV dark matter,
we start by determining the temperature at which kinetic
decoupling occurs. The squared amplitude for dark matter-
neutrino elastic scattering is given by
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where 1 = —2E2%(1 — cosf), m, is the mass of the dark
matter particle, my is the mass of the exchanged boson,
and gyge and gy, are that boson’s couplings to dark
matter and neutrinos, respectively. This leads to an elastic
scattering cross section (in the my >> E, limit) of
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To determine the temperature of kinetic decoupling for
the dark matter particle, we solve the Boltzmann equation,
including the ¢ — v collision term. The resulting equation
[17,18] is

WD) = 11,0y T + 5295 + 35 B)
where ' = 317T3g%,¢¢g%,WTS/(42m‘£,m¢) is the rate for
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the dark matter distribution function to relax to its
equilibrium value. An intuitive approximation to this re-
laxation rate is Ey/E; = (4m)”' [dE,dQ(dn,/dE,) X
(doy,/dQ)SE/E, where dn,/dE, is the differential
number density of all neutrinos, E; = |p|>/2my is the
kinetic energy of dark matter particles and O0F) is the
kinetic energy transferred per collision. This approxima-
tion yields 15.2¢7,4,8%,,T5/(mymy) for E, = 3T,/2,
which is a factor of about 1.5 smaller than the exact result.

Equation (3) is solved by a Boltzmann distribution with
a temperature for the dark matter particle that scales as T,
during the strongly coupled regime and as T2 after decou-
pling. We define the kinetic decoupling temperature as
T = T,, such that I'(T,) = H(T,) = 5.97./GyT?>. This

gives us
1/2
)@

Tog = 2.1 keV U ( i )1/4(
MeV \MeV

Using the above decoupling temperature and a fluid de-
scription similar to Ref. [2], we have calculated the power
spectrum of MeV dark matter. Bertschinger [17] has shown
that this fluid description provides a good approximation to
the solution of the full Fokker-Planck equations if the
correct decoupling temperature (as calculated above) is
used.

In order to make the numerical solution tractable at early
times, we found the tight coupling solution for the slip
between the dark matter and neutrino bulk velocities to
second order. We switch to the exact fluid equations (analo-
gous to the baryon-photon fluid equations [19]) well before
decoupling. For late times (much after decoupling), we use
the explicit free-streaming solution [2,17] to evolve the
dark matter perturbations to the present.

The interactions, subsequent decoupling and evolution
of the dark matter particles damp the matter power spec-
trum. The coupling of the dark matter to other particle
species (here neutrinos) will lead to damped [3,20] oscil-
latory features [2]. This damping effect dominates for the
case of WIMPs with electroweak scale masses. After de-
coupling, the free-streaming of the dark matter particles
further suppresses the power spectrum. For MeV dark
matter, this effect dominates for the viable region of pa-
rameter space where Ty =keV and Tyy/my = 1073,
Also, analogous to the Silk damping effect for photons,
as neutrinos kinetically decouple from dark matter they
begin to free-stream and damp perturbations. However, the
scale associated with this damping is much smaller than the
other damping scales since neutrinos decouple from dark
matter well before a keV; this effect is subdominant and not
included in our calculation.

In Fig. 1, we show the effect on the matter power
spectrum of MeV dark matter as compared to that for the
standard cold dark matter case. Large wave numbers are
strongly suppressed, resulting in a reduced number of
small dark matter halos. Also shown in the figure as a
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FIG. 1. The effect of keV scale kinetic decoupling on the

matter power spectrum, as predicted in MeV dark matter models.
Shown are results for a 1 MeV dark matter particle with a 10 keV
(solid) and 1.0 keV (dashed) kinetic decoupling temperature.
The dotted line denotes the limit relevant for warm dark matter,
as inferred from lyman-alpha forest observations [21].

dotted curve is the (strictest) limit found for the case of
warm dark matter from observations of the lyman-alpha
forest [21].

For Ty = keV and Tyy/my4 = 1073, the scale at which
the power spectrum is truncated is closely related to the
canonical free-streaming scale (mean comoving distance
traveled by a dark matter particle from decoupling to
matter-radiation equality),

keV)l/2 (MeV

k;'=25 kpc(—
f de m¢

1/2
) / ]n(4aEQ/akd); (5)
where ay4 and ag are the scale factors at decoupling and
matter-radiation equality, respectively. The suppression of
the dark matter power spectrum on scales smaller than k!,
in turn, leads to a cutoff in the mass function of dark matter
halos. Compared to the case with no cutoff, one would find
a paucity of halos with masses less than roughly
4m(m/ks)>py/3, where py is the present cosmological
matter density. To obtain a more accurate estimate, we find
the mass at which the expected number of dark matter
halos falls by a factor of ¢ compared to the prediction for
dark matter particles with electroweak scale masses. We
calculate the mass function of dark matter halos using the
Press-Schechter prescription. We note that the validity of
this prescription for power spectra with sharply truncated
power (as found in our scenario) has not been conclusively
demonstrated. Nevertheless, the cutoff mass derived here is
useful in the sense that it highlights the mass scale below
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which we expect deviations from the predictions of stan-
dard cold dark matter. We find this cutoff mass to be

To\=3/2/ m, \—3/2
M, ~3 X 107 M[ L ¢ . 6
¢ o<keV> (MeV ©

Combining this expression with our specific particle phys-
ics scenario, we arrive at the estimate:

-3/2 -15/8 3/4
Mc ~ 1071‘4O my my, gU¢¢§UVV )
MeV MeV 10
@)

We note that for Ty ~ keV and my ~ MeV, the small-
est halos that form (those with mass ~M ) are the ones that
host the smallest of the dwarf galaxies seen in the
Milky Way [22]. Therefore, the predictions for the number
of satellites in this scenario will be different than that for
dark matter with electroweak scale masses. High resolution
numerical simulations of truncated power spectra models
and a detailed treatment of galaxy formation on small
scales will be required to make robust predictions for the
satellite (dwarf) galaxy population in galaxies like the
Milky Way and Andromeda.

III. RELIC ABUNDANCE AND OTHER
CONSTRAINTS

There are a number of constraints on the various cou-
plings and masses. First, we require that MeV dark matter
is thermally produced in the early universe with the ob-
served abundance [16]. The annihilation cross section for
scalar dark matter particles through the s-channel ex-
change of a U-boson is [7,9]:

o — Shgpels — 4my)
127s[(s — m3)? + T2,m?]

X ; 1—4m3/s[s(g7 + g7)

+ m3(6gs, 85, — (g7, T 87,))] (8)

where we have denoted the U couplings to left and right-
handed fermions by g, and g, respectively. The sum is
over e* e~ and the three species of neutrinos. Notice that at
low velocities (s = 4m%ﬁ) the cross section approaches

zero, being entirely the result of a P-wave amplitude.

In order for dark matter annihilations to generate the
observed 511 keV photons from the galactic bulge, posi-
trons must be injected with energies no greater than
~3 MeV (more energetic positrons would unacceptably
broaden the 511 keV line width). This leads to the con-
straint, 0.511 MeV = m, =< 3 MeV [14]. We also require
that my < my in order to avoid dark matter annihilating
largely to UU, which is not s-wave suppressed [23]. For a
0.511-3 MeV dark matter particle to be generated in a
quantity consistent with the observed dark matter abun-
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FIG. 2. The thermal relic abundance of dark matter as a
function of its mass for m;; = 1 MeV (solid), 3 MeV (dashed)
and 10 MeV (dotted). In each case, the product gy448usr Was
set to 107° for each of f =e¢, v,, v, and v.. The dashed
horizontal lines denote the measured density of dark matter
[16]. We show only the results for the viable range, m, < my
[23].

dance, an annihilation cross section on the order of a
picobarn is required during the freeze-out epoch.

We show in Fig. 2 the abundance of dark matter in this
model as a function of its mass, for three values of the
gauge boson mass, and for couplings of gy4g X gusr =

107%. Throughout, we adopt a common U-fermion-
fermion coupling for electrons and neutrinos.

The U-boson’s couplings to fermions are con-
strained by wve scattering experiments such that

8Uvin[8Ue e, T 8Ueyey = MyGr [7.8]. For the case of a

common U-fermion-fermion coupling, this reduces to
gupr =29 X 107% X (my/MeV)?. A somewhat weaker
constraint can be found from measurements of the elec-
tron’s magnetic moment [7].

In Fig. 3, we show the range of my and the product
gupg X guss for which the measured dark matter density
can be made to match the thermal relic abundance in this
model (for some value of m in the range of m, to 3 MeV).
We also show the constraints from ve scattering experi-
ments (for the minimally restrictive case of gygq = 1)
[7,8] and from the measurement of the electron’s magnetic
moment [7].

As light blue (gray) lines, we have plotted contours of
constant M, from 107 to 10* solar masses. Here, we have

used my = 1 MeV. For other masses, the results vary as

M, m;15/8

constraints are considered, M, is generally expected to fall

. From this figure, we see that once all of the
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FIG. 3 (color online). Regions in the my versus gug4eguys
plane in which the measured dark matter density matches the
thermal relic abundance for some value of m,, in the range of m,
to 3 MeV. We have adopted a common U-fermion-fermion
coupling for electrons and neutrinos. The dashed line denotes
the constraint from ve scattering experiments (for the minimally
restrictive case of g4 = 1) [7,8]. The dotted line denotes the
(weaker) constraint from measurements of the electron’s mag-
netic moment [7]. The light blue (gray) lines are contours of
constant M. from 10* to 107 solar masses. Here, we have used
mg = 1 MeV. For other masses, the results vary as M, «
m;w 8 From this figure, we see that once all of the constraints

are considered, M, in the range of 10*M, to 107 M, are
generally expected.

in the range of 10* to 107 M,,. It should be noted that the
region where my = 1-6 MeV and gygg8usr = 1077 is
highly fine tuned and relies on being very close to the
resonance at 2mg, =~ my to avoid the overproduction of
dark matter.

The coupling of MeV dark matter to the neutrinos and
electrons could change BBN predictions. Effects of this
nature have been considered previously but those results
[15] are not directly applicable to our model. We have
checked that there are viable regions of parameter space
where the expected deviations from standard BBN predic-
tions are within observational bounds [24]. In particular,
the strongest constraint is derived from the relative deute-
rium abundance and can be satisfied if the electrons de-
couple from the dark matter at a temperature around or
greater than O(100 keV), which in turn requires nonuni-
versal couplings of the fermions to the dark matter.

MeV dark matter (and associated U-boson) with cou-
plings to neutrinos would have other observable conse-
quences. The existence of such a U-boson would lead to
TeV scale absorption features in the high-energy cosmic
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neutrino spectrum [25]. The spectrum of neutrinos pro-
duced in type Ia supernovae could also be modified due to
their interactions with dark matter particles produced dur-
ing the collapse [13]. The residual annihilations during the
recombination epoch could produce signatures in the cos-
mic microwave background observable by the Planck sat-
ellite experiment [26].

IV. CONCLUSIONS

In summary, we have calculated the small scale power
spectrum of MeV dark matter model, motivated by the
observation of 511 keV emission from the galactic bulge.
Assuming similar relevant couplings for neutrinos and
electrons, we find that MeV dark matter particles remain
in kinetic equilibrium with the cosmic neutrino back-
ground down to temperatures of 1-10 keV. This late kinetic
decoupling leads to large free-streaming length for MeV
dark matter and highly suppresses the formation of small
scale structure. Depending on the parameters, the matter
power spectrum could be cutoff below 10’ M, to 10*M, in
this scenario.

This result has a number of particularly interesting
astrophysical implications. First, it predicts a cutoff in
the mass function of dwarf galaxies at a mass scale much
larger than that for WIMPs with electroweak scale masses.
It is known that the number of dwarf galaxy-sized dark
matter halos in numerical simulations of cold dark matter
is considerably larger than the observed populations in the
Milky Way and Andromeda galaxies (i.e. the ‘“‘missing
satellites problem’) [27,28]. This issue may be resolved
by astrophysical means [29] or by altering the nature of the
dark matter’s interactions [30] or mechanism of production
[31]. The model we consider falls into this latter category,
though detailed numerical simulations will be required to
make precise predictions of the satellite population in MeV
dark matter.

Tests of dark matter models with observations of small
scale structure are becoming a realistic possibility given
the recent discoveries of faint satellite companions to the
Milky Way and Andromeda galaxies [32]. Present esti-
mates of the masses of these new satellites fall in a range
that includes the cutoff mass scale in MeV dark matter
models that we discussed. Present and future searches for
faint satellites, and the characterization of the mass func-
tion at these scales, will thus provide important constraints
on the MeV dark matter scenario.
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