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The production of a sterile species via active-sterile mixing in a thermal medium is studied in an exactly
solvable model. The exact time evolution of the sterile distribution function is determined by the
dispersion relations and damping rates �1;2 for the quasiparticle modes. These depend on ~� �
�aa=2�E, with �aa the interaction rate of the active species in absence of mixing and �E the oscillation
frequency in the medium without damping. ~�� 1, ~�� 1 describe the weak and strong damping limits,
respectively. For ~�� 1, �1 � �aacos2�m; �2 � �aasin2�m where �m is the mixing angle in the medium
and the sterile distribution function does not obey a simple rate equation. For ~�� 1, �1 � �aa and �2 �
�aasin22�m=4~�2, is the sterile production rate. In this regime sterile production is suppressed and the
oscillation frequency vanishes at an Mikheyev-Smirnov-Wolfenstein (MSW) resonance, with a break-
down of adiabaticity. These are consequences of quantum Zeno suppression. For active neutrinos with
standard model interactions the strong damping limit is only available near an MSW resonance if sin2��
�w with � the vacuum mixing angle. The full set of quantum kinetic equations for sterile production for
arbitrary ~� are obtained from the quantum master equation. Cosmological resonant sterile neutrino
production is quantum Zeno suppressed relieving potential uncertainties associated with the QCD phase
transition.
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I. INTRODUCTION

Sterile neutrinos, namely, weak interaction singlets, are
compelling candidates to explain a host of cosmological
and astrophysical phenomena. They could be a suitable
warm dark matter component [1–14], may also be relevant
in the latest stages of stellar collapse [15,16], primordial
nucleosynthesis [17,18], and provide a potential explana-
tion for the anomalous velocity distributions of pulsars
[19–21]. Although sterile neutrinos are ubiquitous in ex-
tensions of the standard model [22–25], the MiniBooNE
Collaboration [26] has recently reported results in contra-
diction with those from the Liquid Scintillator Neutrino
Detector (LSND) [27,28] that suggested a sterile neutrino
with �m2 � 1 eV2 scale. Although the MiniBooNE results
hint at an excess of events below 475 MeV the analysis
distinctly excludes two neutrino appearance-only from
�� ! �e oscillations with a mass scale �m2 � 1 eV2,
perhaps ruling out a light sterile neutrino. However, a
recent analysis [29] suggests that while (3� 1) schemes
are strongly disfavored, (3� 2) neutrino schemes provide
a good fit to both the LSND and MiniBooNE data, includ-
ing the low energy events, because of the possibility of CP
violation in these schemes, although significant tension
remains. These issues notwithstanding the MiniBooNE
result does not constrain a heavier variety of sterile neu-
trinos such as those that could be suitable warm dark matter
candidates with masses in the keV range [1–7,9,11,12].
Their radiative decay would contribute to the x-ray back-
ground [5,9,30–32] from which constraints on their
masses and mixing angles may be extracted [9,31–33]. It

has also been suggested that precision laboratory experi-
ments may be sensitive to �keV neutrinos [34]. Being
weak interaction singlets, sterile neutrinos can only be
produced via their mixing with an active species, hence
any assessment of the possibility of sterile neutrinos as
dark matter candidates or their role in supernovae must
begin with understanding their production mechanism. To
be a suitable dark matter candidate, two important con-
straints must be satisfied: the correct abundance and a
velocity dispersion that restricts the free streaming length
to be consistent with the constraints from structure forma-
tion. Both ingredients depend directly on the distribution
function of the sterile neutrinos, which in turn depend on
the dynamics of production and evolution until freeze-out.

Pioneering work on the nonequilibrium dynamics of
neutrinos in a medium was cast in terms of kinetic equa-
tions for a flavor ‘‘matrix of densities’’ [35] or in terms of
2� 2 Bloch-type equations for flavor quantum mechanical
states [36,37]. A general field theoretical approach to
neutrino mixing and kinetics was presented in [38,39]
(see also [25]), however sterile neutrino production in the
early Universe is mostly studied in terms of simple phe-
nomenological rate equations [1,4,40–43], and numerical
studies [4,43] rely on an approximate semiphenomenolog-
ical approach [41,42]. A field theoretical study of the
hadronic contribution to the sterile production rate near
an MSW resonance has been reported in Ref. [44].

Understanding the dynamics of oscillations, decoher-
ence and damping is of fundamental and phenomenologi-
cal importance not only in neutrino cosmology but also in
the dynamics of neutral meson mixing and CP violation
[45–47] and axion-photon mixing in the presence of a
magnetic field [25], a phenomenon whose interest has*boyan@pitt.edu
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been rekindled by the recent results from the PVLAS
Collaboration [48] (see the discussion in Ref. [49]). As
argued in [50] the spinorial nature of neutrinos is inessen-
tial to describe the dynamics of mixing and decoherence in
a medium.

Recently we reported on a study [51] of mixing and
decoherence in a theory of mesons that provides an accu-
rate description of similar phenomena for mixed neutrinos.
This effective theory incorporates interactions that model
the medium effects associated with charge and neutral
currents for neutrinos and yields a picture of the dynamics
which is remarkably general. The fermion nature of the
distributions and Pauli blocking effects can be simply
accounted for in the final result [51]. This study imple-
mented quantum field theory methods to obtain the non-
equilibrium effective action for the ‘‘neutrino’’ degrees of
freedom. More recently this approach was extended to
study the production of sterile neutrinos both from the
effective action as well as from the correct quantum kinetic
equations obtained directly from the quantum master equa-
tion [52]. The results obtained in Ref. [52] clarify a host of
important aspects, such as the approach to equilibrium and
a detailed analysis of quantum Zeno suppression when the
decoherence time scale is shorter than the oscillation time
scale, thereby confirming previous results obtained for
neutrinos with standard model interactions in
Refs. [53,54]. The study in Refs. [51,52] relied on integrat-
ing out the bath degrees of freedom, assumed to remain in
equilibrium, up to second order in a perturbative expansion
akin to an expansion in GF in the standard model. This
perturbative treatment restricted the analysis to the weak
damping regime in which the decoherence time scale is
larger than the oscillation time scale. In Refs. [52,53] it was
pointed out that a strong damping regime featuring the
opposite relation between these time scales could emerge
near an MSW resonance for small vacuum mixing angle
consistent with constraints from the x-ray background
[9,31–33].

A. Motivation and goals

A sound assessment of sterile neutrinos as warm dark
matter candidates requires a reliable description of the
kinetics of production and evolution towards freeze-out.
Strong departure from equilibrium in the distribution func-
tion at freeze-out could lead to significant changes in the
abundance or skewed velocity distributions that could
affect the free streaming lengths and structure formation
[55]. In this article we complement and extend a previous
study [52] on the nonequilibrium production of a sterile
species via active-sterile mixing. While the previous study
[51–53] focused on the weak damping limit consistently
with a perturbative expansion in standard model interac-
tions, this article studies an exactly solvable model that
allows us to explore systematically the strong damping
case and to draw general conclusions on the production
dynamics of a sterile species.

The model incorporates all the relevant ingredients:
active-sterile mixing via a mass matrix which is off-
diagonal in the flavor basis, and the coupling of the active
species to a continuum of degrees of freedom which are
taken as a thermal bath in equilibrium and includes an
index of refraction contribution which modifies the mixing
angles and dispersion relations in the same manner as for
neutrinos propagating in a medium.

B. Summary of results

The exact solution of the Heisenberg equations of mo-
tion allows a complete investigation of the nonequilibrium
dynamics of production of the sterile species in the weak
and strong damping regimes and to analyze in detail quan-
tum Zeno suppression. We obtain the quantum master
equation and from it the complete set of kinetic equations
that describe the production and evolution of the active and
sterile distribution functions and coherences and reproduce
the exact results. Our main results are:

(i) The exact solution of the Heisenberg (-Langevin)
equations of motion for one active and one sterile
species yields two different modes of propagation in
the medium corresponding to quasiparticles whose
dispersion relations and damping rates (widths) de-
pend on the dimensionless ratio ~� � �aa=2�E with
�aa the active species interaction rate in absence of
mixing, and �E the oscillation frequency in the
absence of damping but including the index of re-
fraction in the medium. The weak and strong damp-
ing cases correspond to ~�� 1 and ~�� 1
respectively. The exact distribution functions for
the active and sterile species are obtained, their
time evolution is completely determined by the
widths of these quasiparticles and the oscillation
frequency including corrections from the index of
refraction and damping.

(ii) The results in the weak damping regime ~�� 1
coincide with those obtained previously in
Refs. [51–53]: the dispersion relations are akin to
those of neutrinos in a medium with an index of
refraction and the damping rates are �1 �
�aacos2�m; �2 � �aasin2�m where �m is the mixing
angle in the medium. The generalized active-sterile
transition probability obtained from expectation
values of Heisenberg operators in the full quan-
tum density matrix is sin22�m

4 �e��1t � e��2t �

2e�	1=2
	�1��2
t cos��Et��. The production of the
sterile species cannot be described by a simple rate
equation, since the distribution function depends on
the time scales 1=�1, 1=�2, 1=�E.

(iii) In the strong damping regime ~�� 1 the oscillation
frequency vanishes at an MSW resonance signaling a
breakdown of adiabaticity, and the widths of the
quasiparticles become �1 � �aa, �2 �
�aasin22�m=4~�2. To leading order in 1=~�, the time
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evolution of the sterile distribution function simpli-
fies into a rate equation, with the production rate
given by �2 � sin22�m	�E
2=�aa [see Eq. (3.17)].
The active-sterile transition probability is strongly
suppressed �1=~�2. The vanishing of the oscillation
frequency, the suppression of the transition probabil-
ity and the production of the sterile species are all
manifestations of the quantum Zeno effect emerging
in the strong damping limit.

(iv) For active neutrinos with standard model interactions
it is shown that the strong damping limit is only
available near an MSW resonance for small vacuum
mixing angle � satisfying the condition sin2� & �w
where �w. This condition is likely satisfied by the
constraints on the vacuum mixing angle from the x-
ray background [5,30] and entails that sterile neutrino
production is strongly suppressed by the quantum
Zeno effect near an MSW resonance. This suppres-
sion may relieve uncertainties from the QCD phase
transition for keV sterile neutrinos.

(v) The quantum master equation for the reduced density
matrix is obtained under standard approximations.
From it the generalized transition probability and the
complete set of kinetic equations are obtained valid
in all regimes of damping. These reproduce the
results obtained from the exact treatment. Under
simple approximations the full set of kinetic equa-
tions is presented in the form of quantum kinetic
equations for a ‘‘polarization vector.’’ The complete
set of kinetic equations (4.22), (4.23), and (4.24)
along with the relations (4.25) and (4.26) provide a
complete description of the nonequilibrium evolu-
tion of the active and sterile distributions and
coherences.

II. THE MODEL

The main ingredients in the dynamics of the production
of a sterile species via active-sterile mixing are: (i) a mass
matrix off diagonal in the flavor basis which mixes the
sterile and active species, (ii) the coupling of the active
species to a bath in equilibrium. In the standard model the
bath degrees of freedom are quarks, leptons or hadrons,
these equilibrate via strong or electromagnetic interactions,
and hence can be taken to be in thermal equilibrium.

We propose a simple exactly solvable model that in-
cludes all these ingredients, it is a generalization of a
model for quantum Brownian motion [56,57] which has
long served as a paradigm for the study of quantum dis-
sipative systems in condensed matter [58] and quantum
optics [59]. It consists of a set of coordinates ~q that
describe the ‘‘system’’ coupled to a continuum of harmonic
oscillators Qp that describe a thermal bath in equilibrium.
This simple model is generalized so that the coordinates
qa;s stand for the active and sterile ‘‘neutrinos’’; these are
mixed by off-diagonal elements in a frequency matrix but

only the ‘‘active’’ coordinate couples to the bath degrees of
freedom. The motivation for studying this model stems
from the realization that the spinorial degrees of freedom
are not relevant to describe the nonequilibrium dynamics
[50], a statement confirmed by previous studies of mixing,
oscillations and decoherence in a theory mesons [51,52]
which yields a remarkably robust picture of the dynamics
of neutrinos.

The Lagrangian for this model is
 

L �
1

2
� ~_qT � ~_q� ~qT	k2I�M2 � V
 ~q�

�
1

2

X
p

� _Q2
p �W2

pQ2
p� � qa

X
p

CpQp; (2.1)

where the flavor vector is given by

 ~q �
qa
qs

� �
(2.2)

and k is a momentum label, which is assumed but not
included as an argument of qa;s for compact notation, I is
the 2� 2 identity matrix and

 M 2 �
M2
aa M2

as
M2
as M2

ss

� �
; V �

Vaa	k
 0
0 0

� �
: (2.3)

The off-diagonal elements of the mass matrix M lead to
active-sterile mixing and the matrix V models a ‘‘momen-
tum dependent matter potential’’ for the active species.

A sum over k makes explicit the field theoretical nature
of the model, however just as in the case of neutrinos, we
are interested on the dynamics of a given k mode in
interaction with the ‘‘bath’’ degrees of freedom.

The correspondence with neutrinos is manifest by as-
suming that the matter potential is obtained from one-loop
charged and neutral current contributions of O	GF
 from a
background of leptons, quarks or hadrons (or neutrinos in
equilibrium) and features a CP-odd term proportional to
the lepton and baryon asymmetries and a CP-even term
that only depends on energy and temperature [60,61]. The
linear coupling of the active species to the bath degrees of
freedom with Cp / GF models the charged current inter-
action, for example, the coupling between the electron
neutrino and protons, neutrons and electrons in a medium,
GF

� P	CV � CA�
5
�� N � e��	1� �

5
�e (see a similar
description in [25,39]). The label p will be taken to de-
scribe a continuum when the density of states is introduced
below. Obviously the model (2.1) affords an exact solution
and yields a remarkably general description of the dynam-
ics. The main ingredient is the coupling of a degree of
freedom to a continuum of bath or environmental degrees
of freedom. Such coupling to a continuum is also at the
heart of particle-antiparticle oscillations in neutral meson
systems (K0 � �K0; B0 � �B0) as described in Refs. [46,47].
Other versions of this model, without mixing have been
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studied with focus on the dynamics of equilibration
[62,63].

For vanishing matter potential V the flavor qa;s and the
mass coordinates q1;2 are related by an orthogonal trans-
formation

 

qa
qs

� �
� U	�


q1

q2

� �
; U	�
 �

cos� sin�
� sin� cos�

� �
(2.4)

where the orthogonal matrix U	�
 diagonalizes the mass
matrix M2, namely

 U�1	�
M2U	�
 �
M2

1 0
0 M2

2

� �
(2.5)

and � is the ‘‘vacuum’’ mixing angle in absence of the
‘‘matter potential’’ V.

In the flavor basis the mass matrix M can be written in
terms of the vacuum mixing angle � and the eigenvalues of
the mass matrix as

 M 2 � �M21�
�M2

2
� cos2� sin2�

sin2� cos2�

� �
(2.6)

where we introduced

 

�M 2 �
1

2
	M2

1 �M
2
2
; �M2 � M2

2 �M
2
1: (2.7)

The frequencies of the flavor modes are determined by the
diagonal entries of the matrix M2 in the flavor basis,
introducing

 �!	k
 �
������������������
k2 � �M2

p
: (2.8)

These are given by

 !a	k
 � �!	k

�

1�
�M2

2 �!	k
2
cos2�

�
1=2

;

!s	k
 � �!	k

�

1�
�M2

2 �!	k
2
cos2�

�
1=2
:

(2.9)

Focusing on the relevant case of ultrarelativistic neutri-
nos, we anticipate that the only approximation to be in-
voked is the one in which �!	k
 is larger than any other
energy scale. It is convenient to introduce

 K  k2I�M� V

�

�
�!	k
2 �

Vaa
2

�
I�

�M2

2

�
�	cos2�� Vaa

�M2
 sin2�

sin2� 	cos2�� Vaa
�M2


" #
: (2.10)

The exact solution will be presented in the Heisenberg
picture, in which the density matrix is time independent
and determined by its initial value, which is assumed to be
uncorrelated and of the form

 �̂	0
 � �̂q � �̂Q: (2.11)

The bath is taken to be in thermal equilibrium with density
matrix �̂Q � Tre�HQ=T where HQ is the Hamiltonian for
the sum of free harmonic oscillators of frequencies Wp.

The Heisenberg equations of motion for the coordinates
qa;s, Qp are the following

 �q � �K��q� � 	�; �;� � a; s (2.12)

 

�Qp �W2
pQp � qaCp; (2.13)

where we have introduced the flavor vector

 ~	 �
X
p

CpQp
1
0

� �
: (2.14)

The solution of Eq. (2.13) is

 Qp	t
 � Q	0
p 	t
 �
Cp
Wp

Z t

0
sin�Wp	t� t0
�qa	t0
dt0;

(2.15)

where

 Q	0
p 	t
 �
1����������

2Wp
p �Ape�iWpt � AypeiWpt�; (2.16)

is a solution of the homogeneous equation and Ap, Ayp are
free field annihilation and creation operators with the usual
canonical commutation relations. The distribution function
for the bath degrees of freedom is

 Tr �̂QA
y
pAp �

1

eWp=T � 1
� n	Wp
: (2.17)

Introducing the solution (2.15) into (2.12) we find the
Heisenberg-Langevin equations [59]

 �q �	t
 �K��q�	t
 �
Z t

0
���	t� t

0
q�	t
0
 � 
�	t


(2.18)

where the self-energy is diagonal in the flavor basis and
given by

 ���	t� t0
 � �
X
p

C2
p

Wp
sin�Wp	t� t0
�

1 0
0 0

� �
: (2.19)

The stochastic quantum noise is

 

~
	t
 �
X
p

CpQ
	0

p 	t


1
0

� �
; (2.20)

and we note that

 Tr �̂ ~
	t
 � 0: (2.21)

The self-energy � is written in dispersive form by passing
to a continuum description of the bath degrees of freedom,
writing
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 �
X
p

C2
p

Wp
sin�Wp	t� t

0
� � i
Z 1
�1

d!
�

Im�aa	!
e
i!	t�t0


(2.22)

where the density of states

 Im �aa	!
 �
X
p

�C2
p

2Wp
��	!�Wp
 � �	!�Wp
�

(2.23)

has the properties

 Im �aa	�!
 � �Im�aa	!
;

Im�aa	!
> 0 for !> 0:
(2.24)

The density of states Im�aa contains all of the relevant
information of the bath. The Heisenberg-Langevin equa-
tion (2.18) is solved by Laplace transform, introduce

 ~q �	s
 �
Z 1

0
e�stq�	t
dt; etc:; (2.25)

in terms of which the equation of motion (2.18) becomes an
algebraic equation

 �s2��� �K�� �
~���	s
�~q�	s


� _q�	0
 � sq�	0
 � ~
�	s
; (2.26)

where in the flavor basis

 

~�	s
 � �
1

�

Z 1
�1

Im�aa	!
0


!0 � is
d!0

1 0
0 0

� �
: (2.27)

In what follows we need the analytic continuation of the
self-energy to real frequencies s! i!� 0�

 

~� aa	s � i!� 0�
 � Re�aa	!
 � i Im�aa	!
 (2.28)

with the dispersive relation

 Re �aa	!
 � �
1

�
P
Z 1
�1

Im�aa	!
0


!0 �!
d!0; (2.29)

and P stands for the principal part.
The solution of Eq. (2.18) in real time is given by

 

q�	t
 � _G��	t
q�	0
 �G��	t
 _q�	0


�
Z t

0
G��	t

0

�	t� t
0
dt0 (2.30)

with

 G��	t
 �
Z
C

ds
2�i

~G��	s
e
st: (2.31)

The Laplace transform of the propagator is given by

 

~G	s
 � �s2I�K� ~�	s
��1 (2.32)

and C is the Bromwich contour that runs parallel to the
imaginary axis and to the right of all the singularities of ~G

in the complex s plane. It follows from Eqs. (2.26) and
(2.32) that the propagator matrix G��	t
 is a homogeneous
solution of the equation of motion (2.18) with initial con-
ditions

 G��	0
 � 0; _G��	0
 � 1: (2.33)

It is convenient to introduce the following combinations

 

~�	s
 �
1

�M2 �
~�aa	s
 � Vaa� (2.34)

 ~�	s
 � �	cos2�� ~�	s

2 � sin22�� (2.35)

and the matrix

 A 	s
 �
1

~�	s

cos2�� ~�	s
 � sin2�
� sin2� � cos2�� ~�	s


" #
;

(2.36)

in terms of which we find
 

~G	s
 �
1

2

I� A	s


s2 � �!2	k
 � �M2

2 	
~�	s
 � ~�	s



�
1

2

I� A	s


s2 � �!2	k
 � �M2

2 	
~�	s
 � ~�	s



: (2.37)

Each term in this expression features poles in the complex
s plane near s � �i �!	k
 which are found by first perform-
ing the analytic continuation s! i!� 0� upon which the
denominators in ~G	s
 become
 

s2 � �!2	k
 �
�M2

2
	~�	s
 � ~�	s

 ! �!2 � �!2	k


�
1

2
�Re�aa	!


� i Im�aa	!
 � Vaa�

�
�M2

2
�	!
 (2.38)

where the analytic continuations are given by

 �	!
 � �	cos2�� �R	!
 � i�I	!


2 � 	sin2�
2�1=2

(2.39)

 �R	!
 �
�Re�aa	!
 � Vaa�

�M2 ; �I	!
 �
Im�aa	!


�M2 :

(2.40)

The complex poles describe quasiparticles, the real part
determines their dispersion relation and the imaginary part
their damping rate in the medium. At this stage it is
convenient to introduce the following variables

 

�� R  �R	 �!	k

 �
�Vaa � Re�aa	 �!	k

�

�M2 (2.41)
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 ~� 
�I	 �!	k



�0
�

Im�aa	 �!	k



�M2�0

(2.42)

and write

 �	 �!	k

 � �0re�i� (2.43)

where

 �0 � �	cos2�� ��R

2 � 	sin2�
2�1=2 (2.44)

 r � �	1� ~�2
2 � 	2~� cos2�m

2�1=4; (2.45)

 � �
1

2
arctg

�
2~� cos2�m

1� ~�2

�
(2.46)

and the branch is chosen such that 0 � arctg�� � �� � �.
The mixing angle in the medium, �m, is defined by the
relations

 cos2�m �
cos2�� ��R

�0
; sin2�m �

sin2�
�0

; (2.47)

an MSW resonance in the medium occurs whenever [22–
24]

 cos2� � ��R: (2.48)

The only approximations to be used are the following

 

�M2

�!	k

� 1;

Re�aa	!

�!	k


� 1;
Im�aa	!


�!	k

� 1

(2.49)

these are all consistent with the ultrarelativistic limit, small
radiative corrections and the narrow width limit, all ap-
proximations used in the case of neutrinos. Using these
approximations we find the following complex poles:

(i) The first term in (2.37) features complex poles at

 ! � ��1 � i
�1

2
(2.50)

with

 �1 � �!	k
 �
1

4 �!	k

�Re�aa	 �!	k

 � Vaa

� �M2�0r cos�� (2.51)

 �1 �
�aa
2

�
1�

r sin�
~�

�
: (2.52)

(ii) The second term in (2.37) features complex poles at

 ! � ��2 � i
�2

2
(2.53)

with

 �2 � �!	k
 �
1

4 �!	k

�Re�aa	 �!	k

 � Vaa

� �M2�0r cos�� (2.54)

 �2 �
�aa
2

�
1�

r sin�
~�

�
(2.55)

where

 �aa �
Im�aa	 �!	k



�!	k

(2.56)

is the interaction rate for the active species in the
absence of mixing in the limit �!	k
 � �M2, which
is of relevance for ultrarelativistic or nearly degen-
erate neutrinos. In what follows we suppress the
argument �!	k
 in the quantities �R;I, etc., to simplify
notation.

Near the complex poles the analytic continuation ~G	s �
i!� 0�
 features a Breit-Wigner form, and the inverse
Laplace transform can be performed by approximating the
analytic continuation by the Breit-Wigner Lorentzian. We
find
 

G	t
 �
ei�1te�	�1=2
t

2i�1

1

2
�I� T� �

e�i�1te�	�1=2
t

2i�1

�
1

2
�I� T�� �

ei�2te�	�2=2
t

2i�2

1

2
�I� T�

�
e�i�2te�	�2=2
t

2i�2

1

2
�I� T�� (2.57)

where we have neglected wave function renormalization
(residues at the poles) and introduced the complex matrix

 T �
ei�

r
cos2�m � i~� � sin2�m
� sin2�m � cos2�m � i~�

� �
(2.58)

where all quantities are evaluated at ! � �!	k
 and used
the approximations (2.49). Inserting the result (2.57) into
the solution (2.30) we obtain the complete solution for the
time evolution of the Heisenberg operators. The Breit-
Wigner approximation leading to exponential damping in
(2.57) is a Markovian approximation [59]. The full solution
requires the initial conditions on the Heisenberg operators
q	0
, _q	0
 it is convenient to expand these in a basis of
creation and annihilation operators of flavor states,

 q�	0
 �
1����������

2!�
p �a�	0
 � a

y
�	0
�;

_q�	0
 � �i
!�����������
2!�

p �a�	0
 � a
y
�	0
�; � � a; s

(2.59)

where !a;s are the frequencies associated with flavor ei-
genstates given by Eq. (2.9). Under the validity of the
approximations (2.49), we can approximate
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 !a �!s ��1 ��2 � �!	k
 (2.60)

leading to a simplified form
 

q�	t
 �
1�������������

2 �!	k

p �

e�i�1te�	�1=2
t 1

2
�I� T��

� e�i�2te�	�2=2
t 1

2
�I� T��

�
��
a�	0
 � H:c:

�
Z t

0
G��	t0

�	t� t0
dt0: (2.61)

Under the same approximations, we find the Heisenberg
annihilation operators at an arbitrary time from

 a�	t
 �
�������
!�

2

r �
q�	t
 �

p�	t

i!�

�
; p�	t
 � _q�	t
;

(2.62)

these are given by
 

a�	t
 �
�
e�i�1te�	�1=2
t 1

2
�I� T�� � e�i�2te�	�2=2
t

�
1

2
�I� T��

�
��
a�	0


�

����������
�!	k

2

s Z t

0

�
G	t0
 �

i _G	t0

�!	k


�
��

�	t� t0
 (2.63)

where we have used the initial condition G��	0
 � 0 [see
Eq. (2.33) and (2.49)]. Under these same approximations
we find

 G	t0
 �
i _G	t0

�!	k


’
i

�!	k


�
e�i�1t0e�	�1=2
t0 1

2
�I� T��

� e�i�2t0e�	�2=2
t0 1

2
�I� T��

�
: (2.64)

A. Transition probability

The result (2.63) allows us to obtain the generalized
transition probability from expectation values of these
operators in the initial density matrix. Denoting ha	t
i �
Tr�̂a	t
 and using the result (2.21) we find
 

ha�	t
i �
�
e�i�1te�	�1=2
t 1

2
�I� T�� � e�i�2te�	�2=2
t

�
1

2
�I� T��

�
��
ha�	0
i: (2.65)

Consider an initial density matrix that yields an initial
nonvanishing expectation value for the annihilation opera-
tor of the active component, but a vanishing expectation
value for the sterile one, namely

 haa	0
i � 0; has	0
i � 0: (2.66)

From the form of the matrix T given by Eq. (2.58) we find
the generalized active-sterile transition probability

 P a!s	t
 �
�������� has	t
ihaa	0
i

��������2

�
sin22�m

4r2 �e��1t � e��2t

� 2e�	1=2
	�1��2
t cos�	�2 ��1
t�� (2.67)

where

 �2 ��1 �
�M2�0r
2 �!	k


cos�;

�1 � �2 �
Im�aa	 �!	k



�!	k

� �aa:

(2.68)

and �1;2 are given by Eqs. (2.52) and (2.55). The expression
(2.67) is similar to the transition probability for particle-
antiparticle mixing of neutral mesons [45,46].

The oscillatory term is a result of the coherent interfer-
ence between the quasiparticle states in the medium and its
exponential suppression in (2.67) identifies the decoher-
ence time scale �dec � 2=	�1 � �2
 � 2=�aa.

B. Weak and strong damping: Quantum Zeno
suppression

The above expressions for the propagation frequencies
and damping rates of the quasiparticle excitations in the
medium lead to two different cases:

 j~�j � 1) weak damping (2.69)

 j~�j * 1) strong damping: (2.70)

These conditions can be written in a more illuminating
manner, from the definitions (2.42) and (2.56) it follows
that

 ~� �
�aa
2�E

(2.71)

where

 �E �
�M2�0

2 �!	k

(2.72)

is the oscillation frequency in the medium in the absence of
damping, namely �E is given by j�2 ��1j setting �I �
0, i.e, the difference in the propagation frequencies only
arising from the index of refraction in the medium. The
dimensionless quantity ~� is the ratio between the oscilla-
tion time scale 1=�E and the decoherence time scale
2=�aa. When ~�� 1 the environment induced decoher-
ence occurs on time scales much shorter than the oscilla-
tion scale and active-sterile oscillations are strongly
suppressed. In the opposite limit ~�� 1 there are many
oscillations before the environment induces decoherence.

The strong damping condition (2.70) is then recognized
with the condition for quantum Zeno suppression by scat-
tering in a medium [4,36]. It corresponds to the limit in
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which the active mean free path is shorter than the oscil-
lation length and decoherence by the medium suppresses
active-sterile oscillations.

1. Weak damping case: j~�j � 1

For weak damping it follows that

 r � 1; sin� � ~� cos2�m (2.73)

and the widths �1;2 given by (2.52) and (2.55) become

 �1 � �aacos2�m; �2 � �aasin2�m: (2.74)

For the oscillation frequency we obtain

 �2 ��1 � �E �
�M2�0

2 �!	k

(2.75)

and

 T ’
cos2�m � sin2�m
� sin2�m � cos2�m

� �

� U�1	�m

1 0
0 �1

� �
U	�m
 (2.76)

where U	�
 is the unitary matrix given by Eq. (2.4).
Introducing the Heisenberg annihilation and creation op-
erators in the medium as

 

a1	t

a2	t


� �
� U�1	�m


aa	t

as	t


� �
(2.77)

and similarly with the creation operators, the time evolu-
tion (2.65) in the weakly damped case yields

 

ha1	t
i
ha2	t
i

� �
�

e�i�1te�	�1=2
t 0
0 e�i�2te�	�2=2
t

 !

�
haa	0
i
has	0
i

� �
: (2.78)

Therefore, in the weak damping regime, the Heisenberg
operators ay1;2, a1;2 create and annihilate the in-medium
states that propagate with frequencies �1;2 and their en-
semble averages damp out with the widths �1;2. The active-
sterile transition probability in this limit, is obtained from
Eq. (2.67), and is given by

 P a!s	t
 �
�������� hasi	t
haai	0


��������2

�
sin22�m

4
�e��1t � e��2t

� 2e�	1=2
	�1��2
t cos��Et��: (2.79)

In the weakly damped case the decoherence time scale
�dec � 2=�aa is much larger than the oscillation time scale
1=�E, hence many oscillations take place before the in-
teraction with the environment leads to decoherence.

These results reproduce those of Refs. [51–53] and
confirm their generality and applicability to the case of

neutrinos with standard model interactions studied in
Ref. [53].

2. Strong damping case: j~�j � 1

The case of (very) strong damping yields the following
simplifications:

 r2 � ~�2 � 1� 2cos22�m (2.80)

 r sin�� ~�
�

1�
sin22�m

2~�2

�
; (2.81)

leading to the damping rates

 �1 ’ �aa

�
1�

sin22�m
4~�2

�
� �aa (2.82)

 �2 ’ �aa
sin22�m

4~�2 : (2.83)

This is a remarkable result, the quasiparticle width �2

becomes vanishingly small in the strong damping regime,
with important consequences for production of the sterile
species as seen below. Furthermore, the oscillation fre-
quency is found to be

 �2 ��1 �
�M2�0

2 �!	k

cos2�m � �E cos2�m; (2.84)

this is another remarkable result in the strong damping
regime: the oscillation frequency vanishes at the MSW
resonance. It follows from Eqs. (2.46), (2.51), and (2.54)
that the vanishing of the oscillation frequency at an MSW
resonance is an exact result for any ~�2 > 1. This result
implies that there is a degeneracy right at the resonance,
and unlike the quantum mechanical case in which there is
no level crossing, in the presence of strong environmental
damping the two propagating states in the medium become
degenerate at the resonance leading to a breakdown of
adiabaticity. Furthermore, in this regime the transition
probability (2.67) is strongly suppressed by the factor
1=~�2 � 1, it is given by

 P a!s	t
 �
�������� has	t
ihaa	0
i

��������2

�
sin22�m

4~�2 �e��1t � e��2t

� 2e�	1=2
	�1��2
t cos�	�2 ��1
t��: (2.85)

In the strong damping limit �� � j�2 ��1j � �E
hence it follows that �dec � 1=�� and the interference
term is strongly damped out before one oscillation takes
place. This is the quantum Zeno effect in which the rapid
scattering in the medium prevents the buildup of coherence
[36].

The vanishing of the oscillation frequency, the suppres-
sion of the transition probability and �2 in the strong
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damping case are all manifestations of the quantum Zeno
effect. Of particular importance is the vanishing of the
oscillation frequency at the MSW resonance because this
entails a breakdown of adiabaticity.

III. PRODUCTION OF THE STERILE SPECIES

The number of sterile particles is given

 Ns	t
 � ha
y
s 	t
as	t
i (3.1)

where the Heisenberg operators are given by Eqs. (2.63)
and (2.64) and the expectation value is in the density matrix
(2.11). Let us consider the case in which the initial density
matrix �̂q is diagonal in the flavor basis with initial pop-
ulations

 Na	0
 � ha
y
a 	0
aa	0
i; Ns	0
 � ha

y
s 	0
as	0
i: (3.2)

Using the results (2.63) and (2.64) and the stochastic noise
given by Eq. (2.16) and (2.20) with the averages (2.17) and
(2.21) we find

 Ns	t
 � P a!s	t
Na	0
 � P s!s	t
Ns	0
 � N


s 	t
 (3.3)

where P a!s	t
 is the active-sterile transition probability
given by Eq. (2.67), and

 P s!s	t
 � je�i�1te�	�1=2
tf� � e�i�2te�	�2=2
tf�j2

(3.4)

 f� �
1

2

�
1�

e�i�

r
	cos2�m � i~�


�
: (3.5)

The contribution N

s 	t
 is completely determined by the

correlation function of the noise in the initial density
matrix, it is given by

 N

s 	t
 �

sin22�m
4r2

Z d!
�

Im�aa	!

2 �!	k


n	!
jF1	!; t


� F2	!; t
j2 (3.6)

where n	!
 � �e!=T � 1��1 and

 Fi	!; t
 �
e�i	�i�!
te�	�i=2
t � 1

!i �!�
�i
2

; i � 1; 2: (3.7)

The frequency integral is carried out by approximating the
functions Fi	!; t
 as Breit-Wigner Lorentzians near their
complex poles, the result is found to be

 

N

s 	t
 �

sin2�mcos2�m
r2

�
�aa
�1

n	�1
	1� e
��1t


�
�aa
�2

n	�2
	1� e
��2t


� e�	1=2
	�1��2
t
�aa�n	�1
 � n	�2
�

	�aa2 

2 � 	�2 ��1


2

�

�
�aa
2
	1� cos	�2 ��1
t


� 	�2 ��1
 sin	�2 ��1
t

��

(3.8)

The set of Eqs. (2.67), (3.3), (3.4), and (3.8) completely
determines the time evolution of the sterile distribution
function Ns	t
.

A. Weak and strong damping limits

1. Weak damping: j~�j � 1

In the weak damping limit the results above yield

 r� 1; sin��O	~�
; cos�� 1

�1 � �aacos2�m; �2 � �aasin2�m

�2 ��1 �
�M2�0

2 �!	k

� �E

(3.9)

which lead to the following expression for the number
density of the sterile species, valid for an initial density
matrix diagonal in the flavor basis and with Ns	0
 � 0,
Na	0
 � 0,
 

Ns	t
 � Na	0

sin22�m

4

� �e��1t � e��2t � 2e�	�aa=2
t cos��Et��

� sin2�mn	�1
	1� e��1t


� cos2�mn	�2
	1� e��2t
 �O	~�
 (3.10)

this result reproduces those in Ref. [52] for Ns	0
 � 0. We
note that the production of the sterile species cannot be
described in terms of a simple rate equation in the weak
damping case because it depends on several different time
scales.

2. Strong damping limit: j~�j � 1

While the strong damping limit j~�j * 1 must be studied
numerically, progress can be made in the very strong
damping regime j~�j � 1. It will be seen below that this
regime is relevant for sterile neutrinos near an MSW
resonance. In this regime the above results yield

 r2 � ~�2 �1 � �aa �2 � �aa
sin22�m

4~�2

�2 ��1 �
�M2�0

2 �!	k

cos2�m � �E cos2�m:

(3.11)
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The coefficients

 

1

2r2

�2
aa

	�aa2 

2 � 	�2 ��1


2
�

2

~�2 � cos22�m
�

2

~�2 � 1

1

r2

�aa	�2 ��1


	�aa2 

2 � 	�2 ��1


2
�

2 cos2�m
~�	~�2 � cos22�m


�
1

~�3 � 1

(3.12)

therefore the second line in the noise contribution (3.8)
becomes subleading. Furthermore the ratios

 

�aa
r2�1

�
1

~�2 � 1
�aa
r2�2

�
4

sin22�m
(3.13)

therefore, only the term with �aa=�2 survives in the first
line in (3.8). Since the transition probability in the first term
in Eq. (3.3) P a!s / 1=~�2 [see Eq. (2.67)] this term is also
strongly suppressed, therefore in the strong damping limit

 Ns	t
 � N


s 	t
 � n	�2
	1� e

��2t
: (3.14)

Hence in this limit the sterile population obeys a simple
rate equation

 

dNs	t

dt

� �2�n	�2
 � Ns	t
�; (3.15)

however the sterile production rate is

 �2 � �aa
sin22�m

4~�2 � �aa (3.16)

becoming vanishingly small in the strong damping case.
We conclude that sterile species production is strongly
suppressed in the strong damping case as a consequence
of the quantum Zeno effect. The nonperturbative nature of
this result is manifest by writing

 �2 � sin22�m
	�E
2

�aa
: (3.17)

We note that with ~� � �aa=2�E [see Eq. (2.71)] this
result coincides with the effective rate in the quantum Zeno
limit 2�E=�aa � 1 obtained in Ref. [42] and imple-
mented in the numerical study in Refs. [4,43]. However,
we argue below that in the case of sterile neutrinos, the
strong damping limit is only available near an MSW
resonance, and far away from this resonance the nonequi-
librium dynamics corresponds to weak damping and the
time evolution of Ns	t
 cannot be described by a simple
rate equation.

IV. QUANTUM MASTER AND KINETIC
EQUATIONS

Although we have obtained the time evolution of the
distribution function from the exact solution of the
Heisenberg-Langevin equations [under the approximation
(2.60)], within the cosmological setting it is more conve-
nient to obtain a set of quantum kinetic equations for the

distribution functions. This is achieved by obtaining first
the quantum master equation for the time evolution of the
reduced density matrix. In the case of neutrinos, the index
of refraction term Vaa is of first order in GF (Fermi’s
effective weak coupling) while the self-energy � � �R �
i�I is of second order. Furthermore the study in the pre-
vious sections clearly shows that the contribution of the
real part of the self-energy yields a second order renormal-
ization of the index of refraction which can be simply
absorbed into a redefinition of Vaa. The most important
aspect of the second order self-energy correction arises
from its imaginary part, which yields the damping rates
of the collective quasiparticle excitations. The production
of the sterile species is associated with this imaginary part,
and not the real part of the self-energy, which only renorm-
alizes the index of refraction in the medium. Therefore it is
convenient to include the index of refraction in the ‘‘non-
interacting’’ part of the Hamiltonian by first diagonalizing
the Hamiltonian for the system’s degrees of freedom ~q
corresponding to the first term in the Lagrangian (2.1).
This is achieved by introducing the mass eigenstates in
the medium with the index of refraction as follows. The
matrix K in Eq. (2.10) can be written as

 K �

�
k2 � �M2 �

Vaa
2

�
I�

�M2�0

2

�
� cos2�m sin2�m

sin2�m cos2�m

� �
; (4.1)

where the expressions for �0 and the mixing angle in the
medium are the same as (2.44) and (2.47) but neglecting
the second order correction Re�aa to the index of refrac-
tion. The diagonalization of the Hamiltonian is achieved
via the unitary transformation (2.4) but in terms of the
mixing angle in the medium �m that includes the correction
from the index of refraction, namely

 

qa
qs

� �
� U	�m


q1

q2

� �
; U	�
 �

cos�m sin�m
� sin�m cos�m

� �
:

(4.2)

Again to avoid proliferation of indices we refer to the
coordinates that diagonalize the Hamiltonian with the in-
dex of refraction with the labels 1, 2, which now should not
be identified with those labeling the complex poles in
Sec. (II).

Expanding q1;2 and their canonical momenta p1;2 in
terms of Heisenberg annihilation and creation operators

 qi �
1��������
2!i
p �ai � a

y
i �; pi � �i

!i��������
2!i
p �ai � a

y
i �

(4.3)

where the frequencies in the medium are
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 !1 � �!	k
 �
Vaa

4 �!	k

�
�M2�0

4 �!	k


!2 � �!	k
 �
Vaa

4 �!	k

�
�M2�0

4 �!	k

:

(4.4)

Under the approximation (2.49) the active and sterile an-
nihilation (and creation) operators aa;s are related to a1;2 as

 aa � cos�ma1 � sin�ma2; as � cos�ma2 � sin�ma1:

(4.5)

The total system-bath Hamiltonian becomes H � H0 �
HI where

 H0 �
X
i�1;2

ayi ai!i �
X
p

1

2
�P2

p �W2
pQ2

p� (4.6)

 HI � 	q1 cos�m � q2 sin�m

X
p

CpQp: (4.7)

The density matrix in the interaction picture of H0 is

 �̂ i	t
 � eiH0te�iHt�̂	0
eiHte�iH0t (4.8)

where �̂	0
 is given by Eq. (2.11). The equation of motion
of the density matrix in the interaction picture is

 

d�̂i	t

dt

� �i�HI	t
; �̂i	t
� (4.9)

with HI	t
 � eiH0tHIe�iH0t is the interaction Hamiltonian
in the interaction picture of H0. Iteration of this equation
up to second order in the interaction yields [59]
 

d�̂i	t

dt

� �i�HI	t
; �̂i	0
� �
Z t

0
dt0�HI	t
; �HI	t

0
; �̂i	t
0
��

� � � � : (4.10)

The reduced density matrix for the system’s variables q
is obtained from the total density matrix by tracing over the
bath degrees of freedom Qp, which are assumed to remain
in equilibrium [59]. The following standard approxima-
tions are invoked [59]: (a) factorization: the total density
matrix is assumed to factorize

 �̂ i	t
 � �q;i	t
 � �Q	0
 (4.11)

where it is assumed that the bath remains in equilibrium.
(b) Markovian approximation: the memory of the evolu-
tion is neglected and in the double commutator in (4.10)
�̂i	t

0
 is replaced by �̂i	t
 and taken out of the integral [59].
Taking the trace over the bath degrees of freedom yields
the quantum master equation for the reduced density ma-
trix,

 

d�R	t

dt

� �
Z t

0
dt0 Tr�Qf�HI	t
; �HI	t

0
; �̂i	t
��g � � � �

(4.12)

where the first term has vanished because

TrQ�Q	0
Q
	0

p 	t
 � 0 since Q	0
p 	t
 is a free harmonic os-

cillator in the interaction picture ofH0 [see Eq. (2.16)]. The
trace overQ in the double commutator requires the follow-
ing ingredients
 X
p;p0

CpCp0������������������
4WpWp0

p Tr�Q	0
Q
	0

p 	t
Q

	0

p0 	t

0


�
X
p

C2
p

2Wp
�	1� n	Wp

e�iWp	t�t0
 � n	Wp
eiWp	t�t0
�

�
Z d!

�
Im�aa	!
	1� n	!

e

�i!	t�t0
 (4.13)

 X
p;p0

CpCp0������������������
4WpWp0

p Tr�Q	0
Q
	0

p0 	t

0
Q	0
p 	t


�
X
p

C2
p

2Wp
�	1� n	Wp

e

�iWp	t0�t
 � n	Wp
e
iWp	t0�t
�

�
Z d!

�
Im�aa	!
n	!
e�i!	t�t

0
 (4.14)

where the interaction picture operators Q	0
	t
 are given by
Eq. (2.16) and we have used Eqs. (2.23) and (2.24).

Several standard approximations are invoked: terms that
feature rapidly varying phases of the form ayi a

y
j e

i	!i�!j
t

and aiaje�i	!i�!j
t are averaged out in time leading to their
cancellation, in the quantum optics literature this is known
as the ‘‘rotating wave approximation’’ [59], similar terms
are discarded in the kinetic approach in Refs. [25,39]. The
time integrals are evaluated in the Weisskopf-Wigner ap-
proximation [52,59]. Finally we also invoke the ultrarela-
tivistic approximation !1 �!2 � �!	k
. Neglecting the
second order energy shift [see Eq. (2.29)], the final result
for the quantum master equation is given by
 

d�R	t

dt

� �
�aa
2

�
cos2�mL11��R� � sin2�mL22��R�

�
1

2
sin2�m	L12��R� �L21��R�


�
(4.15)

where Lij��R� are the Lindblad operators [59]
 

Lij��R� � 	1� n	!i

��Ra
y
i aj � a

y
j ai�R � ai�Ra

y
j

� aj�Ra
y
i � � n	!i
��Raia

y
j � aja

y
i �R

� ayi �Raj � a
y
j �Rai�: (4.16)

In these expressions, the annihilation and creation opera-
tors carry the time dependence in the interaction picture,
namely

 ayi 	t
 � ayi 	0
e
i!it; ai	t
 � ai	0
e�i!it: (4.17)

The trace of the reduced density matrix is automatically
conserved in time as a consequence of unitary time evolu-
tion of the full density matrix. Denoting the expectation
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value of any interaction picture operator A	t
 in the reduced
density matrix by

 hAi	t
 � Tr�R	t
A	t
; (4.18)

we obtain the following equations for the expectation
values of the annihilation operators
 

d
dt

ha1i	t


ha2i	t


 !
�
�i!1�

�aa
2 cos2�m ��aa

4 sin2�m

��aa
4 sin2�m �i!2�

�aa
2 sin2�m

0@ 1A
�
ha1i	t


ha2i	t


 !
(4.19)

The eigenvalues of the matrix in Eq. (4.19) are found to
be �i ~�1;2 � �1;2=2 where ~�1;2 are obtained from
Eqs. (2.51) and (2.54) by setting the second order contri-
bution to the energy shift Re�aa � 0, and �1;2 are pre-
cisely given by Eqs. (2.52) and (2.55) but again setting
Re�aa � 0 in �0, which of course is a consequence of
having neglected the second order energy shifts (real part
of the self-energy) in the quantum master equation. It is a
straightforward exercise to obtain the (complex) eigenvec-
tors of the matrix (4.19) and to write haa;si in terms of these
through the relation (4.5). Fixing the initial values of the
corresponding eigenvectors to yield the initial values
haai	0
 � 0; hasi	0
 � 0 we find

 P a!s	t
 �
�������� hasi	t
haai	0


��������2

�
sin22�m

4r2 �e��1t � e��2t

� 2e�	1=2
	�1��2
t cos�	 ~�2 �
~�1
t�� (4.20)

which is the same as the transition probability (2.67) but
neglecting the second order correction from Re�aa. These
results clearly show that the quantum master Eq. (4.15)
correctly describes the nonequilibrium dynamics including
the strong damping regime, the only difference with the
exact result being that the second order energy shift Re�aa
is neglected. The quantum master equation (4.15) is ex-
actly the same as the one obtained in Ref. [52].

We now introduce the distribution functions

 nij � Tr�R	t
a
y
i 	t
aj	t
; (4.21)

the diagonal components describe the population of the in-
medium states, and the off-diagonal components the co-
herences [59]. Accounting for the free field time depen-
dence of the operators ay, a in the interaction picture, we
find the following kinetic equations for the distribution
functions
 

_n11 � ��aa

�
cos2�m	n11 � n	!1

 �

sin2�m
4
	n12 � n�12


�
(4.22)

 _n 22 � ��aa

�
sin2�m	n22 � n	!2

 �

sin2�m
4
	n12 � n

�
12


�
(4.23)

 

_n12 � �i	!2 �!1
n12 �
�aa
2

�
n12 �

sin2�m
2

� 	n11 � n22 � n	!1
 � n	!2



�
(4.24)

where n	!i
 are the equilibrium distribution functions. In
terms of the nij	t
we obtain the time evolution of the active
and sterile distribution functions via the relation (4.5),
namely
 

Na	t
 � cos2�mn11	t
 � sin2�mn22	t


�
1

2
sin2�m	n12	t
 � n�12	t

 (4.25)

 

Ns	t
 � sin2�mn11	t
 � cos2�mn22	t
 �
1

2
sin2�m	n12	t


� n�12	t

: (4.26)

The weak damping limit can be studied in a perturbative
expansion in ~�� 1 by considering the terms n12, n�12 in
Eqs. (4.22) and (4.23) and the terms nii � n	!i
; i � 1, 2 in
Eq. (4.24) as perturbations. This study was carried out in
Ref. [52] and reproduces the result Eq. (3.10) for the sterile
population. Therefore the set of quantum kinetic
Eqs. (4.22), (4.23), and (4.24) reproduce the exact results
both in the weak and strong damping cases.

We can now establish a correspondence with the quan-
tum kinetic equation often quoted in the literature
[25,42,43,64,65] by introducing the following ‘‘polariza-
tion vector’’ [66]

 P0	t
 � ha
y
aaa � a

y
s asi	t
 � Na	t
 � Ns	t
 (4.27)

 Px	t
 � ha
y
aas � a

y
s aai	t
 (4.28)

 Py	t
 � �iha
y
aas � a

y
s aai	t
 (4.29)

 Pz	t
 � ha
y
aaa � a

y
s asi	t
 � Na	t
 � Ns	t
 (4.30)

where the creation and annihilation operators for the active
and sterile fields are related to those that create and anni-
hilate the propagating modes in the medium 1, 2 by
Eq. (4.5), and the angular brackets denote expectation
values in the reduced density matrix �R which obeys the
quantum master Eq. (4.15). In terms of the population and
coherences nij the elements of the polarization vector are
given by

 P0 � n11 � n22 (4.31)

 Px � � sin2�m	n11 � n22
 � cos2�m	n12 � n�12
 (4.32)

D. BOYANOVSKY PHYSICAL REVIEW D 76, 103514 (2007)

103514-12



 Py � �i	n12 � n�12
 (4.33)

 Pz � cos2�m	n11 � n22
 � sin2�m	n12 � n
�
12
: (4.34)

Using the quantum kinetic Eqs. (4.22), (4.23), and (4.24)
we find
 

dP0

dt
� �

�aa
2
Pz �

�aa
2
�	n11 � n	!1

 � 	n22 � n	!2

�

�
�aa
2

cos2�m	n	!1
 � n	!2

 (4.35)

 

dPx
dt
� �i	!2 �!1
 cos2�m	n12 � n

�
12

 �

�aa
2
Px

�
�aa
2

sin2�m	n	!1
 � n	!2

 (4.36)

 

dPy
dt
� �	!2 �!1
	n12 � n

�
12
 �

�aa
2
Py (4.37)

 

dPz
dt
� �i	!2 �!1
 sin2�m	n12 � n�12
 �

�aa
2
Pz

�
�aa
2
�	n11 � n	!1

 � 	n22 � n	!2

�: (4.38)

Under the approximation !1 �!2 � �!	k
 we can take

 	n	!1
 � n	!2

 � 0; (4.39)

and neglect the last terms in Eqs. (4.35) and (4.36).
Introducing the vector ~V with components

 

~V � 	!2 �!1
	sin2�m; 0;� cos2�m
 (4.40)

we find the following equations of motion for the polar-
ization vector

 

d ~P
dt
� ~V � ~P�

�aa
2
	Pxx̂� Pyŷ
 �

dP0

dt
ẑ: (4.41)

This equation is exactly of the form

 

d ~P
dt
� ~V � ~P�D ~PT �

dP0

dt
ẑ (4.42)

often used in the literature [36,42,43,64,65], where

 D �
�aa
2

; ~PT � 	Pxx̂� Pyŷ
: (4.43)

Therefore the quantum kinetic equation for the polar-
ization vector (4.41) is equivalent to the full set of quantum
kinetic equations (4.22), (4.23), and (4.24).

However it must be highlighted that the set of equa-
tions (4.41) and (4.42) is not closed because it must input
the time evolution of P0 which is obtained from the full set
of kinetic equations (4.22), (4.23), and (4.24).

Often the last term in (4.42) ( _P0) is omitted, however,
such omission is not warranted, since it follows from the
definition of P0, Eqs. (4.25), (4.26), and (4.31), that

 P0 � Na	t
 � Ns	t
; (4.44)

therefore _P0 vanishes only when both the active and the
sterile species have reached equilibrium. Thus we advocate
that the set of kinetic equations (4.22), (4.23), and (4.24)
combined with the relations (4.25) and (4.26) provide a
complete description of active and sterile production.

V. CONSEQUENCES FOR COSMOLOGICAL
PRODUCTION OF STERILE NEUTRINOS

The results obtained above can be straightforwardly
adapted to the case of neutrinos by replacing the equilib-
rium distributions n	�1;2
 by the Fermi-Dirac distributions
in the ultrarelativistic limit and the matter potential from
forward scattering in the medium.

While in general ~�, �1;2 and �1;2 depend on the details
of the interactions, masses and vacuum mixing angles, an
assessment of the consequences of the results obtained
above on cosmological sterile neutrino production can be
obtained for an active neutrino with standard model inter-
actions. In this case the matter potential for temperatures
features a CP-odd contribution proportional to the lepton
and baryon asymmetries, and a CP-even contribution that
depends solely on momentum and temperature. In the
ultrarelativistic limit with �!	k
 � k the matter potential
for neutrinos is given by [60,61,67],

 Vaa �
4
���
2
p

	3


�2 GFkT3

�
L� A

Tk

M2
W

�
(5.1)

where L is proportional to the lepton and baryon asymme-
tries and A� 10 [60,61], for antineutrinos L! �L. The
active neutrino interaction rate (neglecting contributions
from the lepton and baryon asymmetries) is given by
[25,40,41,60,61]

 �aa �G
2
FT

4k: (5.2)

For keV sterile neutrinos an MSW resonance is available
only for L� Tk=M2

W when the first term in the bracket in
(5.1) dominates [4,6,43,61], while no resonance is avail-
able when the second term dominates. We will analyze
separately the two different cases

 L�
T2

M2
W

(5.3)

 L�
T2

M2
W

(5.4)

where we have taken k� T. In the first case no MSW
resonance is possible for keV sterile neutrinos, whereas
such resonance is possible in the second case [4,6,43,61].

(i) High temperature limit: At high temperature above
the MSW resonance for Vaa � �M2 and neglecting
the second order correction to the matter potential
(Re�),
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 �0 �
Vaa
�M2 : (5.5)

For L� T2=M2
W

 

�M2�0

�!	k

�
GFT

5

M2
W

(5.6)

and the ratio

 

~� �
�������� �aa
�M2

�!	k
�0

���������GFM2
W � �w � 1 (5.7)

where �w is the standard model ‘‘fine structure
constant.’’ For L� T2=M2

W a similar analysis yields

 ~��GFM2
W

T2

LM2
W

 !
� �w

T2

LM2
W

 !
� 1: (5.8)

(ii) Low temperature limit: In the low temperature re-
gime for Vaa � �M2, �0 � 1 and ~� becomes

 

�������� Im�aa

�M2�0

���������
��������Im�aa

�M2

�������� (5.9)

however in perturbation theory Vaa � Im� since
Vaa is of O	GF
 and Im�aa �O	G2

F
. Therefore
since in this regime

 �M2 � Vaa � Im�aa )

��������Im�aa

�M2

��������� 1: (5.10)

The conclusion of this analysis is that far away from
an MSW resonance, either in the high or low tem-
perature limit damping is weak, namely, at high or
low temperature away from the MSW resonance

 ~� �
�aa
2�E

� 1: (5.11)

Therefore the strong damping condition may only be
fulfilled near an MSW resonance �m � �=4 in which
case �0 � j sin2�j.

(iii) Near an MSW resonance: As mentioned above a
resonance is only possible for keV sterile neutrinos
for L� T2=M2

W [4,6,43,61]. For very small vacuum
mixing angle sin2�� 1 it proves illuminating to
write the resonance condition cos2� � Vaa=�M

2 as
Vaa � �M

2 and �0 � j sin2�j, with Vaa given by
Eq. (5.1) for L� T2=M2

W . Therefore �M2=k�
GFT

3L, hence using Eq. (5.2) near the MSW reso-
nance, the ratio

 

�������� �aa
�M2

�!	k
�0

��������� GFM
2
W

j sin2�j

�
T2

LM2
W

�
�

�w
j sin2�j

�
T2

LM2
W

�
:

(5.12)

Therefore, the strong damping condition near the
resonance is fulfilled provided that j sin2�j � �w.
With �w � 10�2 the region near an MSW resonance
is generally described by the strong damping regime
for j sin2�j & 10�3, which is likely to be the case for
sterile neutrinos [4,21] and is consistent with con-
straints from the x-ray background [5,9,30–32].
In the resonance region the sterile production rate is
described by the simple rate equation [see Eq. (3.15)]

 

_N s	t
 � ��2�Ns	t
 � neq� (5.13)

where the sterile production rate �2 is given by
Eq. (3.16) which can be written as

 �2 � sin22�
	�M2
2

�!	k
2�aa
(5.14)

and clearly exhibits the suppression for small vac-
uum mixing angle and the nonperturbative nature as
a function of �aa.

This analysis leads to the conclusion that away from an
MSW resonance the weak damping condition holds, sterile
neutrino production cannot be described by a simple rate
equation but involves �1;2 and �E. In this regime the
quantum kinetic equations (4.22), (4.23), and (4.24) may
be simplified [52] by neglecting the terms with n12, n�12 in
Eqs. (4.22) and (4.23) and the terms with n11 � n	!1
;
n22 � n	!2
 in Eq. (4.24). The resulting equations are
very simple and their solutions feature the two damping
rates �1 � �aacos2�m; �2 � �aasin2�m. This simplifica-
tion also holds if the lepton asymmetry is of the same order
of the baryon asymmetry L� 10�9 in which case L�
T2=M2 for T * 3 MeV [10,67] and no MSW resonance is
available [43,60,61]. Near an MSW resonance for sterile
neutrinos with �keV mass and sin2� & 10�3 the strong
damping condition holds and Ns	t
 obeys a simple rate
equation, but the sterile production rate is suppressed by
the quantum Zeno effect.

For keV sterile neutrinos with small mixing angle
sin2� & 10�3, the MSW resonance occurs near the scale
of the QCD phase transition T � 180 MeV [4,44] with the
inherent uncertainties arising from strong interactions and
the rapid change in the effective number of relativistic
degrees of freedom in a regime in which hadronization
becomes important. However, as argued above, near the
MSW resonance the strong damping condition is fulfilled
and quantum Zeno suppression hinders the production of
sterile neutrinos. As discussed above the sterile distribution
function obeys a simple rate equation with a production
rate given by Eq. (3.16) or alternatively (3.17) which is
strongly suppressed by the factor 1=~�2 � sin22�=�2

w � 1.
This suppression of the sterile production rate makes the
production mechanism less efficient near the resonance,
thus relieving the uncertainties associated with the strong
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interactions, although these remain in the nonresonant
scenario [1].

VI. CONCLUSIONS

The production of a sterile species via active-sterile
mixing has been studied in a simple, exactly solvable
model that includes all the relevant ingredients: active-
sterile mixing via an off-diagonal mass matrix and the
coupling of the active species to a bath in thermal equilib-
rium. The exact solution of the Heisenberg -Langevin
equations allows us to obtain the exact time evolution of
the distribution function for the sterile species and the
active-sterile transition probability. Both are determined
by the dispersion relations and damping rates (widths) of
the two quasiparticle modes in the medium. These depend
on

 ~� �
�aa
2�E

(6.1)

where �aa is the interaction rate of the active species in the
absence of mixing and �E is the oscillation frequency with
corrections from forward scattering (the index of refrac-
tion) but no damping. ~�� 1; ~�� 1 correspond to the
weak and strong damping regimes, respectively. In the
weak damping case the damping rates are �1 �
�aacos2�m; �2 � �aasin2�m the active-sterile transition
probability is given by Eq. (2.79), and the time evolution
of the sterile distribution function is given by Eq. (3.10) for
vanishing initial sterile population, both feature these two
scales along with the oscillation time scale. As a result, the
time evolution of the sterile distribution function does not
obey a simple rate equation. These results confirm those of
Refs. [51–53]. The exact solution allows the systematic
exploration of the strong damping case for which ~�� 1
corresponding to the situation in which the interaction rate
in the medium is faster than the oscillation time scale and
the quantum Zeno effect is present [36]. In this regime we
find that the damping rates of the quasiparticles are �1 �
�aa; �2 � �aasin22�m=4~�2 where �m is the mixing angle
in the medium. The active-sterile (generalized) transition
probability is

 P a!s �
sin22�m

4~�2 �e��1t � e��2t

� 2e�	1=2
	�1��2
t cos�	�1 ��2
t�:

In the strong damping regime the oscillation frequency
�1 ��2 / cos2�m vanishes at an MSW resonance and
the two quasiparticle states become degenerate leading to a
breakdown of adiabaticity. The sterile distribution function
obeys a simple rate equation with a sterile production rate
�2 strongly suppressed for ~�2 � 1. The suppression of the
active-sterile transition probability and the sterile produc-
tion rate, and the vanishing of the oscillation frequency in
the strong damping limit are all consequences of quantum

Zeno suppression. The quantum master equation for the
reduced density matrix is derived and shown to be valid in
both limits. From it we obtain the complete set of quantum
kinetic equations that yield the nonequilibrium evolution
of the active and sterile distribution functions. The com-
plete nonequilibrium time evolution of the active and
sterile distribution functions and the coherences are given
by the set of equations (4.22), (4.23), and (4.24) along with
the identifications (4.25) and (4.26). The set of kinetic
equations (4.22), (4.23), and (4.24) is shown to be equiva-
lent to the kinetic equations for the ‘‘polarization vector’’
often quoted in the literature. However, unlike these the set
(4.22), (4.23), and (4.24) along with (4.25) and (4.26) yield
a complete description of the nonequilibrium dynamics
amenable to a straightforward numerical analysis, the ex-
trapolation to fermionic degrees of freedom is a straight-
forward replacement of the equilibrium distribution
functions by the Fermi-Dirac distributions. Furthermore,
the analysis based on the exact solution and the quantum
master equation yields a wealth of information that cannot
be easily gleaned from the set of kinetic equations, for
example, the active-sterile transition probability.

For active neutrinos with standard model interactions it
is shown that the weak damping limit describes the pa-
rameter range away from an MSW resonance and that the
strong damping limit only emerges near the resonance for
very small vacuum mixing angle, such that sin2� & �w �
10�2. Such small value is consistent with constraints from
the x-ray background. This result bears important conse-
quences for cosmological sterile neutrino production. In
the resonant production mechanism of Ref. [1] the produc-
tion rate peaks at the MSW resonance, however our analy-
sis, which includes consistently the damping corrections,
shows that quantum Zeno suppression hinders the sterile
production rate near the resonance. For keV sterile neutri-
nos the MSW resonance occurs in a temperature range too
close to the QCD phase transition. Hadronization and
strong interactions lead to substantial uncertainties during
this temperature regime which translate into uncertainties
in the production rate. Quantum Zeno suppression of the
production rate in this regime relieves these uncertainties.

In summary, the set of kinetic equations (4.22), (4.23),
and (4.24) (with Fermi-Dirac equilibrium distributions)
along with the relations (4.25) and (4.26) yield a complete
description of the nonequilibrium dynamics of active and
sterile neutrino production valid in the weak and strong
damping limits. Quantum Zeno suppression is operative
near an MSW resonance and suppresses the sterile produc-
tion rate, thus relieving potential uncertainties associated
with the QCD phase transition for keV neutrinos.
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