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We consider the correspondence between the Jordan frame and the Einstein frame descriptions of
scalar-tensor theory of gravitation. We argue that since the redefinition of the scalar field is not
differentiable at the limit of general relativity the correspondence between the two frames is lost at
this limit. To clarify the situation we analyze the dynamics of the scalar field in different frames for two
distinct scalar-tensor cosmologies with specific coupling functions and demonstrate that the correspond-
ing scalar field phase portraits are not equivalent for regions containing the general relativity limit.
Therefore the answer to the question of whether general relativity is an attractor for the theory depends on
the choice of the frame.
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I. INTRODUCTION

The generalization of Jordan-Fierz-Brans-Dicke theory
of gravitation [1,2] known as the scalar-tensor theory [3–
6], where the gravitational interaction is mediated by a
scalar field together with the usual metric tensor, appears in
various contexts of theoretical physics: as dilaton gravity in
Kaluza-Klein, superstring, and supergravity theories, as
the effective description of braneworld models [7], as an
equivalent to modified f�R� gravity [8], or in attempts to
describe inflation [9,10] and dark energy [11].

The scalar-tensor theory (STT) can be formulated in the
Jordan frame, where the scalar field � is coupled non-
minimally to the Ricci scalar R but not directly to the
matter, whereas the scalar field kinetic term involves an
arbitrary function!���. It is possible to write the theory in
the form reminiscent of the Einstein general relativity
where the scalar field is minimally coupled to the Ricci
scalar and its kinetic term is in the canonical form. In this
case the field equations are mathematically less compli-
cated, but at the price of making the matter couplings
dependent on the scalar field. Going from the Jordan to
the Einstein frame proceeds through two transformations:

(1) A conformal transformation of the Jordan frame
metric g�� into the Einstein frame metric ~g��;

(2) A redefinition of the original scalar field � into� to
give its kinetic term a canonical form.

The problem of physical interpretation and equivalence
of these two frames has a long history, but discussions have
mostly concerned only the role and properties of the con-
formal transformation (e.g., [6,12,13]). Much less attention
has been paid to the redefinition of the scalar field used to
put its kinetic term in the canonical form. The aim of our
paper is to caution against the problems stemming from
this transformation. The issue is relevant, e.g., in scalar-
tensor cosmology where one is interested in whether the

scalar field naturally evolves to an asymptotically constant
value, in which case the solutions of STT for g�� can
coincide with those of the Einstein general relativity. In
earlier investigations, which were performed in the Jordan
frame, the main tool was to estimate the late-time behavior
of different types of solutions [10,14]. Damour and
Nordtvedt [15] used the Einstein frame to derive a non-
linear equation for the scalar field decoupled from other
variables and found that, e.g., in the case of a flat
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) model
and dust matter there exists an attractor mechanism taking
the solutions of wide class of scalar-tensor theories to the
limit of general relativity. Their approach was generalized
to cases of curved FLRW models with nonvanishing self-
interaction potentials with the result that in the flat model
and dust matter the attractor mechanism is not rendered
ineffective [16]. Yet, some authors [17,18] have argued
under different assumptions, but still using the Einstein
frame, that the attractor mechanism is not generic and may
be replaced by repulsion. In the Jordan frame, the main tool
of subsequent investigations has been the construction of
viable cosmological models with present state very near to
general relativity, leaving the question of generality some-
what aside [19–21].

In what follows, our aim is to indicate a possible source
of these controversies. The plan of the paper is the follow-
ing. In Sec. II we recall a few basic facts about the scalar-
tensor theory and express some general considerations why
the scalar field redefinition is problematic in the general
relativity limit. In Sec. III we study two explicit examples,
viz. 2!��� � 3 � 3

1�� and 2!��� � 3 � 3
j1��j , and by

plotting the phase portraits for the Jordan frame � and
the Einstein frame � demonstrate how the scalar field
dynamics is qualitatively different in different frames. In
Sec. IV we clarify why the previous studies of the attractor
mechanism in the Einstein frame have yielded different
results. We also make some comments on nonminimally
coupled STT and the weak field [parametrized post-
Newtonian (PPN)] limit. Finally in Sec. V we draw some
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conclusions, in particular, that if the Jordan frame formu-
lation is taken to be definitive for a scalar-tensor theory
then the conditions for the attractor mechanism towards
general relativity should be reconsidered in the Jordan
frame.

II. GENERAL CONSIDERATIONS

Our starting point is the action of a general scalar-tensor
theory in the Jordan frame

 SJ �
1

2�2

Z
d4x

�������
�g
p

�
�R�g� �

!���
�
r��r��

�
� Sm�g��; �m�; (1)

where r� denotes the covariant derivative with respect to
the metric g��, !��� is a coupling function, �2 is the bare
gravitational constant, and Sm is the matter part of the
action where �m includes all other fields. Different choices
of the field dependent coupling function !��� give us
different scalar-tensor theories. We assume that � 2
�0;1� or a subset of it and !���>� 3

2 to keep the effec-
tive Newtonian gravitational constant positive [4,21]. The
corresponding field equations for the metric tensor g�� and
the scalar field � are given by
 

G���g� �
�2

�
T���g� �

1

�
�r�r��� g�����

�
!���

�2

�
r��r���

1

2
g��r

��r��
�
; (2)

 �� �
�2

�2!��� � 3�
T�g� �

1

�2!��� � 3�

d!
d�
r��r��:

(3)

Although STT and general relativity are mathematically
distinct theories, we may conventionally speak of ‘‘the
general relativity limit of STT’’ in the sense of a regime
of the solutions of STT where their observational predic-
tions are identical with those of general relativity. In typi-
cal observational tests of gravitational theories the PPN
formalism is used for slowly moving spherically symmet-
ric systems in the weak field approximation. Nordtvedt [4]
has demonstrated that the PPN parameters of a STT [with a
distinct coupling function !���] coincide with those of
general relativity with the Newtonian gravitational con-
stant GN � �2=�0 if

 lim
�!�0

1

!���
� 0; lim

�!�0

1

!3���

d!
d�
� 0: (4)

Let us denote the value � � �0 � const as ‘‘the general
relativity limit of STT.’’ This definition allows us to call a
solution of STT as ‘‘approaching the general relativity
limit’’ if the difference between these solutions is asymp-
totically vanishing.

Upon the conformal rescaling ~g�� � �g�� the action
(1) transforms into
 

S �
1

2�2

Z
d4x

�������
�~g

p �
R�~g� �

�2!� 3�

2�2
~g�� ~r��~r��

�
� Sm���1 ~g��; �m�; (5)

where ~r� denotes the covariant derivative with respect to
the metric ~g��. The kinetic term of the scalar field obtains
the canonical form by the means of a field redefinition

 2�d��2 �
�2!� 3�

2�2 �d��2; (6)

that determines a double-valued correspondence

 

d�

d�
� �

2�������������������������
2!��� � 3

p : (7)

This double valuedness may be interpreted as defining two
distinct Einstein frame theories which correspond to a
Jordan frame theory, i.e., we may choose one of the two
possible signs and keep it throughout all subsequent cal-
culations. But in the literature one also meets another
approach, where the scalar field is allowed to evolve
from one branch (sign) to another. In order to fully clarify
the issue we retain the possibility of both signs.

The resulting Einstein frame action is given by

 SE �
1

2�2

Z
d4x

�������
�~g

p
�R�~g� � 2~g�� ~r��~r���

� Sm��
�1���~g��; �m�; (8)

where the range of � depends on the range of coupling
function !��� as given by Eq. (7) and can be determined
only upon choosing a particular function !���. The cor-
responding field equations are

 G���~g� � �2T���~g� � 2�~r��~r���
1
2g��

~r��~r���;

(9)

 

~�� �
�2

2
����T�~g�; (10)

where
 

T���~g� � �
2�������
�~g
p

�Sm���1���~g��; �m�

�~g��
;

~r�T���~g� � �����T�~g�~r��;
(11)

and

 ���� �
�����
�
p d�

�����
�
p
��1

d�
� 	

1�������������������������������
2!������ � 3

p : (12)

‘‘The limit of general relativity’’ corresponding to Eq. (4)
is now given by � � �0, satisfying ���0� � 0.

The mathematical form of the scalar field redefinition
(7) and of the ensuing Eq. (12) raise two concerns here.
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(1) The property of double valuedness of ���� is gen-
erally harmless, simply meaning that the original
Jordan frame physics is represented by two equiva-
lent copies in the Einstein frame description (related
by �$ ��). However, these two copies meet at
the point �0 corresponding to the limit of general
relativity (4). Since d�=d� vanishes there, this
point has to be a point of inflection or a local
extremum of function ���� (for an illustration see
Fig. 1). The former case corresponds to picking the
same sign in Eq. (7) on both sides �<�0 and �>
�0, while in the latter case the derivative d�=d�
changes sign, which occurs with changing the sign
in Eq. (7). The second option remains the only
possibility when the scalar field in the Jordan frame
is assumed to have a restricted domain and �0 re-
sides at its boundary. It turns out that the choice of
the domain of � and related issue of signs in Eq. (7)
are significant and in Sec. IV we discuss how differ-
ent assumptions yield qualitatively different results
in the Einstein frame, namely, whether or not�0 is a
generic attractor.

(2) The property of d�=d� to vanish at �0 implies that
as the field � reaches the value �0 its dynamics as
determined by the variational principle loses the
correspondence with the dynamics of �. Indeed,
an infinitesimal variation of an action functional is
invariant at a regular change of variables, so the
variation of STT action functional can be given in
two different forms:

 �S �
�SJ
��

���
�SJ
�g��

�g��

�
�SE
��

���
�SE
�~g��

�~g��: (13)

But this relation may not hold if estimated at extre-
mals ��0; g���, since �� � d�

d��� and d�
d� diverges

there according to Eq. (7), i.e., the change of vari-
ables is not regular.

Here a remote analogy with coordinate patches in
topologically nontrivial spaces suggests itself. For in-
stance, if we describe particle’s worldlines in terms of
Schwarzschild coordinates we cannot go beyond the r �
2m ‘‘boundary,’’ however, if we use Kruskal coordinates
we would be able to follow the particle’s worldline beyond
it. In the case of scalar-tensor theories, the choice of ‘‘field
coordinates’’ could also entail similar effects. Yet, invari-
ant description of STT in field space is still not well under-
stood (e.g., [22]).

III. EXAMPLES

A. 2!��� � 3 � 3
�1���

Let us consider a scalar-tensor cosmology with the
coupling function

 !��� �
3

2

�

�1���
; (14)

with a restricted domain � 2 �0; 1�, which arises as an
effective description of Randall-Sundrum two-brane cos-
mology [23,24], and has also been considered before as an
example of conformal coupling [10,20,25] or as a STT with
vanishing scalar curvature [26]. The field equations for a
flat Universe (k � 0) with the FLRW line element and
perfect barotropic fluid matter, p � ��� 1��, read

 H2 � �H
_�

�
�

1

4

_�2

��1���
�
�2

3

�
�
; (15)

 

2 _H � 3H2 � �2H
_�

�
�

3

4

_�2

��1���
�

��

�
�
�2

�
��� 1��;

(16)

 

�� � �3H _��
1

2

_�2

�1���
�
�2

3
�1����4� 3���

(17)

(H 
 _a=a), while the conservation law is the usual

FIG. 1 (color online). Solution of the scalar field redefinition (7) in example A 2!��� � 3 � 3
1�� (left), and example B 2!��� �

3 � 3
j1��j (right).
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 _�� 3H�� � 0: (18)

The limit of general relativity (4) is reached at �! 1.
Equations (15)–(17) are singular at this value, however, as
we see soon, it corresponds to a fixed point in a dynamical
system describing the scalar field.

The Einstein frame description is obtained by confor-
mally rescaling the metric, ~g�� � �g��, followed by a
coordinate transformation to keep the FLRW form of the
line element,

 ~a �
�����
�
p

a; d~t �
�����
�
p

dt; ~� � ��2�: (19)

The redefinition (7) of the scalar field which gives its
kinetic term the usual canonical form,

 

d�
d�
� �

����������������������������
3

4

1

�2�1���

s
; (20)

is solved by
 

	� �
���
3
p

arctanh�
��������������
1��
p

�; 	
��������������
1��
p

� tanh
�
����
3
p

�
:

(21)

The solution is plotted on Fig. 1 left. There are two
branches I� and I� corresponding to the positive and
negative signs in Eq. (20) respectively. The map �! �
is double valued, the two branches � 2 ��1; 0� and � 2
�1; 0� define two Einstein frame copies of the Jordan frame
physics of � 2 �0; 1�. The two branches meet at the point
�0 � 0, which corresponds to the limit of general relativ-
ity, �0 � 1. For this point there is a choice to be made with
two options: either we allow � to pass from one branch to
another, or not. The first option would mean that � can
jump from one copy of the Einstein frame description to
another equivalent copy. In the Jordan frame description
this corresponds to � bouncing back from �0. The second
option would mean that the evolution of� has to end at�0

even when it reaches this point with nonvanishing speed.
Of course, there would be no problem, if the equations for
� were already ‘‘aware’’ of this and never allowed � to

reach �0 with nonvanishing speed. Unfortunately this is
not so, as we will see in the following.

The Einstein frame equations read

 

~H 2 �
1

3
_�2 �

�2

3
~� (22)

 2 _~H � 3 ~H2 � � _�2 � �2��� 1�~�; (23)

 

��� 3 ~H _� � �
1

2
�2�����4� 3��~�; (24)

 

_~�� 3 ~H�~� � �����4� 3��~� _� : (25)

Here

 ���� �
1���
3
p tanh

�
����
3
p

�
(26)

acts as a coupling function in the wave equation for the
scalar field (24) and also occurs in the matter conservation
law (25). The limit of general relativity, ���0� � 0, is at
�0 � 0.

In the following let us consider the case of dust matter
(� � 1). Equations (15)–(18) and (22)–(25) can be nu-
merically integrated (Fig. 2). The result explicitly supports
the concern that the dynamics of the scalar field can be
different in different frames when the limit of general
relativity is reached: while the Jordan frame solution con-
verges to the limit of general relativity (�0 � 1), the
Einstein frame solution of the same initial conditions
(properly transformed from the Jordan frame) evolves
through the corresponding point (�0 � 0). Here we al-
lowed � to jump from the branch I� to the branch I � ,
since otherwise it must have been stopped abruptly at
�0 � 0, which is not in accordance with Eqs. (22)–(24).
To confirm that this difference in the behavior of the Jordan
and the Einstein frame descriptions is not due to numerical
effects, but is truly encoded in the dynamics, we have to
look at the phase portraits [27].

By a change of variables introduced by Damour and
Nordtvedt [15] it is possible to combine the field equations
to get a dynamical equation for the scalar field which does

0.95
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0.97

0.98

0.99

1

0 0.5 1 1.5 2
log t

0

0.1

0.2

0.3

0.4

0.5 1 1.5 2
log t

FIG. 2 (color online). Numerical solution of example A with the initial condition ��0� � 0:95, _��0� � 0:095, ��0� � 1, a�0� � 1 in
the Jordan frame (left) and Einstein frame (right). Note that since � � 1 the respective time variables t and ~t differ only slightly.
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not manifestly contain the scale factor or matter density. In
the Jordan frame this amounts to defining a new time
variable [18]

 dp � hcdt 

�
H �

_�

2�

�
dt: (27)

Then from Eqs. (15)–(17) the following ‘‘master’’ equa-
tion for the scalar field can be derived [18,24]:
 

8�1���
�00

�
� 3

�
�0

�

�
3
� 2�3� 5��

�
�0

�

�
2

� 12�1���
�0

�
� 8�1���2 � 0; (28)

where primes denote the derivatives with respect to p. The
Friedmann constraint (15) in terms of the new time variable
p can be written as

 h2
c �

�2�

3��1� �02

4�2�1���
�
: (29)

Assuming that � is positive definite, the constraint restricts
the dynamics to explore only the region

 j�0j � j2�
��������������
1��
p

j: (30)

Notice, Eq. (29) assures that the time reparametrization
(27) works fine, as within the borders of the allowed phase
space p time and t time always run in the same direction.
Also, from _� � hc�

0 it is easy to see that _� � 0 corre-
sponds to �0 � 0, while _� � 	1 corresponds to the
boundary �0 � 	2�

��������������
1��
p

.
Let us introduce variables x 
 �, y 
 �0 and write

Eq. (28) as a dynamical system

 

� x0 � y

y0 � 3y3

8x2�1�x�
� �3�5x�y2

4x�1�x� �
3y
2 � x�1� x�:

(31)

There are two fixed points:
(i) A saddle point at (x � 0, y � 0), with repulsive and

attractive eigenvectors tangential to the upper and
lower boundaries y � 	2x

������������
1� x
p

, respectively,

(ii) A spiralling attractor at (x � 1, y � 0), but notice
here the trajectories also need to respect the bounda-
ries of the allowed region.

As can be seen from the phase portrait (Fig. 3 left) all
trajectories begin in the infinitesimal vicinity of one of the
two fixed points. Also all trajectories are collected by the
attractor, except for the marginal trajectory along the
boundary y � �2x

������������
1� x
p

, which runs into the saddle
point. Translating back to the original time t it turns out
that the attractor corresponds to the limit of general rela-
tivity (�! 1, _�! 0) for all trajectories within the al-
lowed phase space.

In the Einstein frame the new time variable is given by
[15,18]

 dp � ~Hd~t; (32)

and from Eqs. (22)–(24) follows an analogous master
equation

 

2

3��02
�00 ��0 � �����; (33)

where primes denote the derivatives with respect to p and
���� is given by Eq. (26). Now the allowed phase space is
constrained by

 �0 � 	
���
3
p
; (34)

_� � 0 corresponds to �0 � 0, while _� � 	1 corre-
sponds to the boundary �0 � 	

���
3
p

. In the variables x 

�, y 
 �0 Eq. (33) reads

 

� x0 � y;

y0 � �y�3� y2� � �3�y
2���

3
p tanh� x��

3
p �:

(35)

There is one fixed point:
(i) An attractor at (x � 0, y � 0).

As can be observed from the phase portrait (Fig. 3 right)
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FIG. 3. Example A phase portraits of the scalar field master Eq. (28) in the Jordan frame (left) and its analogue (26) and (33) in the
Einstein frame (right).
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the attractor collects all the trajectories, except the mar-
ginal ones which run along the boundaries.

Despite both cases exhibiting an attractor behavior, the
Jordan and Einstein frame phase portraits are not equiva-
lent. The Einstein frame portrait is symmetric under x$
�x, y$ �y, related to the two branches (two copies)
discussed above. The transition form one branch to another
is smooth and there is no constraint on the Einstein frame
dynamics to prevent the trajectories from passing through
� � 0. In fact, all the Einstein frame trajectories do cross
once from one branch to another, except for the two
trajectories which flow directly from � � 	1 to the fixed
point. This general behavior confirms that the Einstein
frame solution on Fig. 2 right does indeed evolve through
� � 0 and the crossing is not an artifact of numerical
errors in a sensitive region. However, the passing of �
from one branch to another would in the Jordan frame
description correspond to � evolving to � � 1 and then
bouncing back to �< 1. This does not happen, as is
illustrated by the solution on Fig. 2 left, which monoto-
nously converges to � � 1. The analysis of the Jordan
frame phase portrait makes it completely clear. No trajec-
tory does change from �0 > 0 to �0 < 0, all trajectories
with �0 > 0 necessarily flow towards � � 1, and � � 1 is
a fixed point, i.e., there is no way back.

An alternative option would be to cut the Einstein frame
phase portrait along � � 0 into two copies and maintain
both separately. Then there would be no problematic cross-
ing from one branch to another, however, in this case there
is a mismatch between the extent of the past or future of the
solutions in different frames. All generic Einstein frame
solutions either terminate at finite time (run to � � 0 with
�0 � 0) or begin at finite time (emerge at� � 0 with�0 �

0). Yet, all Jordan frame solutions have infinite past and
infinite future (they begin near a fixed point and run into a
fixed point). On Fig. 2 this would correspond to terminat-
ing the Einstein frame solution at � � 0 at a finite time,
while its Jordan frame counterpart can enjoy an infinite
time in approaching � � 1.

The reason for the incompatibility of the Jordan and
Einstein frame pictures lies, of course, in the singular
behavior of the transformation (20) at � � 0, which
maps the point (� � 1, �0 � 0) in the Jordan frame to
the whole line (� � 0, j�0j<

���
3
p

) on the Einstein frame
phase diagram. The Jordan frame solutions which ap-
proach �! 1 with �0 ! 0 get mapped to the Einstein
frame solutions �! 0 with arbitrary �0 which therefore
do not necessarily stop at � � 0, but can evolve through.
This is a manifestation of our general observation that at
the limit of general relativity the dynamics of the Einstein
frame � loses any correspondence with the dynamics of
the Jordan frame �. The fact that the Einstein frame
description involves two copies of the Jordan frame phys-
ics and the problem whether or not to glue these copies
together really becomes an issue since the � trajectories
lose correspondence with the � trajectories at this point.

None of the two options on how to deal with the two
branches yields an acceptable result.

B. 2!��� � 3 � 3
j1��j

As a second example, let us consider a scalar-tensor
cosmology with the coupling function

 !��� �
3

2

1� j1��j

j1��j
; � 2 �0;�1�; (36)

which belongs to subclasses (a) and (c) in the classification
proposed by Barrow and Parsons [21] and was studied
before by Serna et al. [18]. The field equations for a flat
Universe (k � 0) with the FLRW line element and perfect
fluid matter now read

 H2 � �H
_�

�
�

1

4

1� j1��j

j1��j

� _�

�

�
2
�
�2

3

�
�
; (37)

 

2 _H � 3H2 � �2H
_�

�
�

3

4

1� j1��j

j1��j

� _�

�

�
2
�

��

�

�
�2

�
��� 1��; (38)

 

�� � �3H _��
1

2

_�2

�1���
�
�2

3
j1��j�4� 3���:

(39)

In the case of dust (� � 1) an analogue of the master
Eq. (28) is given by
 

8j1��j
�00

�
� 3

�
�0

�

�
3
� 2
j1��j

�1���
�3� 5��

�
�0

�

�
2

� 12j1��j
�0

�
� 8�1���2 � 0; (40)

while the Friedmann equation constrains the dynamics to
explore the region

 j�0j � j2�
�����������������
j1��j

p
j (41)

only. We can write Eq. (40) as a dynamical system and
study the respective phase portrait as before, see Fig. 4 left.
The phase portrait in the region � � 1 is identical with the
previous case (Fig. 3 left), while the region �  1 is now a
new feature. These two regions meet at the point (� � 1,
�0 � 0), which is also a fixed point. It turns out that this
fixed point has different properties for the regions � � 1
and �  1. For the trajectories in the region � � 1 it
functions as a spiralling attractor as we learned before.
For the trajectories in the �  1 region, however, it is a
saddle point with attractive and repulsive eigenvectors
tangential to the lower and upper boundaries (41), respec-
tively. Therefore all generic trajectories in the �  1
region start at � � 1, come arbitrarily close to � � 1
but get turned around and run back to � � 1. It is not
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possible for the trajectories to pass from the region � � 1
to the region �  1, or vice versa.

The Einstein frame view with the canonical scalar field
kinetic term is obtained from Eq. (7), the solution is given
by

 	� �
� ���

3
p

arctanh�
��������������
1��
p

�; � � 1;
�

���
3
p

arctan�
��������������
�� 1
p

�; �  1;
(42)

see Fig. 1 right. As in the previous case, the solution has
two branches �I�; II�� and �I�; II�� related to the �
sign in Eq. (7) and to be interpreted as two equivalent
Einstein frame copies of the Jordan frame dynamics.
[Actually the transformation (42) is infinitely many-valued
in the domain �  1, since for each � we have
�

���
3
p

arctan�
��������������
�� 1
p

� �
���
3
p
��c � n	�, �c 2 ��

	
2 ; 0�,

but in what follows we ignore this extra complication
and assume n � 0.]

Let us focus on one of these branches by taking the �
sign in Eq. (42). Then � 2 �0; 1� gets mapped onto � 2
�1; 0� and � 2 �1;1� gets mapped onto � 2 �0;� 	

2

���
3
p
�.

The Einstein frame field equations have the same form as
in the example considered previously (22)–(24), but with
the coupling function ���� given by

 ���� �

8<
:

1��
3
p tanh����

3
p � �  0;

� 1��
3
p tan����

3
p � � � 0:

(43)

The limit to general relativity corresponds to the value
� � 0 as before.

The master equation for � retains its form (33) as well,
but with the coupling function (43). The corresponding
Einstein frame phase portrait on Fig. 4 right exhibits no
symmetry reflecting the fact that we have chosen only one
branch of ����. (The other branch would have given a
mirror portrait with�! ��.) The point (� � 0,�0 � 0)
is still a fixed point, but characterized by different proper-
ties with respect to the regions �  0 and � � 0. For
�  0 it is an attractor, but for � � 0 it is a saddle point.

Despite the properties of this fixed point being the same
in the respective regions of the Einstein and Jordan frame,
the phase portraits are clearly not equivalent in the two

frames. While the Jordan frame trajectories are unable to
cross the general relativity limit � � 1, the generic
Einstein frame trajectories do it once. In particular, all
the Jordan frame trajectories with �< 1 converge to the
general relativity fixed point, but only some of the corre-
sponding Einstein frame trajectories with �> 0 are col-
lected by the fixed point while others pass through � � 0
and get repelled from general relativity. Similarly, all the
generic Jordan frame trajectories with �> 1 can only get
arbitrarily close to general relativity, but in the Einstein
frame only some of the corresponding trajectories with
�< 0 are repelled while some can pass through � � 0
and end up at the fixed point. Therefore, although the issue
of the Einstein frame trajectories jumping from one branch
to another does not arise in this case, the problem of the
losing the correspondence between the Jordan and Einstein
frame dynamics at the general relativity limit is still
manifest.

IV. DISCUSSION

A. General relativity as a late time attractor for generic
scalar-tensor theories

Studies of this question have usually relied on the
Einstein frame where the equations are mathematically
less complicated. Damour and Nordtvedt [15] investigated
Eq. (33) in the linear approximation of an arbitrary cou-
pling function at the point of general relativity (� � 0),
assuming ���� �� which corresponds to a quadratic
‘‘potential’’ P��� ��2, introduced as � 
 dP=d�. In
the case of dust matter they found an oscillatory behavior
of the scalar field with late-time relaxation to general
relativity. In comparison, Serna et al. [18] obtain ���� �
j�j for small values of� from the examples of Barrow and
Parsons [21] in the Jordan frame. Now the corresponding
potential has no minimum, P� sign����2, and general
relativity (� � 0) is a point of inflection making possible
also repulsion from general relativity.

Both of these two cases are contained in our examples as
a linear approximation near � � 0: Eq. (26) implies
���� �� and Eq. (43) implies ���� � j�j. The respec-

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–2

–1

0

1

2

–2 –1 0 1 2

FIG. 4. Example B phase portraits of the scalar field master Eq. (40) in the Jordan frame (left) and its analogue (33) and (43) in the
Einstein frame (right).
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tive qualitative behavior can be inferred from the phase
portraits (Figs. 3 and 4 right) in the neighborhood of the
fixed point (� � 0, �0 � 0). Also recall that the first case
involved allowing � to pass from one sign in Eq. (21) to
another, while in the second case � was evolving accord-
ing to Eq. (42) with a fixed sign.

In fact, using our phase portraits it is also possible to
combine portraits for the cases of ���� � �� and ���� �
�j�j. Gluing together the left half of Fig. 4 right (� � 0)
with its image under the transformation �! ��, �0 !
��0 gives the phase portrait for ���� � ��, generically
characterized by repulsion from general relativity.
Reflection �! �� of the full Fig. 4 right yields the
portrait for ���� � �j�j with properties similar to the
���� � j�j case.

It is clear that the possibility of general relativity being
an Einstein frame attractor crucially depends on the form
of the coupling function ���� and without knowing it at
least in the neighborhood of general relativity no conclu-
sions can be drawn. This is in accord with the results of
Gérard and Mahara [17] who tried to determine a generic
behavior around the general relativity in the Einstein frame
without specifying the coupling function and concluded
that the potential P can but need not be bounded from
below.

However, if we want to translate the results into the
Jordan frame description the Einstein frame analysis is
not reliable, as conjectured by the general remarks in
Sec. II and explicitly demonstrated by the two examples
in Sec. III. For the Jordan frame conclusions about the STT
convergence to general relativity the analysis must be
carried out in the Jordan frame.

B. Nonminimally coupled STT

Sometimes a different action of scalar-tensor theory is
considered [6,31]
 

S
 �
1

2�2

Z
d4x

�������
�g
p

��1� 
�2�2�R� g��@��@���

� Smatter: (44)

It is equivalent to the action (1) of the scalar-tensor theory
in the Jordan frame with a specific coupling function!, if a
redefinition of the scalar field is performed,

 

d�

d�
� �

������������
�

!���

s
: (45)

However, analogously to the redefinition (7) it (i) contains
a sign ambiguity and (ii) is singular at the limit to general
relativity, !!1. It seems that the actions S
 and SJ are
not equivalent at the limit to general relativity since SJ is
obtained from S
 through a singular transformation (45).

Note that Faraoni [32] has also recently pointed out that
the correspondence between modified f�R� theories and
scalar-tensor theories of gravity breaks down in the limit to

general relativity. This indicates that general relativity may
be a rather special theory for its different modifications.

C. PPN

We have demonstrated that there are essential differ-
ences at the limiting process to general relativity between
the scalar field � in the Jordan frame and the canonical
scalar field � in the Einstein frame. In principle, the
differences may be reflected in present day observations,
but only indirectly, through possible differences in the form
of the solutions for the scalar fields. The Eddington pa-
rameters which determine direct observational consequen-
ces and are given in terms of the coupling function!��� in
the Jordan frame [4,5] depend only on the quantities with-
out sign ambiguity in the Einstein frame [15],
 

�2��� �
1

2!������ � 3
;

d�
d�
�

2

G�t0�
�2!������ � 4�

�2!������ � 3�3
d!
d�

;

(46)

where G�t0� is the present day measured gravitational
constant.

V. CONCLUSION

The action functionals SJ and SE of the Jordan and the
Einstein frame description are equivalent in the sense that
they are connected by conformal transformation of the
metric and redefinition of the scalar field. However, at
the limit of general relativity the redefinition of the scalar
field is singular and the correspondence between the differ-
ent frames is lost. This results in a different behavior of
solutions of the field equations at this limit, e.g., in our
examples of FLRW cosmology, the scalar field � in the
Jordan frame never crosses its general relativistic value
�0 � 1, but scalar field � in the Einstein frame may
oscillate around its general relativistic value �0 � 0. We
argue that these solutions cannot be properly set into
correspondence using the redefinition of the scalar field
(7). In order to investigate the scalar field as it approaches
to the limit of general relativity, we must choose the frame
from the very beginning by using some additional assump-
tions. If our choice is that the Jordan frame is basic, then
the attractor mechanism towards general relativity must be
reconsidered in the Jordan frame [33].
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