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We study the response of a stochastic FitzHugh-Nagumo model to weak external forcing with the aim
of implementing a nonlinear algorithm, devised for the robust detection of transient signals such as
gravitational wave bursts. In order to test the performance of the algorithm, we exploited the ensemble of
maximum entropy signals—known as chirplets. In particular, we investigated the chirplet parameter
subspace representing the gravitational wave bursts within range of nowadays interferometric detectors.
We found that the false alarm rate can be controlled by changing the constant term in the equation of the
slow variable while the detection efficiency is completely insensitive to the kind of injected chirplet. The
receiver operating characteristic curves have been evaluated and compared with the performance of power
detectors (threshold crossing of local power), which are commonly used for the burst detection.
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I. INTRODUCTION

The noise in a physical apparatus affects not only the
estimate of signal parameters but also the detection of the
signal itself [1]. Very often, mathematical transformations
(either linear or nonlinear) have to be applied to the
sampled output of a detector to obtain further information
that is not readily available in the raw samples. It was
demonstrated that noise can enhance the detection of a
weak periodic signal by means of bistable systems (sto-
chastic resonance) [2]. However, how to boost the burst
detectability through a suitably optimized nonlinear sys-
tem, is still an open problem [3]. As an example, we
consider the problem of detecting small signals buried in
additive noise [i.e., at very low signal-to-noise ratio
(SNR)], that has been thoroughly investigated in the field
of gravitational wave searches [4]. If we assume signal
sparsity and weakness, the output of a linear detector is
normally dominated by its intrinsic noise sources, as pre-
scribed by the fluctuation-dissipation theorem [5].
Deviations from Gaussianity, in particular, frequency sub-
bands and/or specific time intervals can be handled by
conditioning algorithms, such as bandcut filters or epoch
vetoes [6]. In this case, we could use zero-mean stationary
white Gaussian stochastic process as a model for the noise
that corrupts the signal at the detector data. Thus the

classical approach to the signal detection is to maximize
the likelihood ratio over the parameters of expected signal
templates [7] and then to fix a detection threshold on this
statistics. The detection threshold is simply established by
the desired level of false alarm probability. The maximum
likelihood is compared with the aforementioned threshold
and a detection is announced whenever the threshold is
crossed.

Other modern mathematical tools, such as wavelet trans-
forms [8,9], denoising by universal thresholding [10], gen-
eralized entropies [11], etc. can be successfully employed
for the detection of some class of transient signals.
Regardless of the linearity of data transformations, the
detection occurs by means of a nonlinear procedure, e.g.
a threshold crossing of the test statistics [12].

In this paper we explore a completely different approach
for the burst detection, which is based on nonlinear excit-
able systems. Excitability is a common feature of natural
systems including neural cells, chemical reactions, climate
dynamics, etc. Common to all excitable systems is the
existence of one stable rest state and a threshold crossing
which triggers a deterministic orbit in the phase space
(firing). In the excitable model analyzed in this work,
namely, the FitzHugh-Nagumo (FN) system, the firing
state is reached by means of weak ‘‘external stimulus.’’
The dynamics of the FN system can be tuned to the
variance of the detector noise, by means of bifurcation
parameter in order to control the number of noise-induced
firings. The presence of a deterministic signal in the sto-
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chastic background increases the firing probability depend-
ing on the signal energy but irrespective to its waveform.
We can profit from these unique features of excitable
systems to implement a detection algorithm that identifies
pieces of data where some sample amplitudes are incom-
patible with spontaneous fluctuations of the detector noise.

The presence or absence of a signal in the detector
output affects the statistical characteristics of the observed
data set. Thus the problem of signal detection can be
conveniently reduced to a classical ‘‘hypothesis testing’’:
on the basis of the observed data, we have to take our
decision whether to reject or fail to reject the null hypothe-
sis (the signal is absent) against the alternative hypothesis
(the signal is present) [1,12]. As usual, we define the false
alarm (PFA) and detection (PD) probabilities, respectively,
as the probability to decide that the signal is present when it
is absent and the probability to identify a signal when the
signal is present. Useful graphical representations of PD vs
PFA are the receiver operation characteristic (ROC) curves
[13], which provide a systematic way of evaluating the
performance of different detection algorithms.

The plan of the paper is as follows. In Sec. II we shortly
review the dynamics of the excitable FN model. In Sec. III
we describe the FN algorithm we have implemented and its
potentialities for the bursts detection. In Sec. IV we study
the performances of the FN algorithm by means of a
Monte Carlo simulation of a detector output where detector
noise is modeled by stationary stochastic process, and
signals are drawn from the manifold of maximum entropy
chirplets. We make also a comparison with the perfor-
mances of power detectors. In Sec. V a conclusion is given
and future research potentials of FN algorithm, extended to
a detector network, are discussed.

II. DYNAMICAL MECHANISM OF EXCITABILITY

Excitable systems have a single stable fixed point and
display a thresholdlike response to external perturbations:
for stimuli above a certain threshold the system recovers its
initial state following a deterministic orbit in the
phase space (excitable response). These orbits appear in
the system output as large pulses whose amplitude and
duration depend only on the phase-space structure, while
they are completely independent of the details of the
external stimulus. This property makes these systems an
interesting candidate as robust (i.e. independent of the
perturbation characteristics) event trigger generators
(ETGs) for detectors.

One of the most popular examples of excitability is
provided by the FN system [14]:
 

_x � y� x�
x3

3
� y� f�x�; (1a)

_y � �"�x� a�; (1b)

where _x and _y indicate the time-derivative of the real
variables x and y. In this model, the variables x and y

evolve with two very different characteristic time scales
whose ratio is the parameter "� 1.

The system possesses only one steady state solution
�x; y� � �a; a

3

3 � a� [the intersection of the nullclines x �
a; y � f�x� in Fig. 1(a)] which is found to be stable for
j a j >1 and unstable otherwise. In this latter situation, the
temporal dynamics of the system can be visualized in the
limit "! 0 (singular perturbation analysis). In this limit,
the evolution of the y variable is much slower with respect
to that of the other variable x, therefore the dynamics of the
complete system consists of fast and slow motions [15]. By
setting " � 0 in Eq. (1b), we can see that the fast motion
evolves accordingly with Eq. (1a) (fast subsystem), where
y is now a constant parameter. On the other hand, by
introducing the slow time scale � � "t and setting " � 0,
we obtain the slow subsystem equation _y � a� x, with the
constraining condition y � x3=3� x. Hence, the slow mo-
tion in the phase space is limited to trajectories taking place
on the curve � � f�x; y� 2 fy � f�x�gg (slow manifold).
Note that � consists of fixed points of the fast subsystem:
these points are unstable if x2 < 1 while they are stable if
x2 > 1. Then, regardless of what value y is fixed, the
solution of the fast subsystem will rapidly approach one
of the branches of stable points, �1 � � \ fx > 1g and
�2 � � \ fx <�1g. We now allow y to slowly vary ac-
cordingly with the equation _y � a� x. Close to �1;2 we
have attracting trajectories, while close to the unstable
branch we have repelling trajectories. The flow direction
on the slow manifold is given by the sign of _y which is
positive if x < a and negative otherwise and is indicated by
the arrows in Fig. 1(a). At this point we have all the

FIG. 1. (a) Nullclines of Eqs. (1) and flow directions on the
slow manifold y � f�x� for a � �0:4 in the limit " � 0. The
stars indicate the fold points separating the stable and unstable
branches of the slow manifold. (b) Response of the FN system
(a � �1:1) to a �-like perturbation of amplitude p0 � 0:09
(dashed line) and p0 � 0:1 (solid line). (c) The corresponding
phase-space trajectory compared with the slow manifold (dotted
line).
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information we need in order to understand the dynamics
of Eqs. (1). The fixed point of the complete system is given
by the intersection between � and the curve x � a. When
a2 < 1 the curve x � a intersects the repelling part of the
slow manifold [as in the case depicted in Fig. 1(a)] and the
fixed point is unstable as stressed by the outward arrows
indicating the flow direction on the slow manifold. In this
case we also have a stable limit cycle. A trajectory starting
close to an attracting branch of the slow manifold must
follow it until one of the fold points F1;2 � ��1;	 2

3� is
reached. Beyond this point the slow manifold is repulsive
and the flow is pushed out of the slow manifold instanta-
neously jumping to the other attracting branch. Then it
flows along this branch until the other fold point where it
jumps back, and the system evolves on a limit cycle [16].

The phase-space structure and the slow-fast dynamics
above described is the responsible of the key property (for
our purposes) of our system, i.e. excitability. When a2 > 1,
i.e., when the curve x � a intersects �1;2, the fixed point is
stable. However, the system can be excited, i.e., forced to
temporarily jump to the branch which does not contain the
fixed point, in response to a sufficiently strong perturba-
tion; indeed, the effect of a perturbation i�t� is somehow
equivalent to instantaneously shifting the fixed point to-
wards the repelling part of the slow manifold beyond the
fold points y � 	2=3, where the jumps take place. Then,
the system will jump to the opposite branch following it
until the fold point and then it will recover its stable rest
state [Figs. 1(a) and 1(b)]. In our scheme a ‘‘detection’’ of a
stimulus i�t� (i.e. a noisy signal) simply corresponds to this
deterministic orbit in the phase space that we call firing.
There is a threshold value for a perturbation amplitude
below which excitations cannot occur for any stimulus
duration [see Figs. 1(b) and 1(c)]. Moreover, for each
amplitude above this threshold there is still a minimum
value of duration which produces excitation: this is the
time it takes the system to go from the fixed point to the
jump point. Therefore, there is an amplitude-duration
threshold curve for excitatory pulses. However, in the limit
case in which the perturbation i�t� can be well approxi-
mated by an impulsive (or �-like) positive function, there
is only a threshold for the perturbation mean value �i �R
i�t�dt [16]. The acr threshold is the minimal distance that

the system should be pushed away from the fixed point in
order to make it jump to the opposite branch. If "� 1, this
value is close to 2

3� ja�
a3

3 j. Figures 1(b) and 1(c) show
the system response in the presence of both subthreshold
(dashed line) and above-threshold (solid line) perturbations
and the corresponding phase portrait compared to the slow
manifold.

A deeper view of the transition mechanism is achieved
by studying the stochastic version of the FN system by
assuming that the stimulus is a deterministic signal super-
imposed to a stochastic process. The Langevin equations of
a stochastic FN system read

 dx � 
y� f�x��dt

dy � �"�x� a�dt� h�t�dt� �dw;
(2)

where h�t� is a possible deterministic contribution to the
stimulus, dw is a Wiener-Levy process, and � is its drift
coefficient. It is worth noticing that in the �-like approxi-
mation of the stimulus, the deterministic signal h�t� can be
recast into suitable initial conditions of Eq. (2). The cor-
responding Fokker–Planck equation for the transition
probability PFP density is not tractable analytically.
However, one can study the dynamics of cumulants of
PFP in particular regimes; in fact, it has been demonstrated
that, before and after the firing, x�t� and y�t� are approxi-
mately jointly normally distributed [17]. Within the
Gaussian approximation, the system of cumulant equations
involves only the first- and second-order cumulants. The
approximate equations for the time evolution of means mx
and my, variances sx and sy, and covariance cxy read [18]
 

_mx � �m
3
x=3�mx �my �mxsx

_my � �"�mx � a� � h�t�

_sx � 2sx�1�m
2
x � sx� � 2cxy

_sy � �2"cxy � �
2

_cxy � �"sx � sy � cxy�1�m
2
x � sx�;

(3)

with initial conditions mx�0� � a, my�0� � a3=3� a,
sx�0� � 0, sy�0� � 0, and cxy�0� � 0. Thus, the Langevin
equations (2) are now approximated by a set of five non-
linear ordinary differential equations. Equations (3) can be
further simplified by recognizing the difference in the
relaxation time scales between the means and the varian-
ces: the former change slower than the latter. The onset of
the stationary solution for variances and covariance is
immediate compared with the time-scale ratio � and so
we can make use of their approximate stationary solution
 

sx � �2=
2"�a2 � 1��

sy � �2
"� �a2 � 1�2�=
2"�a2 � 1��

cxy � �2=�2"�

(4)

to evaluate the evolution of the FN system. In addition, we
can substitute the above stationary solution in the first two
equations in the set of Eq. (3) to study the equilibrium point
of the system. The stability analysis shows that the equi-
librium point experiences a Hopf bifurcation with increas-
ing ratio �2=" and that the stability can be achieved by the
intuitive requirement �2=" < 1. From now on we require
our FN system to operate in the stable regime by a suitable
tuning of its parameter values.

The firing probability of a stable stochastic FN system
can be obtained after the integration of the joint normal
transition probability over all values of the variable y.
Within the Gaussian approximation, the following expres-
sion gives a good approximation to the probability that the
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stochastic process x�t� is above a level �

 P ��; t� �
1

2

�
1� erf

�
��mx�t�������������

2sx�t�
p

��
; (5)

where erf�x� is the error function. It is worth noticing that
even though P ��; t� can be evaluated from mx�t� and sx�t�,
the determination of these two quantities requires the
solution of all five of Eqs. (3). However, at early times [t <
O�"1=2�], during the prefiring dynamical evolution of the
FN system, we have that mx ’ a and my ’ a3=3� a plus
terms involving the deterministic signal. During this re-
gime, the firing probability is stationary and depends on the
mean value of noise and signal in the stimulus �i, and
hence the FN system can be successfully employed as a
detector of transient signals. Moreover, we are able to
assess the detection of a signal h�t� by a standard hypothe-
sis testing and decide to reject the null hypothesis
fH 0: “absence of a signal in T”g when the FN system
exhibits a firing. If " is as small as 10�2, the period T
can be long enough to detect transient signals of 0:1 s
which represents the expected duration of gravitational
wave (gw) bursts [19]. In the absence of deterministic
signals [h�t� � 0], the stationary firing probability for
time intervals of duration T <O�"1=2� reads

 P"�a� �
1
2f1� erf
�a� acr�

�����������������������������
"�a2 � 1�=�2

q
�g; (6)

where erf�x� is the error function and acr is the critical
threshold to make a transition from the steady to the firing
state. From slow manifold analysis, one can also show that
the critical threshold for the x variable to produce a firing is
given by acr � �1�O�"�. If we reset the FN system at
the beginning of each window of a given duration T [i.e.
by setting mx�kT� � a, my�kT� � a3=3� a and k �
1; 2; 3 . . . ], we can analyze longer stimulus duration and
evaluate analytically the false alarm rate (FAR); in this
case, the threshold crossing of x�t� for a pure stochastic
stimulus is nothing but a stationary Poisson process with
rate FAR � P"�a�=T [20].

III. DETECTION ALGORITHMS BY NONLINEAR
FN SYSTEMS

To apply the FN detection algorithm to a data set col-
lected by some physical apparatus, firstly we have to
specify Eqs. (2) in the discrete time domain by choosing
a suitable sampling time �t. It is worth noticing that �t has
to be lower than the inverse of the signal bandwidth
(Nyquist theorem) and it must allow, at the same time, an
accurate integration of the nonlinear dynamics of FN sys-
tem. Throughout the following, a subset of observed data,
i.e. the stimulus, consist of Ns samples ik � �hk � nk�2

(k � 1 . . .Ns), where the signal hk is unknown and the
noise nk is a discrete realization of a white, stationary,

and Gaussian stochastic process with zero mean and vari-
ance �2. In practice, assuming that the noise power spec-
tral density is constant over a bandwidth B=2, we have
nk � B�1=2�Nk, where fNkg is a sequence of independent
and identically distributed standard normal random varia-
bles, obtained from computer library routines. We decide
to square the detector data with a twofold effect: (i) to relax
the Gaussian assumption for the detector noise; and (ii) to
have larger positive fluctuations and so to profit of the
asymmetric FN dynamics. In addition, we assume that
the complete data set to be analyzed can be divided in
subsets that may contain only one signal, but completely.
In all practical cases (in particular for the detection of gw
bursts), the above requirements are easily met as soon as
signals are sparse and time limited. The simulation scheme
of our detection algorithm consists of the recursive rela-
tions

 xk�1 � xk ��t
yk � f�xk��

yk�1 � yk ��t
"�xk � a� � ik�;
(7)

where x�k�t� and y�k�t� are approximated by xk and yk
respectively. The value of �t was pragmatically fixed to
10�4 s, the value being determined by our aim to solve
Eqs. (7) in the presence of stimuli drawn from the parame-
ter subspace of chirplet signals that could represent gw
bursts. We also choose " � 0:07 and � � 0:3 which en-
sures that the system is in its excitable stable state. The
initial conditions, which correspond to the stationary solu-
tion of Eqs. (7), read x0 � a, y0 � a3=3� a; the system is
then evolved for times much larger than the stimulus
duration T, looking for its eventual firing.

IV. MONTE CARLO SIMULATIONS

A. Spontaneous firing

To study the spontaneous firing probability we estimate
the empirical number of the ‘‘spontaneous firings’’ of the
FN system, i.e. the false alarms of the FN detector. The
Monte Carlo ensemble consists of 105 noise stimulus of
Ns � 103 samples (0:1 s duration) fed to the recursive
relations of Eq. (7). As the initial conditions reset the FN
system each time a stimulus is analyzed, the resulting
statistics of firing times is ‘‘a fortiori’’ a Poisson process.
The false alarms, being independent of signals, have been
determined with a good accuracy at any interesting rate. In
Fig. 2 we plot the empirical number of firings of FN
detection algorithm as a function of the parameter a.
Such a false alarm curve cannot be easily calculated since
the detector data have been squared and the stochastic term
is no longer zero-mean Gaussian noise. However, it can be
still approximated by Eq. (6), obtained in the Gaussian
noise approximation, provided that the fitting parameters
are suitably chosen (see Fig. 2).
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B. Detection of chirplet signals

We now show the results of numerical simulations car-
ried out on the FN discrete model of Eqs. (7) by adding a
deterministic burst signal to its stimulus. The detection
procedure is very simple: we consider again windows of
Ns � 103 samples as stimulus; the firing of the associated
FN system is now employed as a binary classifier for the
presence vs the absence of a deterministic signal in the
stimulus. The corresponding ROC curves [13] of the FN
detection algorithm can be estimated by varying the con-
trol parameter a. To evaluate its detection efficiency PD,
we decided to inject maximum entropy chirplets, which
perform as a sort of reference burst signal adopted for
instance in gravitational wave searches. Chirplets are a
class of nonstationary signals defined in a six-parameter
space

 

h�t� �
hrss������������
2��2

�
4
p exp

�
�
�t� t0�2

4�2
�

�

� cos
�
�
2
�t� t0�

2 �!0�t� t0� ��0

�
; (8)

where h2
rss �

R
h2�t�dt is the chirplet energy (i.e. the root-

sum-square (rss) of the chirplet samples in Hz�1 units), t0,
��, !0, and �! are arrival time, duration, central fre-

quency, and bandwidth of the chirplet; here � �

��!=���
���������������������������������
1� �2���!�

�2
p

is the chirp rate and �0 is an
arbitrary initial phase. Chirplets have quite a varied signa-
ture in the time-frequency plane and a maximum entropy
[21]. Other remarkable properties of the chirplet wave-
forms are the following: (i) covariance to scale changes
of �!, chirp rate �, time of arrival t0, and central fre-

quency !0 (a very desirable property to study a detection
algorithm); (ii) satisfy the uncertainty principle with equal-
ity when �!�� �

1
2 ; (iii) attain a good resolution in both

time and frequency; (iv) ‘‘sin-Gaussian’’ waveforms can be
recovered as the particular case � � 0. In our Monte Carlo
simulations, the injected chirplets were drawn from uni-
form probability distributions over the parameter subspa-
ces M defined as follows: 10�3  ��  10�2 s (i.e.
transient signals); 10  �!=�2��  102 Hz, 500  	0 
1000 Hz and 0<�0  2�. Bandwidth and duration were
chosen in accordance with the Heisenberg lower bound
�!�� � 1=2 [22] as clearly illustrated by the presence of
the black region in Fig. 3. To avoid synchronizations
among sampling process, detection algorithms and injected
signals, we add a random jitter of values randomly chosen
between	2:5 ms to the arrival time t0 relative to the center
of the window. The signal-to-noise ratio of injected chirp-
lets is calculated as SNR � hrssB

1=2=�, and it corresponds
to the maximum SNR achievable by the ideal matched
filter [20]. In the following we assume B � 2 kHz as the
order of magnitude of the bandwidth of operating gw
detectors [23].

First, we studied the robustness of the FN detection
algorithm; to this aim we generated N � 2� 107 indepen-
dent data windows for nine couples of three FARs (8�
10�5, 9:9� 10�4, and 9:7� 10�3 Hz) and three SNRs
(7.5, 8.5 and 9.5). We then partitioned the data into 104

sets of Lk chirplets each. These sets corresponds to 100�
100 (�!, ��) cells, as clearly illustrated in Fig. 3; note that
the number of cells compatible with the Heisenberg prin-
ciples is �8� 103.

FIG. 3. The detection efficiency of FN algorithm over the
bandwidth �! and duration �� parameter space. SNR and
FAR are 7.5 and 10�3 Hz, respectively. The black region is
forbidden by the Heisenberg uncertainty principle; its area is
�20% of the area of the whole time-frequency rectangle (see
text).
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FIG. 2. Number of noise-induced firings as a function of the
control parameter a. The continuous line is the plot of the fitting
function �1f1� erf
�a��2�

������������������������
�3�a

2 � 1�
p

�g with best fit pa-
rameters �1 � 6:05� 105, �2 � 1:61, and �3 � 99:0.
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The average number of injected chirplets in each cell is
�2� 103 with a square-root statistical fluctuation.
Because of the Heisenberg uncertainty relations, there
are few cells cut by the �!�� � 1=2 curve. As these cells
have larger statistical fluctuations (Lk � 103), we decided
to remove them from the robustness analysis of FN detec-
tion algorithm. Each efficiency measurement consists in a
number of observations representing one of two possible
outcomes ‘‘accept’’ or ‘‘reject’’ the null hypothesis H 0.
Thus, the statistic variable Fk, representing the number of
firings in each cell, obeys the binomial distribution which
gives the probability of observing Fk successes in Lk trials
[20]. One can easily show that the maximum likelihood
estimator of PD is the ratio PDk � Fk=Lk with a variance
�2
k � PDk�1� PDk�=Lk. For large sample size [i.e. PDk �

Lk > 10 and �1� PDk� � Lk > 10] the binomial distribu-
tion can be approximated by a Gaussian distribution with
mean LkPD and variance �2

k � LkPD�1� PD�. The rela-
tive error on the efficiency estimate in each cell is then of
the order of PDk=�k � F�1=2

k < 0:01 for all the �8� 103

cells we considered. Since this value is very small, we can
study the dependence of local efficiency on cells by look-
ing at the deviation of PDk from the average efficiency
PDM � hPDkiM over the submanifold M as an indication
of robustness of the algorithm. We estimated �M �

h�PDk � PDM�2i
1=2
M as the rms of the efficiency fluctuations

around its mean value. The values reported in Table I

represent the average detection efficiency over the entire
chirplet submanifold M. From Table I we see also that
�M � 0:01. Moreover, if detection probabilities are con-
stant, the errors on their average are ’ 1=

�����������������
8� 103
p

’
1:1� 10�2 smaller than the reported standard deviations.
Thus we are able to accurately compare each averaged
detection probability PDM with the ratio of the total num-
ber of firings and the total number of data windows for each
entry in Table I. We found no significative differences
between the two estimates and we conclude that the FN
detection efficiency is constant over M. The analysis in
Sec. II entails that the achieved results are independent of
the choice of chirplets as reference signals for testing our
implementation of the FN algorithm.

Having established the robustness of the FN algorithm
we proceed to investigate its detection efficiency and we
defer the discussion of ROC curves to the next section. To
this aim, we apply to 105 independent noisy data sets the
FN algorithm with control parameter values corresponding
to FARs 10�3, 10�2, and 10�1 Hz, where a more sensitive
dependence on the SNR is expected. We pick up one cell of
Fig. 3 representing a chirplet with duration �� � 0:01 s,
bandwidth �!=�2�� � 100 Hz, and central frequency
800 Hz. The sigmoid-type behavior of the detection effi-
ciency is clearly visible in Fig. 4 where we report the
estimated PD as a function of SNR.

C. Power based detection algorithms

To make a comparison of FN with other detection algo-
rithms, we briefly discuss the performances of classical
power detectors based on the square of samples. The
interest in power detectors resides in the fact that localized
power of a data set ik can be used to form a robust statistics
for the detection of transient signals [1,24]. In addition, by
means of suitable filters we are able to perform a uniformly
most powerful test on the localized power statistics [24]
defined as

 E q �
X
k

�q � i�k=�2; (9)

where � is the convolution operator and q�t0; !0;��;�!�
is a filter that selects the box of the time-frequency plane
where (most of) the signal power is concentrated. Thus the
decision rule for a power filter detection algorithm (PF) can
be stated as ‘‘if Eq > 
 we reject the null hypothesis H 0,’’
where 
 is a threshold fixed by the desired level of FAR.

TABLE I. Average detection probabilities PDM and standard deviations �M calculated at
three different values of FAR and SNR over the chirplet submanifold M.

FAR\SNR 7.5 8.5 9.5

9:7� 10�3 Hz 0:4661	 0:013 0:7552	 0:010 0:9370	 0:005
9:9� 10�4 Hz 0:2636	 0:009 0:5591	 0:011 0:8397	 0:010
8:0� 10�5 Hz 0:1184	 0:007 0:3449	 0:008 0:6738	 0:011

FIG. 4. Detection efficiencies PD as a function of SNR for
three different FARs: 10�3 (squares), 10�2 (diamonds), and
10�1 Hz (triangles).
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Unfortunately, the construction of an optimal statistics
requires the ‘‘a priori’’ knowledge of the time-frequency
box �t0; !0;��;�!� with a consequent weakening of ro-
bustness requirements. Suboptimal approaches for the
transient detection consist in suitable families of q filters
(for example wavelet bases) which allow a restriction of
the sum in Eq. (9) to particular index clusters, defined for
instance by threshold crossing of addends �q � i�k. The
power statistics will depend on the effective number Neff

of independent squared samples which contributed to Eq
and the amount of signal Eq collected by the filters q, i.e.
Eq �

PNeff
k�1�q � h

2�k / h
2
rss.

While having Gaussian additive white noise in the
stimulus ik, the local power Eq obeys the noncentral �2

distribution with noncentral parameter equal to Eq=�2 [9];
this distribution cannot be expressed with elementary func-
tions. However, in the limit of large Neff , the noncentral �2

cumulative distribution function can be calculated by the
two-moment approximation [25], and the ROC curves of
PF detectors can be written in a useful form

 

8><
>:
PFA�
� � ��Neff

2 ; 
2�=��Neff

2 �

PD�
� � ��g1
Neff

2 ; g2


2
�=��g1

Neff

2 �;
(10)

where ��x; y� and ��x� are the incomplete and complete
Euler Gamma functions, 
 is the threshold controlling the
FAR, g1 � �1� �2=�1� 2� and g2 � �1� �=�1�
2�; here  � �Eq=Neff�=�2 represents the ratio between
the time averaged energy of the signal and the noise
variance. It is worth noticing that for < 0:1 (i.e. in the

low SNR regime) g1 ’ 1�O�2� and g2 ’ 1� �
O�2�.

For the comparison of FN and PF detection algorithms
we assume a trivial power filter. The resulting statistics
E �

PNeff
k�1 ik is no longer optimal but it becomes indepen-

dent of signal waveforms as long as signals is completely
contained in the window, and so a fair comparison with the
FN performances is possible. We report in Fig. 5 some
ROC curves we have obtained in 105 trials by injecting
SNR � 8:5 chirplets with central frequency !0=�2�� �
800 Hz, and located in three very different positions of
the time-frequency plane. We note the complete superpo-
sition of the three curves over four orders of FAR magni-
tude. With the intent of figuring out the relative
performances of FN and PF detection algorithms we also
plot in Fig. 5 the curves in Eqs. (10) relative to a power
statistics with three different effective number of samples.

V. CONCLUSIONS

In this work we have presented a viable alternative to the
classical detection procedure based on a threshold crossing
of a suitable statistics. In particular, our detection scheme,
based on the firing of a FN system, does not require
‘‘a priori’’ hypothesis on amplitude, arrival time or wave-
form patterns. The FN detection algorithm is quite general
and can be applied to narrow or wide band detectors once
the requirements of noise quasistationarity and signal spar-
sity are fulfilled.

To calculate the detection efficiency of the FN algo-
rithm, we have explored the six dimensional chirplet pa-
rameter space M; however, the singular perturbation
analysis in Sec. II clearly indicates that the results we get
are independent of waveforms as long as analyzed stimulus
containing only one burst, but completely (signal sparsity)
and signal bandwidth do not exceed the detector bandwidth
B. The obtained ROC curves show that the FN algorithm
can be successfully employed as a robust detector of
transient signals, and that its overall efficiency is compa-
rable with the efficiency of power based detection algo-
rithms. However, the FN algorithm is more tunable as it
depends from the dynamical threshold a, which set the
FAR, and on the time-scale variable ", which soften the
threshold behavior. Of course, the achieved robustness
with respect to signals variability entails the absence of
peaks and valleys in the detection efficiency while detec-
tion algorithms that make ‘‘a priori’’ assumptions on
signal waveforms must have higher but nonuniform effi-
ciency. We think that the FN detector is quite insensitive to
the noise statistics as we square the stimulus and, despite
the statistics is no longer Gaussian, the dependence of false
alarms on a can still be fitted by Eq. (6). However, much
work has still to be devoted to analyzing the robustness of
FN with respect to noise statistics.

The main motivation for the present study regards the
possibility to implement arrays of coupled FN systems

FIG. 5. ROC curves for the PF and FN (symbols) detectors for
SNR � 8:5 signals. Durations and bandwidths of the injected
chirplet are �� � 0:01 s and �!=�2�� � 10 Hz (triangle),
�� � 0:001 s and �!=�2�� � 100 Hz (solid square), and �� �
0:01 s and �!=�2�� � 100 Hz (diamond). The three curves
correspond to the ROCs of a power detector with Neff � 800
(continuous line), Neff � 1000 (dashed line), and Neff � 1200
(dotted line).

EXCITABLE SYSTEMS AS ROBUST EVENT TRIGGER . . . PHYSICAL REVIEW D 76, 103001 (2007)

103001-7



devised for applications to networks of gw detectors.
Indeed, excitable systems can be coupled and synchronized
by means of suitable either linear and nonlinear feedback
terms. These arrays of self-controlled detection algorithms
should lead to a dramatic reduction of the FAR keeping the

detection efficiency basically unchanged. The implemen-
tation of distributed detection algorithms based on arrays
of FN systems—together with its application to more
realistic gw data—will be the subject of a future work.
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