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Protecting the inflationary potential from quantum corrections typically requires symmetries that
constrain the form of couplings of the inflaton to other sectors. We will explore how these restrictions
affect reheating in models with UV completions. In particular, we look at how reheating occurs when
inflation is governed by closed strings, using N-flation as an example. We find that coupling the inflaton
preferentially to the standard modelis difficult, and hidden sectors are typically reheated. Observational
constraints are only met by a fraction of the models. In some working models, relativistic relics in the
hidden sector provide dark matter candidates with masses that range from keV to PeV, with lighter masses
being preferred.
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I. INTRODUCTION

A crucial part of any model of inflation is the successful
reheating of the standard model. Despite the obvious im-
portance of this process, there is typically little concern
that it will not occur. From the bottom-up standpoint, there
are good reasons for this view. The first is that it is trivial to
add couplings that allow the inflaton to decay, in toy
models. The second is that the scale of inflation is usually
very high compared to the scale of big bang nucleosynthe-
sis (BBN). For this reason, the reheat temperature is rarely
(if ever) at risk of being too low for BBN. Finally, unlike
the phase of inflation that precedes it, the physics of
reheating leaves little observational signature. There are
hopes for some signatures of reheating to appear in gravi-
tational waves [1–6], but not in any currently measurable
range. However, from the existence of problems like grav-
itino overproduction [7–11], it is already clear that the top-
down view towards reheating is less favorable.

There is good reason to look at these problems from the
top-down in inflationary models. Inflation can be sensitive
to UV physics, given that high-scale physics can ruin the
slow roll of inflation. Protecting the slow-roll parameters
from high-scale effects can dramatically change one’s
perspective on what is generic or likely. For example,
top-down considerations have pointed to possible large
non-Gaussianities [12,13] and observable cosmic super-
strings [14–16]. In general, one may hope for other low-
scale observables that contain hints of UV physics. Open
string inflation [17,18] is one example in which reheating
could potentially offer such clues. In this model, reheating
occurs through tachyon condensation, so relic gravitons
[19–22] or Kaluza-Klein (KK) modes [23] might be ob-
servable. However, one might think this is a special case,
due to its effectively string scale reheat temperature.

There is one key difference between bottom-up and top-
down approaches: coupling to hidden sectors. A common

feature in supersymmetry (SUSY) extensions of the stan-
dard modeland UV completions via string theory is the
appearance of hidden sectors that couple very weakly to
the standard model. In SUSY model building, these are
typically needed for SUSY breaking. However, the inflaton
is typically assumed1 to decay only to the standard model.
If these additional sectors are not sufficiently unstable,2

then reheating them could be a serious problem (see e.g.,
[29–35], although much of this work is done in specific
models that do not contain a realistic inflationary sector).

In this paper, we study reheating in closed string models
using N-flation as an example. We will find that the inflaton
generically couples to all sectors, and that one must tune
couplings in order to avoid bounds from BBN. In hidden
sectors with hot3 stable relics (which includes all theories
with mass gaps below the reheat temperature), the relic is
typically a dark matter candidate. However, avoiding over-
closure requires substantial tuning if the relic mass is much
greater than 1 MeV.

We begin with a discussion of reheating in chaotic
inflation, focusing on how reheating changes when we
try to account for new physics at the Planck scale. This
will lead us to consider N-flation as a UV completion. In
Sec. III, we specifically consider the reheating of N-flation
[36]. We will measure the tuning required to meet experi-
mental bounds depending on the types of relics and the
overall energy density in the hidden sector. In Sec. IV, we
will discuss the features of N-flation that generalize to
other closed string models.

*drgreen@stanford.edu

1Decay to the standard model can be ensured by having the
inflaton charged under the standard model gauge group [24,25].
These types of models will fall into the category of ‘‘open string
inflation’’ from the type II description used in this paper.

2In models like [26,27], reheating the SUSY-breaking sector
restores supersymmetry [28], thus making it problematic regard-
less of the stability of particles.

3Here ‘‘hot’’ means relativistic at freeze-out, not relativistic at
BBN or during structure formation.
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II. CHAOTIC INFLATION

We would like to understand the role of a UV comple-
tion in inflation and reheating. With this in mind, we will
look at how reheating depends on the steps taken to protect
the potential against quantum corrections from UV phys-
ics. Let us look at chaotic inflation [37] as an example,
returning to generalizations later. At the level of the clas-
sical Lagrangian, chaotic inflation looks like the simplest
possible model for inflation. The frequent starting point for
such models is the Lagrangian

 L � 1
2�@��@

���m2
��

2� � g2�2�2 � h� �  � . . . ;

(1)

where m� � 10�6Mpl by using ��
� � 10�5 from the CMB.

The inflaton is coupled to a scalar � and a fermion  , both
with masses in the range 100 GeV� m� m�. These
particles are required to be unstable and to decay only to
standard model particles. All Lagrangians we write down
are understood to be minimally coupled to gravity.

With no higher-order terms, one can achieve many more
e-folds than the necessary 60; h�i is typically bounded by
the requirement that the energy density does not exceed
Mpl. Reheating proceeds through both a phase of broad
parametric resonance to the � fields, known as preheating
[38,39] (if g � 10�6), and a phase of direct decay to  
particles. The preheating phase is capable of producing
gravitational waves that might be visible to future experi-
ment [1–3].

The first requirement that is often imposed is radiative
stability. A model will be defined as stable if quantum
corrections (including the renormalization of existing cou-
plings) do not dramatically alter the behavior of the model.
Here, we use a UV cutoff at the Planck scale to regulate
divergences. This cutoff could be lower, which would alter
a few formulas. However, we will see that the Planck scale
is the important scale in the models we are considering. If
we consider one-loop diagrams with � running in the loop,
all even powers of � are generated. The most stringent
requirement comes from the mass term for � itself. This
one-loop diagram is quadratically divergent, giving a con-
tribution to the mass of order g2

16�2 M2
pl. Consistency with

the CMB requires m� ’ 10�6Mpl and so implies that g <
10�5. This requirement makes the period of preheating
ineffective.4 A similar argument requires that h < 10�5.
The reheating of this model is now predominantly through
the elementary decay5 of � and narrow resonances in �.

Because gravity is nonrenormalizable, we expect to see
new physics appear at the scale Mpl. Therefore, we should
treat (1) as an effective field theory below that scale and
include all allowed higher-dimension operators, sup-
pressed by appropriate powers of Mpl, with order one
coefficients. These are not contributions from gravity be-
low the scale (which do not contribute order one coeffi-
cients) but rather due to particles (or something else) of
mass greater than Mpl that have been integrated out. These
contributions give a potential for � of the form

 V��� �
X
n

�nM4�2n
pl �2n: (2)

Since chaotic inflation requires �>Mpl, if any � is order
one then slow-roll will not proceed. I will describe theories
as natural when the small sizes of couplings are due to
symmetries (exact or approximate).

In order to get a natural theory of chaotic inflation, one
can use shift symmetries to control the higher-dimension
operators. One such model, known appropriately as ‘‘natu-
ral inflation’’ [40], uses an axion with f >Mpl to ensure
that a flat potential is obtained. In particular, the action is
constrained to be of the form

 L �
1

2
@��@

����4 cos
�
�
f

�
�
�
f
F ^ F� . . . ; (3)

where � is some dynamically generated scale (which will
be fixed to get the right spectrum) and F is some gauge
field which will be taken to be part of the standard model.
This model inflates much like any theory of chaotic in-
flation does. However, now we are required to reheat
through a dimension five operator, and the resulting reheat
temperature is given by

 TRH /

���������������
Mplm

3
�

q
f

: (4)

For f >Mpl one will get TRH < 109 GeV.
Thus, for models with similar physics during inflation,

we see significantly different reheating depending on how
the potential is protected from quantum corrections.
However, most natural models are protected by global
symmetries, which are expected to be broken in any UV
completion of gravity. For this reason, having a technically
natural model does not necessarily prevent the appearance
of dangerous operators suppressed by powers of Mpl.
Therefore, it is relevant to ask if a given natural model
can be embedded in such a completion. For the purposes of
this paper, we will take this completion to be string theory,
as it is currently the only theory with answers to these
questions.

In order to produce natural inflation in string theory, one
would need to find axions with f >Mpl. However, this
seems impossible [41,42]. The best one might be able to do

4In the literature, the mass is often fine-tuned to 10�6Mpl, and
then one requires that the potential is sufficiently flat, giving a
constraint of g < 10�3.

5For 10�6 < g< 10�5 there is a window where broad reso-
nance still operates. However, in this window, there is also a
mass on the order of m� generated for �, which impedes particle
production.
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is use N axions to produce a natural model of assisted
inflation [43–46] known as N-flation [36]. Ideally, one
would like to have a large number of axions with f �
Mpl and equal masses on the order of m�, which would
collectively do the job of a single inflaton moving a super-
Planckian distance in field space. Degenerate masses could
be difficult to achieve, but a generic compactification may
be close enough. In particular, it was shown in [47] that,
given the form of the axion mass matrix in some compac-
tifications with stabilized moduli, the eigenvalue distribu-
tion for a generic compactification can be modeled by
random matrices. The resulting distribution of masses turns
out to be sufficient for successful inflation, given appro-
priate initial conditions.

III. REHEATING N-FLATION

In the previous section we introduced N-flation, a closed
string model of assisted inflation. Here we will expand on
the string construction, as described in [47], for the purpose
of discussing the physics of reheating in this model. In
type IIB models there are h1;1 axions associated with the
four-cycles Bi4 via

 �i �
Z
Bi4

C4: (5)

In a supersymmetric compatification, these axions com-
bine with the volumes of the four-cycles, �i, to form the
complex parameter �i 	 �i � i�i. A nonperturbative
superpotential is generated from either Euclidean D3
branes wrapped on the four-cycle or from gaugino con-
densation on D7 branes wrapping the four-cycles giving a
superpotential of the form

 W � W0 �
X
i

Aie
�ai�i : (6)

Here W0 is the flux-induced superpotential, and ai is either
2� for Euclidean D3s or 2�

M for D7 brane gaugino conden-
sation. These axions have the usual coupling to four-
dimensional gauge fields, through the Chern-Simons terms
for the gauge fields that live on D7 branes that wrap the
four-cycles. Both the kinetic terms and the mass terms for
the axions are nondiagonal in the �i basis. Once diagonal-
ized, this theory behaves like N-independent axions with a
mass distribution that follows the Marcenko-Pastur law.

Before we can get to reheating, we need to need to
specify a standard model. For the purpose of this paper,
we will focus on reheating through the coupling to F ^ F.
Because we are building N-flation from the axions associ-
ated with four-cycles, this means we should put the stan-
dard model on D7 branes. D3 and D5 branes could be
reheated through couplings generated from the superpo-
tential. But this is likely very difficult to achieve because of
the restricted form of the superpotential and we will not
consider this possibility in the current discussion.

In order to successfully reheat, the energy from the last
few axions (those whose energy density is not significantly
diluted by inflation) must be deposited into the standard
model. In the above model, this could be a difficult
task. Consider the situation where there are ~N � 1 

N-independent gauge fields associated with D7 branes
wrapping four-cycles, with the standard model living in
one such sector. The mass basis in which the dynamics of
the axions are independent is rotated relative to the basis in
which the couplings to gauge fields are simple. In particu-
lar, each gauge field couples to a linear combination of all
the different axions of the mass basis. Therefore, a typical
mass basis axion will deposit its energy uniformly into all
the different gauge sectors.

Engineering a working model will also be very difficult
because of the nonlocalized nature of the mass basis axi-
ons. In particular, a single axion in this mass basis is related
to a four-form potential (C4) that is spread out over the
entire compact space. Therefore, if there are many hidden
sectors, there is no obvious way to use locality on the
compact space to ensure successful reheating.

Experimentally, the reheating of hidden sectors is con-
strained only by BBN and over-closure. For sectors with
light particles, BBN requires that the standard model
dominates the energy density. For hidden sectors with
mass gaps above 1 MeV, the only requirement is that the
relic density is, at most, that of the dark matter. With these
constraints, we will determine the tuning of the bases
needed for a given hidden sector. Before we can get to
tuning, we need to understand how the relic densities
depend on the reheat temperature. In the following sec-
tions, conventions have been chosen to reflect standard
Refs. [48,49] as much as possible.

A. Relic abundances

Let us take ~N to be the number of hidden sectors with
particles lighter than the reheat temperature. For sectors
with mass gaps above this scale, thermal equilibrium will
not be reached and there will be at most some nonthermal
production of particles [50]. Let Ti be the reheat tempera-
ture of the ith hidden sector and TSM be the standard model
reheat temperature. For our purposes, a hidden sector is a
sector which is not in thermal equilibrium with the stan-
dard model at TSM. Given these definitions, we will not
make any assumptions about the precise content of the
hidden sectors. Instead, we will study the constraints on
reheating as we vary the general features of their physics.
The hot and cold relic abundances will be estimated using
the assumption that � � H at freeze-out.

In the case of hot relics, the effect is rather simple.
Because the cross section does not enter the relic abun-
dance (except through the constraint that it is relativistic at
freeze-out), the abundance is given by the usual formula
multiplied by the ratio of energy densities in the two
sectors, namely,
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 �i
HRh

2
75 ’

gg0FO

g?

mHR

19 eV

�
Ti
TSM

�
3
: (7)

Here mHR is the mass of the hot relic, g is the number of

degrees of freedom of the relic and g0t �
gSM
t gHSRH
gHSt gSM

RH
is a ratio of

the effective number of degrees of freedom in the hidden
and visible sectors at reheating and at time t [taken in (7) to
be the time of freeze-out, t � FO]. The effective number of
degrees of freedom is defined by geff �

P
gbos �

7
8 �P

gferm. In practice, g0�1=3�
t relates the ratios of tempera-

tures at time t to the ratio of temperatures at reheating,
which follows from entropy conservation in each sector. g?
is the effective number of degrees of freedom that convert
into standard model photons after freeze-out. For the rest of
the paper, we will refer to hot relics as those for which (7)
applies. None of the relics we will discuss are actually
‘‘hot’’ during structure formation or BBN.

Determining when freeze-out occurs for a hot relic is
much more model dependant. Whether or not the particle is
relativistic is determined by the hidden sector temperature
while expansion is determined by the standard model
temperature.6 How the freeze-out temperature scales with
the ratio of reheat temperatures will depend upon the
dimension of the operator that keeps the relic in thermal
equilibrium.

Hot relics will arise in any theory with a mass gap below
the reheat temperature. In such cases, as the Universe
cools, there are no relativistic species left to carry the
energy and the relic abundance of the lightest particle
will be given by (7). Thus, for theories with a mass gap
at scales large compared to 1 MeV this will require sub-
stantial tuning of the reheat temperature.

For cold relics, there are competing effects that reduce
the dependence on the ratio of temperatures. In particular,
freeze-out is determined by

 nh	vi�Ti� ’ H �
�
gR�

2

90

�
1=2
T2

SMM
�1
pl ; (8)

where gR is the number of relativistic species at tempera-
ture TSM at freeze-out. In the above formula, we have
assumed that the standard model dominates the energy
density of the Universe.

Defining x � m
Ti

, then using h	vi ’ 	x��1=2� and n ’
g

�2��2=3 T3x��2=3�e�x, we can solve for x at freeze-out yield-

ing

 xF ’ 16:3� ln
�
gg��1=2�

R

�
g0�1=3�Ti
TSM

�
2
�

	

10�38 cm2

��
m

GeV

��
:

(9)

Given the value of x at freeze-out, one can determine the
relic abundance. Noting the extra factor � TiTSM

�2, it should not
be a surprise that the relic abundance takes the form

 �i
CRh

2
75 ’

gg0FO

g?
g1=2
R

�
g0�1=3� Ti

TSM

�
x3=2
F

�
	

10�38 cm2

�
�1
:

(10)

Because this depends only linearly on temperature, it is not
as dramatically affected by changes in the reheat
temperature.

B. Aligning bases

While aligning the bases of axions with the standard
model may be extremely difficult to do explicitly in spe-
cific cases (just realizing N-flation is difficult in practice
[51,52]), we would like to establish how difficult it is in
principle. Here the tuning under discussion is beyond the
other types of tuning already required to get the right
number of e-folds, etc. For this purpose, we would like a
measure for the alignment of bases.

There is a rather straightforward way to measure the
tuning of a given model. Associated with each sector is a
single axion ~�i that couples simply to Fi ^ Fi. It can be
written as some linear combination of axions in the mass
basis as ~�i �

P
ja
�i�
j �j where the a�i�j are real coefficients.

We will separate out the overall strength of the coupling
(given by fi) by requiring

P
ja

2�i�
j � 1. This gives a total of

~N points on SN�1. However, the relevant question is how
the axions whose decay occurs at the end of inflation
couple to these sectors. Axions that decay early have their
products diluted by inflation. Let us denote number of
axions whose products contribute to reheating by M. We
are only interested in the relative couplings of the hidden
sectors to the standard model. An average value of the
coupling to the standard model should be about a2

SM �
N�1. We will absorb this factor into each fi to define the
other couplings as points in BM (the M-dimensional unit
ball), assuming that the reheat temperature in the hidden
sectors needs to be lower than to the standard model. This
will also imply that the reheat temperature is down by a
factor of N��1=4�.

Constraints on the temperature of hidden sectors can
thus be related to constraints on the norm of the vector in
BM. How tuned the bases must be can then be measured by
the available volume after observational constraints. In
order to know how tuned a model is, we need to know
how the hidden sector reheat temperature depends on the
couplings. For a partial width of the axion j to the hidden

sector i, given by ��i�j ’
m3
�j
a2�i�
j

f2
i

, the evolution of the energy

density in that sector follows from

6Here we assume that the standard model dominates the
energy density of the Universe. This will be needed later to
match BBN predictions. However, (7) does not depend on this
assumption.
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 _� i � 4H�i �
XM
j�1

��i�j ��j
: (11)

Since H2 � �tot

3M2
pl

, when the energy density is dominated by

�� and _�i is small, we can approximate the solution by

 �i ’

�������������
3M2

pl

16�tot

vuut XM
j�1

��i�j ��j
: (12)

This solution holds until the axions begin to decay dra-
matically at t � ��1

tot . We will assume the total widths and
energy densities for these axions are approximately equal.
Using �i / T4 and �� / t�2, the solution (12) at t � ��1

tot

yields the reheat temperature

 Ti /
�
��i��tot

ri

�
1=4
; (13)

where ��i� is the sum of the widths from the remaining M
axions and ri is the number of relativistic degrees of free-
dom in sector i at reheating. In the case where there are no
hidden sectors, and thus ��i� � �tot, this reproduces the
usual formula. As a result, riT4

i /
PM
j�1 a

2�i�
j .

Let us now return to the question of tuning and general-
ity. First consider the case where all the hidden sectors have
massless particles and no over-closure problems. The only
constraint is that the energy density during BBN is domi-
nated by relativistic standard model particles [53–55].
Therefore, we will take a modest estimate that
rSM�T

4
SM�BBN � �102 ~NriT

4
i �BBN, for all i. Because the tem-

perature of radiation in any sector during BBN also de-
pends on the number of species that decay to radiation
before T � 1 MeV, we must include a factor of g0�1=3�

BBN in
each sector when comparing the reheat temperatures.
Therefore, for each hidden sector, the constraint on a�i�j is

that it lies inside a ball such that R2 
 10�2 ~N�1r0ig
0��4=3�
i ,

where r0i � �
rSM

ri
�BBN�

ri
rSM
�RH. There is a minor constraint on

the standard model vector, but we will ignore this contri-
bution as it has little effect. Defining the tuning 
 to be the
ratio of available volume to the total, the tuning is

 
 ’ �10�2 ~N�1�
~NM=2

Y~N

i�1

r0�M=2�
i �g0��2M=3�

i �BBN: (14)

Note that neither M nor ~N are necessarily on the order of
N, which must be large to get 60 e-folds. M is the number
of axions relevant to the very final stages and is likely
between one and five (knowing this likely requires simu-
lations, but we will remain agnostic about the precise
value). ~N is the number of hidden sectors with mass below
the scale of reheating. It is unknown what is generic for ~N.

One can arrange for ~N � 0, but it can also be on the order
of N.

To get a feel for the tuning formulas, let us determine the
tuning in a couple of simple cases. First of all, it should be
pointed out that the two ratios of degrees of freedom, r0 and
g0 are competing effects, which renders them relatively
insignificant. This can be seen as follows: by increasing the
effective number of degrees of freedom at reheating that
decay to the standard model, the energy density at BBN
increases by g0�4=3�. However, the increase in relativistic
number of degrees of freedom lowers T4

SM by r0�1. Thus,
even if r0 ’ g0 ’ 10�3 for every hidden sector, the net
effect on 
 is

������
10
p

M ~N. At best, this contribution adjusts
the numerical value 10�2 that already appears in (14). It
should be clear the dominant effect comes from ~N. For a
single hidden sector ( ~N � 1) the tune is not particularly
bad, as 
 ’ 10�1 to 
 ’ 10�5 for M � 1–5 and r0 � g0 �
1. 
 can be order one if r0 ’ g0 ’ 10�3. However, even at
M � 1, if ~N � 10–100 then 
 ’ 10�15–10�200. Thus, us-
ing BBN, the tuning is only severe if we have a very large
number of hidden sectors.

Avoiding over-closure will require further tuning when
the hidden sectors leave large relic abundances. Hot relics
are the most likely concern, as any hidden sector with a
mass gap below the reheat temperature will be dangerous.
Because (7) depends on the ratio of temperatures cubed, it
will be easier in most cases to lower the relic abundance
rather than to avoid initial production. For hot relics with
masses greater than 1 MeV, this constraint is more severe
than BBN. Given P 
 ~N sectors with hot relics of massmi,
then the tuning becomes

 
 ’ �10�2 ~N�1��
~N�P�M=2

Y~N

j�P�1

r0�M=2�
j �g0��2M=3�

j �BBN

�
YP
i�1

�
g?
gg0

19 eV

mi

�
2M=3

: (15)

The appearance of 19 eV should not be taken too seriously,
given that there is significant dependence on degrees of
freedom in both the visible and hidden sectors. For masses
greater than 103 TeV, it may be easier to lower the tem-
perature below the mass scale of the relic particle alto-
gether. Then we would have

 
 ’ �10�2 ~N�1��
~N�P�M=2

Y~N

j�P�1

r0�M=2�
j �g0��2M=3�

j �BBN

�
YP
i�1

�
ri
rSM

�
M=2

RH

�
mi

TSM

�
2M
: (16)

Given a typical reheat temperature for N-flation of TSM ’
1010 GeV, the worst tuning arises at the crossover from
(15) to (16) when m � 103 TeV. Thus, the cost of tuning
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for these relics is no worse than 10�8 for each hidden
sector.

What is generic ultimately depends on what constitutes
generic particle content for a hidden sector. If theories with
mass gaps below 103 TeV are generic, then so too are
warm hidden sectors. For such models, hidden sector
dark matter also becomes a possibility, as the dark matter
from hot relics with mass greater than 1 MeV is consistent
with data from both the CMB and structure formation (in
fact, small scale structure may favor warm dark matter
[56,57]).

IV. GENERALIZATIONS

Thus far, very little of what we have done is specific to
N-flation. In particular, in a model which has a single
inflaton with axionlike couplings, the above formulas ap-
ply with M � 1. In known closed string models [58–61]
the above discussion typically applies. However, the prob-
lem seems more general than the particular form of cou-
pling, as it is simply an issue of localizing the decay of the
inflaton.

If we focus on type II models with closed strings acting
as the inflaton, it appears that the same issues that occur in
reheating N-flation persist. In any such constructions, the
standard model will live on D-branes which are localized
in the compact space; the inflaton, however, is spread out
over the entire space. Successful reheating will ultimately
require one to localize the inflaton decay onto the standard
model brane, rather than one of the hidden sectors. While it
is likely the case that one can engineer models in which this
occurs (this could be done most easily by massing up all
the hidden sectors), it is not clear that such models are
generic, or that they survive other constraints coming from
self consistency, cosmology, and particle physics.

The tuning in more general closed string models can also
be studied. Whenever the decay of the inflaton is perturba-
tive, the tuning formulas still apply for any sectors that
reheat through operators of the same dimension as the
coupling to the standard model. The only difference in
those cases will be the reheat temperature. This will change
the scale where the crossover between (15) and (16) oc-
curs. In cases where the reheating proceeds nonperturba-
tively (e.g. [38,39,62–64]), the general problem remains,
but the same formulas no longer apply. In particular, the
reheat temperatures have a very nontrivial dependence on
the couplings which makes tunings difficult to calculate
explicitly.

These considerations can become particularly important
when considering SUSY model building. Such models
typically require SUSY-breaking sectors, which may con-
tain stable particles. These sectors play an important role in
phenomenology as they (along with the mediation mecha-
nism) determine the soft SUSY-breaking parameters in the
MSSM. If these sectors are reheated and do not decay

before BBN then for such models, we will need to tune
the hidden sector reheat temperature. This is in addition to
standard model reheat temperature which is usually
bounded by overproduction of gravitinos, etc. In general,
one can state the problem as being that the inflaton need not
couple only to the standard model.

One could also take the view that the above arguments
suggest that open string inflation (see e.g. [12,13,17,18]) is
a more natural candidate. In some such cases, reheating is
accomplished through D-brane annihilation and has been
well studied. When the standard model throat and infla-
tionary throat are the same, it is clear how this model is
localized to reheat the standard model preferentially.
However, experimental signatures such as relic KK modes
[23] and cosmic strings [14–16] could distinguish them
from the more garden-variety reheating of closed string
models. Additionally, there is the possibility of producing
gravitons at reheating that might be observable in the
future. For this reason, it would be worthwhile to determine
the precise gravitational wave signature of these models.

V. CONCLUSION

Motivated by the difficulties encountered in building
natural models of inflation in UV-complete theories, we
have studied reheating in closed string models of inflation.
In type II models, the standard model and hidden sectors
live on D-branes, which are localized in the compact space.
Because the inflaton is generally not localized (not even
approximately), the hidden sectors are reheated along with
the standard model. Bounds from BBN and over-closure
can be avoided when the inflaton is tuned to decay prefer-
entially onto the standard model branes. For reheating
through elementary decays, the amount of tuning neces-
sary was calculated. Similar tuning requirements will arise
when reheating is nonperturbative, although the tunings in
that case are difficult to calculate. In all cases, the tuning
depends on general features of the hidden sector, such as
the size of the mass gap and the number of independent
sectors.

To the author’s knowledge, there is no consensus on
what is generic for the hidden sectors of realistic compac-
tifications. The tuning is only severe in cases with large
numbers of independent sectors and/or cases where sectors
have masses well below the reheat temperature but well
above 1 MeV. For sectors with gaps below 103 TeV (when
TSM ’ 1010 GeV), observational bounds are most easily
met by allowing those sectors to reheat and having the
lowest mass particle be the dark matter. When the gap is
above this scale, the sector must not be reheated.

If we take the view that current string models tell us
where to look for the effects of UV-complete theories, then
reheating string models points to hidden sector matter as a
possibly generic outcome. As data on both dark matter and
gravitational waves improves in the coming years, we may
hope to see signatures of this UV physics.
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