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We present the performances and the strain sensitivity of the first spherical gravitational wave detector
equipped with a capacitive transducer and readout by a low noise two-stage SQUID amplifier and
operated at a temperature of 5 K. We characterized the detector performance in terms of thermal and
electrical noise in the system output signal. We measured a peak strain sensitivity of 1:5� 10�20 Hz�1=2

at 2942.9 Hz. A strain sensitivity of better than 5� 10�20 Hz�1=2 has been obtained over a bandwidth of
30 Hz. We expect an improvement of more than 1 order of magnitude when the detector will operate at
50 mK. Our results represent the first step towards the development of an ultracryogenic omnidirectional
detector sensitive to gravitational radiation in the 3 kHz range.
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I. INTRODUCTION

The direct observation of gravitational waves (GWs) is
one of the most challenging tasks for experimental physics.
After the first detection is claimed a new branch of astro-
nomical observation will begin and gravitational wave
observatories will become more and more common facili-
ties. A spherical detector is an outstanding instrument for
an astronomical observatory due to its feature of omnidir-
ectionality and polarization sensitivity [1–5]. The first
ultracryogenic spherical gravitational wave detectors
[6,7] are currently completing their engineering phase
and will soon be operational with an expected sensitivity
better than 10�21 Hz�1=2 at 3 kHz. We report the results of
the first sensitive measurement of the spherical gravita-
tional wave detector MiniGRAIL. The detector readout
consists of capacitive resonant transducers coupled by
means of superconducting transformers to linear amplifiers
based on superconducting quantum interference devices
(SQUIDs). The two-stage SQUID described in this work
is one of the most sensitive amplifiers ever used on a
gravitational wave antenna. It consists of a sensor dc-
SQUID amplified by a double relaxation oscillation squid
(DROS). We obtained a coupled additive energy resolution
of 700@ at 5 K in agreement with the expected values
calculated from the device parameters using the standard
SQUID model [8]. The spherical antenna described in this
paper is the first example of a multimodal resonant detector
where the five quadrupolar modes of the sphere are read

out by three resonant transducers. In this paper we discuss
the noise contribution and the signal response of one read-
out channel and estimate the detector sensitivity when the
detector will operate at 50 mK with a complete readout.
This paper is organized as follows. In Sec. II we described
the experimental apparatus and, in particular, the readout
system. In Sec. III we present and discuss the experimental
results. In Sec. III A and III B we analyze the electrical
system, the noise spectra and equivalent temperature of the
resulting coupled oscillators. Finally in Sec. III C we de-
scribe the calibration procedure and estimate the detector
strain sensitivity. The work presented here is strongly
linked to the recently published review on the spherical
detectors [9]. We refer the reader to this article for a more
detailed theoretical description of the concepts and the
analysis reported here.

II. SYSTEM OVERVIEW

A. Sphere and mechanical transducers

MiniGRAIL is a spherical gravitational wave (GW)
antenna currently under development [6]. The antenna is
a massive sphere in CuAl, has a diameter of 68 cm, a
physical mass ms � 1:3 ton and the GW sensitive spheroi-
dal quadrupole modes have frequencies around 2980 Hz at
T � 4:2 K. The alloy CuAl 6% has been chosen because of
the high quality factor (Q� 107 at low temperature), high
sound velocity (VS ’ 4100 m=s) and a sufficient thermal
conductivity, which allows the cooling of a 1.3 ton antenna
to a temperature below 100 mK [10]. The ultimate goal is
to operate MiniGRAIL at a thermodynamic temperature of
20 mK, equipped with six transducers coupled to nearly
quantum limited double-stage SQUID amplifiers [11–13].
The sphere is suspended from its center with a gold-plated
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copper rod 20 mm in diameter that hangs from the last
mass of the mechanical vibration isolation system. This
system consists of the following (from the inside outward):
(a) seven low-pass filtering stages (mass-spring) suspended
with stainless steel cables from (b) three absorbers, each
consisting of a stack of rubber and aluminum plates. A
detailed description of the detector mechanics and cryo-
genics can be found in [14].

We used capacitive transducers to read out the spheroi-
dal modes. They consist of a closed membrane with a load
mass in the center. The electrode is made of a thin CuAl
plate placed in front of the resonating mass. To obtain a
small gap between resonator and electrode, we proceeded
as follows. The resonator and the electrode are lapped and
polished to get a smooth flat surface. Further a clean
Kapton foil of a thickness equal to the desired gap is placed
between the electrode and the mass. Finally a small amount
of glue is added between the electrode and the support
springs. A load is applied on top of the electrode in order to
make a compact assembly. After the glue has cured, the
Kapton foil is removed. This technique was shown to be
reliable and reproducible. Gaps of the order of 20 �m
could be obtained and voltage bias as large as 500 V could
be applied without discharging.

In the experiment described here the sphere was
equipped with the three resonators located at position 1,
2 and 5 of the truncated icosahedral (TI) arrangement
shown in Fig. 1 of Ref. [9]. Two transducers, named trans-
ducer 1 and transducer 2, located at the TI positions 1 and
5, were coupled, respectively, to the two-stage SQUID and
to a single stage commercial quantum design (QD) SQUID
[15]. The third resonator, transducer 3, at position 2, was
coupled to a room temperature field-effect transistor (FET)
amplifier and has been used for diagnostic and calibration
purposes.

In Table I we summarize the features of the three trans-
ducers. Each resonator is tuned mainly to a different
spherical mode, has a resonant mass mt of about 200 g
and a mechanical quality factor Q of about 104 at 300 K.

B. The readout system

To achieve omnidirectionality and the best sensitivity
and bandwidth in a spherical detector, a configuration of at
least 5 transducers is necessary. We will not give here a
compelling demonstration of the powerful properties of a
spherical GW detector.

The aim of the work presented here is to demonstrate,
for the first time, the readout of a multimodal spherical
resonant antenna at a sensitivity limited by the thermal
properties of the detector using one single transducer based
on a two-stage SQUID amplifier.

For this reason we will limit our analysis to the perform-
ance of transducer 1 coupled to a two-stage SQUID system
based on a DROS [16,17], and, as sensor SQUID, a QD dc-
SQUID with input inductance Li � 1:6 �H, SQUID in-
ductance LSQ � 80 pH, Mi;SQ ’ 10 nH and expected flux
noise at 4.2 K of

������
S�

p
� 1:2��0=

������
Hz
p

[18]. The second
readout channel, equipped with a single commercial QD
SQUID, transducer 2, was added to the system as a backup
and its performance will not be discussed any further. The
mechanical contribution of its resonator is, however, sig-
nificant in the output response of transducer 1 and the
calibrator (transducer 3) and it is of course included in
the analysis reported below.

The scheme of readout circuit of transducer 1 is shown
in Fig. 1. The equations of motion of the electromechanical
system are fully described in [9] and we will not derive
them here. The transducer displacement, xt, modulates the
capacitor Ct which is biased at a constant voltage Vb. The
electric field across the transducer gap is given by E �
Vb=d0, where d0 is the gap between the modulating mass
and the fixed electrode. The ac signal current Ip is coupled
to the SQUID input circuit through a superconducting
transformer with Lp and Ls the inductances of the primary
and secondary coils, respectively. In a standard configura-
tion, like, for example, when a dc-SQUID is used as
amplifier, Ls is directly connected to the SQUID input
coil Li evaporated on top of the dc-SQUID washer.

TABLE I. Properties of the three CuAl 6% closed membrane
transducers. The transducers resonance frequencies have been
estimated from the tuning procedure at room temperature as
described in the text.

Closed membrane transducers
Transducer 1 Transducer 2 Transducer 3

mt �Kg� 0.205 0.153 0.150
Ct �nF� 1:17� 0:01 0:70� 0:05 1:20� 0:05
Gap d0 ��m� 20� 2 35� 4 25� 2
fres �Hz� 2863� 5 2850� 5 2878� 5
Q at 300 K 1:0� 104 1:1� 104 1:0� 104

Q at 77 K 3� 104 4:8� 104 2:0� 104

FIG. 1. Electromechanical scheme of a spherical antenna with
mechanical resonator and capacitive transducer coupled to a
SQUID through a superconducting matching transformer. A
detailed scheme of the two-stage SQUID system can be found
in [22].
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The impedance matching between the transducer ca-
pacitance and the SQUID input coil is achieved by using
the high-Q superconducting transformer. In our case, the
electrical resonance of the transformer is not tuned to the
mechanical modes, so the impedance matching is not
optimal. The transformer coils were made of Nb wires
and enclosed into a double superconducting shield. The
bias circuit and the decoupling capacitor have been housed
into a separate compartment of the superconducting shield-
ing box. The measured transformer primary and secondary
coil inductances are, respectively, Lp � �0:3595�
0:005	 H and Ls � �2:1� 0:2	 �H. The mutual induc-
tance between the coils was M � �3:55� 0:05	 �

10�4 H and the coupling factor � � M=
��������������������������
Lp�Ls 
 Li	

q
’

0:31.
In the transducer bias line we use a decoupling Teflon

commercial capacitor with capacitance Cd � 220 nF and
several bias resistors for a total resistance of Rb � 13G�
at 4.2 K. The final intrinsic electrical quality factor, after
connecting the decoupling capacitor Cd and the bias resis-
tor Rb, is equal to Q � �1:8� 0:1	 � 105 at 4.2 K. The
transducer was assembled with a gap of about �20�
2	 �m, and a capacitance Ct � �1:2� 0:05	 nF measured
at room temperature. This has been done in order to keep
the electrical mode separated from the mechanical ones.
The electrical mode resonance, resulting from the combi-
nation of the transducer capacitance and the reduced in-
ductance Lr � Lp�1�M2=Lp�Ls 
 Li	 � �0:325�
0:005	 H, has a frequency of fel � 1=2�

����������
LrCt
p

�
�8188:9� 0:5	 Hz measured on the antenna at 5 K. From
the electrical mode frequency we estimate a total trans-
ducer capacitance of Ct � �1:16� 0:01	 nF, which in-
cludes the effect of stray capacitances in parallel
(Cstray � 20 pF) and the decoupling capacitance in series
(Cd � 220 nF).

Two-stage SQUID systems are developed in order to
reduce the noise of dc-SQUID amplifiers, which are nor-
mally limited by the room temperature electronics [16,19–
21]. When used in the transducer chain for resonant gravi-
tational waves detectors, they can improve the detection
sensitivity by orders of magnitude [13]. The system de-
scribed here differs from other two-stage SQUIDs used in
GW experiments since it uses a DROS as an amplifier
SQUID [17]. A DROS has a large flux-to-voltage transfer
function which allows direct readout of the signal. Direct
readout simplifies multichannel readout as needed in
spherical gravitational wave detectors.

The two-stage SQUID system we developed is based on
a configuration reported in [16,22]. A standard QD dc-
SQUID chip was chosen as sensor SQUID because of a
larger input inductance with respect to the dc-SQUID
described in [16].

The total additive flux noise of the two-stage SQUID,
measured in a test dewar at 4.2 K was

������
S�

p
� �1:60�

0:02	��0=
������
Hz
p

with input coil open and
������
S�

p
� �1:10�

0:02	��0=
������
Hz
p

with input coil superconductively shorted.
This corresponds, respectively, to an intrinsic uncoupled
energy resolution of � � S�=2Lsq � �650� 15	@ and � �
�320� 15	@. This is in agreement with the expected values
calculated from the SQUID parameters using the standard
model [8]. In order to avoid instability in the SQUID-
resonator system we implemented a capacitive cold damp-
ing network in the feedback line. Damping network has
been first investigated by Stevenson [23], using a phase-
shifted inductive feedback, and by Vinante [13], who made
use of a capacitive network. The two-stage SQUID coupled
to a high quality factor electrical resonator showed the
same performances [18]. We estimate at T � 4:2 K a
SQUID noise temperature TN � �100� 30	 �K and a
noise number N � kBTN=@! � 730� 100. The additive
coupled energy resolution was 650@ and 320@ respectively
at T � 4:2 and 2.1 K.

C. The calibrator

To calibrate the mechanical vibration of the detector
modes we used a piezoelectric transducer (PZT) and the
transducer coupled to the FET amplifier transducer 3 that
from now on we call calibrator. We performed the follow-
ing calibration steps. First, we measure the electrome-
chanical impedance of the calibrator by measuring with
two-lock-in amplifiers the amplitude and the phase of the
voltage and current across it. Then we excite each mode at
resonance using the auxiliary PZT at a signal level well
above the calibrator FET amplifier noise and, even more so,
above the SQUID and transducer 1 noise. Finally we
measure simultaneously the signal response of both the
calibrator and the two-stage SQUID connected to
transducer 1.

The electrical impedance Z of the calibrator, for each
resonant mode of frequency !m and quality factor Qm, can
be easily derived by solving the equations of motion of a
capacitor, biased with an electric field Ecal, coupled to a
mechanical resonating mass mm. One finds

 Z�!	 �
1

i!Ccal

�
1�

CcalE2
cal

mm

1

!2
m �!

2 
 i!!m
Qm

�
: (1)

The real part is used to estimate the energy of the mode and
can be derived as follows

 Re �Z�!	� �
!mE

2
cal

mmQm

1

�!2
m �!

2	2 
 !2!2
m

Q2
m

�
Am

�!2
m �!2	2 
 !2!2

m

Q2
m

: (2)

We notice that the real part of the impedance does not
depend on the calibrator capacitance Ccal. This makes the
calibration method described here particularly interesting
because it is free from systematic errors, at least to the
purpose of estimating the temperature of the mode.
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We remark here that in [9] a different and more direct
way to calibrate the spherical detector is described. It is
based on the use of a calibration coil weakly coupled to the
matching transformer of the readout transducer as em-
ployed in [24] and a nonresonant capacitive transducer. A
similar method is also described in [25]. The details of such
a calibration procedure were not yet fully developed by the
time of performing the experiment described here. For this
reason another procedure was adopted here, which is less
accurate due to the fact that the transducer itself cannot be
calibrated directly. Moreover because only one excitation
PZT was available, the strain sensitivity could only be
derived for a particular incoming direction, which was
almost optimal according to our detector simulations. We
estimated an accuracy in the calibration of about 20%. This
value can be strongly improved in the future introducing
minor changes in the setup as described in [9].

III. EXPERIMENTAL RESULTS

A. Electrical system and noise spectrum

A real sphere has five nondegenerate principal quadru-
polar modes which are sensitive to GW. When mechanical
resonators tuned to the quadrupolar modes are mounted on
the sphere surface a splitting of the resonances occurs as
described in detail in [26,27]. When N transducers are
added, 5
 N main resonances are expected.

The resonators, completed with the electrodes, were
attached to the sphere, one at a time. At room temperature,
we measured for each transducer the frequency of the
coupled mode. Fine tuning was performed by etching the
transducer membrane and/or machining the resonator mass
until the splitting of the modes was approximately the one
expected for the transducer having a resonance frequency
in the region of the quadrupolar modes. By solving nu-
merically the equation of motion [26,27], it is possible to
estimate the uncoupled resonator frequency by comparing
the experimentally measured frequencies to the calculated
ones and modifying the uncoupled resonator frequency in
the calculation until a fair agreement with the experimental
data is obtained.

The best agreement with the experimental data was
found when the uncoupled resonant frequency of each
transducer was set equal to f1 � �2863� 3	 Hz, f2 �
�2850� 3	 Hz and f3 � �2878� 3	 Hz. The error was
estimated empirically by looking at how large the deviation
between experimental and calculated frequencies was
when varying the transducer uncoupled frequency.

In Fig. 2 we show the frequency measurements of the
coupled modes when all three resonator were mounted on
the sphere. The solid lines are the measured values while
the dashed lines are the calculated values obtained by using
a best fit for the uncoupled frequency of the resonators. We
recall that these uncoupled frequencies cannot be measured
independently because they depend too strongly on the
fastening conditions. The calculated and measured mode

frequencies were fairly consistent with each other. This
means that the coupled system is reasonably well described
by the equation of motion derived in [9].

The disagreement between the calculated and measured
frequency may be due to the departure from the geometry
of a perfect sphere assumed in the equations of motion. For
instance, the 6 pockets machined for hosting the trans-
ducers and the suspension hole were not considered.

A finite element analysis of the mechanical model could
give a more accurate estimate of the frequencies.

The measurements discussed further on were performed
at thermodynamic temperature T � 5:2 K. Figure 3 shows
the output of the two-stage SQUID when the transducer
was biased at 105 V=m. All the expected 8 modes of the
system are visible in the spectrum.

The additive noise level of the two-stage SQUID
coupled to the transducer mounted on the sphere, was
comparable with the one measured with the SQUID with
open input. When operating without the cold damping
network, the minimum wideband flux noise observed
with the SQUID was of �2:7��0=

������
Hz
p

. When the cold
damping was active, we measured an additive wideband
flux noise of �1:67� 0:03	��0=

������
Hz
p

. It corresponds to an
additive coupled energy resolution of �730� 100	@.

To establish which modes were strongly coupled to the
transducer with the two-stage SQUID system, we used the
fact that in a capacitive transducer the bias electric field
introduces a negative spring constant, which causes the
resonant frequency of the transducer resonator to shift
down. In the simplest case, this shifted frequency is related
to the transducers electromechanical coupling coefficient

� by � � �
!2
t�!

2
0

!2
t

[28]. � is defined as the ratio between

2760 2780 2800 2820 2840 2860 2880 2900 2920
frequency [Hz]

0
1,

2 
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d 
3

tr
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sd
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FIG. 2 (color online). Frequency measurement at room tem-
perature of the coupled modes for transducers 1, 2 and 3 placed,
respectively, on positions 1, 5 and 2 compared with the bare
sphere modes. The solid lines are the measured values and the
dashed line are the calculated ones. The best values for the
uncoupled transducers resonant frequencies are f1 � �2863�
3	 Hz, f2 � �2850� 3	 Hz and f3 � �2878� 3	 Hz.
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the mechanical and the electrical energy, and describes the
conversion efficiency of mechanical motion into electrical
signal. It can be written as follows [29]: � � 1

d2
0

CtV2

!2meff

where the effective mass meff includes possible geometri-
cal factors [30] as well as electrical parameters from the
coupled circuit. The expected relation between the reso-
nance frequency ft and the dc bias voltage Vb is given by
f2
t � f2

0 
 �Ct=4�2meffd
2
0	V

2
b as observed in Fig. 4.

By measuring the frequency for different dc voltages
applied to the transducer one gets an estimation of the
electromechanical coupling and of the effective mass
meff if the transducer capacitance and the gap are known.
The frequency measurements can be done very accurately
by using a lock-in amplifier and monitoring the output
phase � of the signal with respect to the lock-in reference.
Table II summarize the results of the measurements of the
coupling of each mode to the calibrator, taken at a bias
electric field Ebias � 105 V=m.

Mode 3, at 2943.398 Hz and mode 6, at 2985.972 Hz, are
the most coupled modes to the transducer 1. We measure
an electromechanical coupling coefficient � of about 5�
6� 10�4 and an effective mass which is about a factor of 3

larger than the resonating physical mass. The last columns
of Table II show the quality factor Qm and the time
constant �m � Qm=�fm for each resonant mode.

B. Equivalent temperature of the coupled oscillators

To estimate the temperature of the modes we can pro-
ceed as follows. The power spectral density at the output of
the calibrator, when the backaction contribution of the
room temperature amplifier is negligible, is

 SV;CAL � 4kBTeq Re�Z�!	�; (3)

where Re�Z�!	� was derived in Eq. (1), Teq is the equiva-
lent temperature of the modes and we are considering
monolateral spectra.

When an excitation is applied to the PZT at the mode
resonance frequency, the voltage Vcal�!	 measured at the
output of the FET amplifier connected to the calibrator is
proportional to the voltage VSQ�!	 measured at the output
of the two-stage SQUID of transducer 1, i.e. Vcal �

Acal;sqVSQ�!	. This is true at resonance. If we now measure
the power spectrum SV;SQ at the SQUID output, when the
modes are not excited, we can evaluate the equivalent
temperature of the modes using Eq. (3), where we sub-
stitute

 SV;CAL � A2
cal;sqSV;SQ: (4)

Here we assumed that the system response is linear in
the whole excitation and frequency range. Linearity has
been checked for different excitation voltage. We found a
linear behavior within 10%.

To estimate the equivalent temperature of the modes we
measured the variance �2 of the stochastic process with a
spectral noise SV;SQ at the output of the two-stage SQUID.
From Eqs. (2)–(4), the variance can be written as follows

FIG. 4 (color online). Tuning curves for the two most coupled
modes at 2943 Hz and 2985 Hz, respectively. From the slope of
the line, the mode effective mass meff was estimated.

TABLE II. Tuning parameters, mechanical quality factor and
time constant �m for each resonant mode measured at tempera-
ture T � 5 K with transducer 1 bias at an electric field Ebias �
105 V=m. The error in the frequency measurements is
�0:003 Hz. The errors in the estimation of the coupling factor
are of the order of 20%.

Mode fo �Hz� ���10�4� meff �Kg� Qm��104� �m �sec�

1 2908.097 0.41 8:0� 1:6 6:8� 0:1 6:9� 0:1
2 2928.143 1.5 2:3� 0:4 9:75� 0:2 10:6� 0:2
3 2943.398 6.6 0:5� 0:1 5:6� 0:3 6:1� 0:3
4 2949.864 1.4 2:3� 0:4 8:4� 0:2 9:1� 0:2
5 2979.050 0.32 10:2� 1:7 6:3� 0:2 6:7� 0:2
6 2985.972 5.3 0:60� 0:1 7:6� 0:3 8:1� 0:3
7 3003.561 0.04 78� 14 9:0� 0:4 9:5� 0:4
8 3023.242 2.2 1:4� 0:2 8:6� 0:2 9:1� 0:2

2900 2920 2940 2960 2980 3000 3020 3040
frequency [Hz]
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FIG. 3. Flux spectral density measured at the SQUID output
with transducer bias at 200 V. All the expected 8 modes of the
system are visible in the spectrum.
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m �

4kBTeq
2�

Q�m
Qm

Am
A2

cal;sq

Z �!m
�	

�!m��	

d!

�!2
m �!2	2 
 !2!2

m

Q2
m

;

(5)

from where we obtain the relation which links the equiva-
lent temperature of the mode to the variance of the sto-
chastic process with spectral noise given by SV;SQ.

We have

 Teq �
!3
mA2

cal;sq

2kBAm;0Qm

Qm

Q�m
�2
m � �m�

2
m; (6)

where A2
cal;sq comes from the calibration as described in

this section, and Am is estimated from the Lorentzian curve
fitting of each resonance of the real part of the calibrator
impedance. The factor Qm=Q�m needs to be included to
correct for the difference between the intrinsic quality
factor Qm and the apparent one Q�m measured when the
two-stage SQUID is operated in flux locked loop and the
cold damping is active [24]. For the measurements de-
scribed here it ranges from 20% to 30% depending on
the mode coupling. For the electrical resonance, not con-
sidered here in detail because uncoupled to the mechanical
mode, the apparent quality factor can change by several
orders of magnitude.

To estimate �m a lock-in amplifier is used with the
reference set at the resonance frequency of the mode.
The lock-in amplifier output magnitude r and angular
phase � are then sampled at regular time intervals. The
amplitude decay time constant of the lock-in amplifier is
chosen equal to the sampling time �s � �lk. To observe the
free evolution of the mth mode the lock-in amplifier time
constant is chosen smaller than the time constant of the
mode, �lk < �m, but large enough that the lock-in amplifier
works as a bandpass filter and makes the contribution of the
broadband noise of the SQUID and the tails of the neigh-
boring modes negligible. The mean square amplitude hr2i
of the lock-in amplifier input signal magnitude, equal to the
variance of the total narrow-band noise V2

nb, is given by
[31]

 hr2i � V2
nb �

�
1


�lk
�m

��
�2

0 �
Swb
2�lk

�
; (7)

where �2
0 is the variance of the power spectral density

output, and Swb is the power spectral density of the
SQUID wideband noise. Generally the factor �m=��m 

�lk	 � 1 in our case.

The stochastic process r2 is the sum of two independent
Gaussian processes, the in-phase and quadrature lock-in
amplifier output. If the signal is absent or in general if its
average contribution is negligible with respect to the noise,
the variable r2 will have the exponential distribution
F�r2	 � 1

2�m
e��r

2=2�m	.
The estimate of �2

m, is then performed by sampling the
magnitude r at regular time intervals, with sampling time

�s 
 �m. A subset of data is created by extracting a data
point every resonator time constant �m in order to get
uncorrelated samples. After a large number of samples is
collected, a histogram N�r2	 is built, where N is the num-
ber of samples in a given bin around r2. The histogram is fit
with the exponential distribution described above and the
mean square amplitude hr2i is then extracted as fitting
parameter.

In the absence of excess or amplifier backaction noise,
the quantity hr2i is proportional to the thermal vibrational
energy in the antenna mode. The constant of proportion-
ality �m was used to rescale the recorded values of hr2i to
antenna energy. For the two most coupled modes at fre-
quencies 2943 and 2985 Hz we found the calibration factor
�m to be �2943 � �7:0� 1:5	 � 108 �K=V2� and �2985 �
�1:1� 0:2	 � 109 �K=V2� respectively.

Graphs (a) and (b) in Fig. 5 show the energy distribution
estimated for the modes at frequencies 2943 and 2985 Hz
during three hours of acquisition. The equivalent tempera-
ture for both modes is obtained by fitting the exponential
distribution.

The slope of the distribution corresponds to a tempera-
ture of �7:0� 2	 K for the mode at 2943 Hz and �9� 2	 K
for the mode at 2985 Hz, the error arising mainly from the
calibration uncertainty. The equivalent temperatures are
consistent, within two sigma, with the thermodynamic
temperature of the sphere. No significant difference is
observed in the equivalent temperature of the mode be-
tween night and day acquisitions.

C. Force calibration and strain sensitivity

While for a bar detector it is relatively straightforward to
relate the strain produced by a calibrator located on one of
the bar faces with the strain from a gravitational wave
signal, the same cannot be said for a spherical detector.
In a spherical detector a calibration hammer stroke excites
all five spheroidal modes, with relative amplitudes depend-
ing on the position of the stroke on the sphere surface.
When only one excitation signal is used and not all the six
transducers on the TI configuration are read out simulta-
neously, like for the MiniGRAIL test run described in this
paper, we can only calibrate the detector for a particular set
of forces Fm applied to each spheroidal mode [9]. Such a
combination of forces does not necessarily represent a GW
excitation.

In the experiment described here, the calibration signal
is generated by a piezoelectic ceramic located at position
�	 � 18�; � � 135�	. By using Eq. 45 in [9], derived
previously in [3,5,26], one finds that a piezo in such a
location excites a combination of the 5 spheroidal modes
given by the vector �0; 0:13;�0:49; 0:5;�1	, normalized to
the maximum value of its elements. Such a combination is
equal, within 20% tolerance, to the one generated by a
circularly polarized gravitational wave coming from direc-
tion �	 � 20�; � � 135�	. According to [9] such a wave
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direction is almost optimal for the transducer configuration
described in this paper.

To calibrate the detector in force we proceed as follows.
Using the calibration piezo described above we excite at
resonance each detector mode and record the SQUID out-
put. When the detector mth mode is excited at resonance
!m with an energy � � 1

2 kBTm, the power spectral density
measured at the SQUID output is

 SV;SQ �
4kBTm Re�Z�!m	�

A2
cal;sq

�
V2

Hz

�
; (8)

where Re�Z�!	� is the real part of the calibrator impedance
and was derived in Eq. (2). The force power spectral
density of the detector mode excited at a temperature Tm,
when backaction is negligible as in our case, is given by

 SF;m �
4kBTmmeff;m!m

Qm

�
N2

Hz

�
; (9)

wheremeff;m is the effective mass of the modem, which can
be estimated from the tuning curves of the sensor trans-
ducer if the bias voltage and the gap are known, see
Table II.

From the ratio of Eqs. (8) and (9) we get

 

Sv;sq
SF;m

�
QmRe�Z�!m	�

meff;m!mA2
cal;sq

�
V2

N2

�
: (10)

At each mode resonance Eq. (10) becomes

 

�
SV;SQ

SF;m

�
!�!m

�
Am;c

meff;mA2
cal;sq

Q3
m;c

!5
m

�
V2

N2

�
: (11)

We observed small changes in the frequencies and quality
factors of the resonant modes when the calibrator bias was
set on and off. This is due to the fact that the calibrator
resonance is tuned to the spheroidal modes as well. This
effect should be included while deriving Eq. (11). This
could be done by using the different measured values for

!m and Qm, which appear in Eq. (10) and Re�Z�!m	�,
respectively. For the sake of simplicity, we neglected these
corrections considering that they amount to less than 5%
and are therefore smaller than the total uncertainties in the
calibration procedure.

The relations derived so far are valid at resonance. As a
first approximation one can define the transfer function
GSQ;F for gravitational wave signals, which converts a
combination of quadrupolar forces into SQUID output
voltage, as a product of poles and zeros where the poles
are derived from the polynomial fit of the SQUID noise
spectrum and the zeros are chosen to fit the measured
amplitudes at resonance given by Eq. (11). The transfer
function for the applied calibration signal becomes then

 G SQ;F�!	 � Hm;cal�!	
�Nr
k�1�j!� rk;m	�j!� r

�
k;m	

�
Np
k�1�j!� pk	�j!� p

�
k	

:

(12)

In the equation above Np > Nr and Hm;cal�!	 is a force
calibration constant which can be experimentally deter-
mined from the calibration measurement at resonance.
All the terms included in Eqs. (11) and (12) are experi-
mentally derived from the calibration, from the tuning
curves and from direct measurement of the modes quality
factor. The transfer function is experimentally measured at
resonance and only approximated out of resonance.

Once a parametrization of the transfer function is avail-
able, Eq. (12), one can derive the detector strain sensitivity
using Eq. 26 of [9]. We use ms � 1300 Kg for the sphere
physical mass, R � 34 cm for the radius and 
 � 0:325,
which is valid for the CuAl alloy. The MiniGRAIL strain
sensitivity with three transducers coupled to the spheroidal
modes, but only one used for the readout, is shown in
Fig. 6. The readout transducer was biased with a constant
electric field of E � 107 V=m. As discussed above, the
experimental strain curve gives and estimation of the de-
tector sensitivity only for a particular combination of sphe-
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FIG. 5 (color online). Exponential distributions of the mean square amplitude hr2i for the modes at 2943 and 2985 Hz. The variance
�2
m obtained from the fit of the exponential distribution gives an equivalent temperature of the two modes of �7:0� 2	 and �9� 2	 K

respectively.
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roidal modes corresponding to a gravitational wave com-
ing from the �	 � 20�; � � 135�	 direction.

We obtained a peak strain sensitivity of �1:5� 0:6	 �
10�20 Hz�1=2 at 2942.9 Hz and a strain sensitivity of about
5� 10�20 Hz�1=2 over a bandwidth of 30 Hz. This corre-
sponds to a strain amplitude of h ’ 2:5� 10�18 at 3 kHz
for a burst signal of 1 ms [32]. For a sphere of 68 cm in
diameter like the one of MiniGRAIL, it is equivalent to a
displacement sensitivity, at 3 kHz, of 1:6� 10�19 m.
When optimal filtering is applied to the output signal, the
detector is sensitive to burst signals with an impulse energy
of about Tpulse � 50 mK as can be derived calculating the
noise temperature using the experimental data. The calcu-
lated sensitivity curves in Fig. 6, are obtained using the
model described in [9]. The dot-dash-dashed curve shows
the strain sensitivity calculated for a simulated hammer-
stroke excitation applied to the same point P1 on the sphere
where the PZT is placed, i.e. �	 � 18�; � � 135�	. The
simulated signal describes reasonably well the strain
sensitivity.

The best fitting strain sensitivity has been obtained for a
simulated hammer-stroke applied at the sphere surface

point P2 �	 � 27�; � � 135�	. The result is shown with
the continuous line. In this case the third mode is more
excited. The agreement with the experimental data is re-
markable, considering the amount of fitting parameters
involved in the simulation. The difference of about 7� in
the angle 	 of the experimental and simulated excitation
position could be explained considering the fact that a
spherical detector with only three transducers in the posi-
tion 1, 2 and 5 like the one considered here is far from
being symmetric. In [27] as well the authors had to perform
a rotation of the reference frame of the spherical harmonics
that determined the pattern matrix to be able to explain
their experimental results. In their case the transducers
were not as massive as here and, above all, they used six
transducers positioned in the symmetric TI configuration.
The resulting mixing of the spheroidal modes could ex-
plain the discrepancy between the measured and the simu-
lated sensitivity curves. In order to address more accurately
this issue one should place on the sphere at least 5 calibra-
tors to measure the detector response to each of the 5
spheroidal modes.

The contribution to the strain sensitivity of the well
known noise sources are plotted in Fig. 6 as well. At
resonance, the sensitivity is limited by mechanical thermal
noise of the transducer mass. Out of resonance the sensi-
tivity is limited by the SQUID additive current noise. The
backaction noise of the SQUID is about an order of mag-
nitude smaller. The electrical thermal noise of the super-
conducting transformer, not shown in the graph, is
negligible because the electrical mode is well decoupled
from the mechanical ones due to its higher resonant
frequency.

From the measurement of the variance of the most
coupled modes and the simulated data we can conclude
that, within the experimental accuracy, the MiniGRAIL
peak sensitivity is currently limited by the thermal noise
generated by the transducer mass. Some of the modes,
however, show excess noise generated probably from elec-
tromagnetic interferences or spurious mechanical cou-
pling. A better estimate of the transfer function of each
spheroidal mode is necessary in order to properly charac-
terize the detector. As described in detail in [9] when N <
5 transducers are used to read out the sphere one needs to
generate calibration forces from a set of 5 or more calibra-
tors located at different positions on the sphere surfaces.

To operate the sphere as a omnidirectional GW detector
the six transducers in the TI configuration have to be read
simultaneously. In this case, as shown in [9], only one force
calibrator, mounted at an arbitrary position on the sphere
surface. This is due to the existing one-to-one relation
between the mode channels and the forces acting on the
spheroidal modes. When a full transducer TI configuration
is used the calibration is easier and it can be further
simplified by using nonresonant force calibrators and im-
plementing a calibration coil in each readout chain to
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FIG. 6 (color online). MiniGRAIL strain sensitivity at a ther-
modynamic temperature T � 5:2 K with three transducers
placed on the sphere, but single transducer readout. The sensi-
tivity has been estimated for a particular combination of the 5
spheroidal modes as derived by exciting the mode using a
piezoelectric transducer (PZT) located at position P1 �	 �
18�; � � 135�	. The dot-dash-dashed curve (total noise P1)
shows the strain sensitivity calculated for a simulated hammer-
stroke excitation from the PZT location P1 using the electrome-
chanical model described in [9]. For the simulation we used the
detector parameters discussed here in the text. A better matching
between the experimental data and the simulation is obtained
when the simulated hammer stroke is given at the position P2
�	 � 27�; � � 135�	 (continuous line curve labeled total noise
P2). The other curves shows the contribution to the stray
sensitivity of the thermal noise (dashed line), backaction noise
(dotted line) and SQUID additive current noise (dot-dashed line).
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directly measure the transducer impedance. The data re-
duction and filtering techniques used for bar detector can
be applied to a spherical detector as well [9], however
special filters and detection strategies need to be developed
to fully retrieve the information about the wave arrival
time, direction and polarization [33].

The measurements presented here have to be considered
as a first test bed for the following engineering and science
runs of MiniGRAIL. The sensitivity is expected to improve
of at least 1 order of magnitude when the detector will
operate at a thermodynamical temperature below 50 mK.

In Fig. 7 the measured strain sensitivity is shown to-
gether with predicted sensitivity for possible future detec-
tor configurations. A polynomial fit of the strain sensitivity
is shown as well. The poles and zeros obtained from the fit
can be used to build the matched filters for GW detection

[9]. The expected strain sensitivity of MiniGRAIL is
shown for the detector operating at T � 50 mK with the
same three transducers configuration presented here.

The figure shows the expected sensitivity for
MiniGRAIL II. In this configuration MiniGRAIL operates
with 6 capacitive transducers placed in the TI configuration
where the electrical modes are coupled to the mechanical
ones. We consider T=Q � 2:5� 10�8 K and a SQUID
coupled energy resolution Ecoupled � 70@. Those values
are achievable within the current technology [9]. The
sensitivity of MiniGRAIL operating at the quantum limit
is also shown. MiniGRAIL can reach a peak sensitivity of
about 6� 10�23 Hz�1=2 and a bandwidth larger than
400 Hz at a sensitivity of 1� 10�22 Hz�1=2.

IV. CONCLUSIONS

We have operated at a thermodynamic temperature T �
5:2 K a spherical resonant detector equipped with a ca-
pacitive resonant transducers coupled to a two-stage
SQUID amplifier. Our two-stage SQUID amplifier is one
of the most sensitive amplifiers employed so far on a GWs
resonant detector. We measured an additive coupled energy
resolution of �700� 100	@. We achieved a peak strain
sensitivity of 1:5� 10�20 Hz�1=2 at 2942.9 Hz. A strain
sensitivity of better than 5� 10�20 Hz�1=2 has been ob-
tained over a bandwidth of 30 Hz. We expect an improve-
ment of more than 1 order of magnitude when the detector
will operate at 50 mK. This result should be considered as
the first step towards the realization of an ultracryogenic
spherical gravitational wave detector.
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