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Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in
data from the ground-based interferometers. One of the key aspects of the detection process is the design
of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we
described a template bank that is based on a square lattice. Although robust, we showed that the square
placement is overefficient, with the implication that it is computationally more demanding than required.
In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40%
with respect to the proposed square placement. We describe the practical aspects of the hexagonal
template bank implementation, its size, and computational cost. We have also performed exhaustive
simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a
wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in
data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced
LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a
particular template family, namely, stationary phase approximation, we show that it can be used
successfully with other template families (e.g., Padé resummation and effective one-body approximation).
This quality of being effective for different template families makes the proposed bank suitable for a
search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal
template bank described in this paper is currently used to search for nonspinning inspiralling compact
binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO).
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I. INTRODUCTION

Ground-based laser interferometer detectors such as
Laser Interferometer Gravitational-Wave Observatory
(LIGO) [1] or Virgo [2] are expected to detect
gravitational-wave (GW) signals in data that have been,
or will soon be, collected. The most promising and well-
understood astrophysical sources of gravitational waves
are inspiralling compact binaries (ICB) in close orbits
[3], which consist of two compact objects such as primor-
dial black holes, neutron stars and/or stellar-mass black
holes.

Potentiality of a detection verges towards one event per
year. However, the detection rate strongly depends on the
(ICB) coalescence rate [4–6] and the volume of universe
that detectors can probe. While we cannot influence the
coalescence rates, we can increase the volume or distance
at which a signal can be detected, which highly depends on
(i) the design of the detectors and their sensitivities, and
(ii) on the detection technique that is used. Detector sensi-
tivity can be increased most certainly; but once data have
been recorded, only the deployment of an optimal method
of detection can ensure the highest detection probability,
and that is a passport, not only to probe the largest volume
of universe possible, but also to detect a GW signal directly
for the first time. Fortunately enough, although the two-
body problem cannot be solved exactly in general relativ-
ity, post-Newtonian (hereafter PN) approximations have
been used to obtain accurate models of the late-time dy-
namics of (ICB) [7]. Therefore, we can deploy a matched

filtering technique, which is an optimal method of detec-
tion when the signal buried in Gaussian and stationary
noise is known exactly. The models that we used for
detection are also called template families. In this paper,
we shall assume that template and signal belong to the
same template family.

The shape of the incoming (GW) signals depends on
various parameters, which are not known a priori (e.g., the
masses of the binary’s components). Thus, we have no
choice but to filter the data through a set of templates,
known as a template bank. Since we cannot filter the data
through an infinitely large number of templates, the bank is
finite. Analysts fix an acceptable minimal match between
any signal and its nearest template so that the number of
templates is minimal (to reduce computational cost) and
loss of ideal event rate as low as possible.

The challenge with template bank placement is that, in
general, the parameter space is not flat and is multidimen-
sional; therefore, spacing between templates depends on
their respective positions and will be different across the
parameter space. In the particular case of flat space, recent
work provides a method for constructing efficient template
banks with dimensions n & 17 (by using Euclidean sphere
covering) [8]. Yet, for inspiralling compact binaries, even
in 2 dimensions, the parameter space is not flat (except for
template bank based upon phenomenological parameters
such as in [9]). In [10], a useful geometrical approach was
used to introduce a metric defined on the signal manifold,
from which the spacing between templates can be calcu-
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lated in order to achieve the desired minimal match. A
template bank placement using was described in
Refs. [10,11]. This method computes the metric for each
template position and then the appropriate distance be-
tween two nearest templates. This placement uses a simple
square lattice, for which the efficiency for various binary
systems was fully tested [12]. The method was imple-
mented within the LIGO algorithm library [13] and used
to analyze the data from different LIGO science runs [14–
18]. We shown that although robust with respect to the
requirement (i.e., matches above minimal match), it is
overefficient, which could be anticipated by our choice
of square lattice instead of a hexagonal one. Another
instance of a template bank placement, which uses a hex-
agonal lattice, was developed within the VIRGO project
[19]. Although this method uses the metric developed in
[10], it does not need to calculate the metric at each point.
Indeed, using triangulation of the parameter space and
interpolation of a set of initial templates, the metric asso-
ciated to any template inside the parameter space can be
estimated using only the initial set of templates.

Our motivation, in this paper, is to upgrade the template
bank that is described in [12] to incorporate a hexagonal
placement. We use a new algorithm that takes into account
the evolution of the metric within the entire parameter
space. This hexagonal template bank is currently used by
the (LIGO) scientific collaboration to analyze the most
recent science runs. In Sec. II, we recapitulate some fun-
damental techniques and notions that are needed to de-
scribe the bank placement, and previous results on the
square template bank placement. We also provide a frame-
work to validate a template bank. In Sec. III, we describe
the algorithm that places templates on a hexagonal lattice.
Section IV summarizes the outcome of the simulations
performed to test the hexagonal bank. We envisage various
parameter spaces that allow us to search for binary neutron
star (BNS), primordial black hole (PBH), black hole–neu-
tron star (BHNS) and binary black hole (BBH) signals. We
also considered design sensitivity curves for the current
and advanced generation of ground-based detectors. In
Sec. IV B, we show that the proposed hexagonal template
bank has the required specifications. Finally, in addition to
the case of a template family based on the stationary phase
approximation, we also investigate in Sec. IV C the possi-
bility to use the same hexagonal bank placement with other
template families including Padé resummation and effec-
tive one-body approximation. We show that there is no
need to construct a specific template bank for each tem-
plate family: the proposed bank can be used for the differ-
ent families that we looked at in this paper.

II. FORMALISM AND TEMPLATE BANK
VALIDATION

Matched filtering and template bank placement use for-
malisms that are summarized in this section. We also

review the main results of the square placement, and
recapitulate the framework introduced in [12] that allows
us to validate a template bank.

A. Signal and metric

The matched filtering technique is an optimal method to
detect a known signal, s�t�, that is buried in a stationary and
Gaussian noise, n�t� [20]. The method performs a correla-
tion of the data x�t� � n�t� � s�t� with a template h�t�. In
this paper, we shall assume that s�t� and h�t� are generated
with the same model so that a template can be an exact
copy of the signal. Matched filtering of the data x�t� with a
template h�t� can be expressed via the inner product
weighted by inverse of the noise power spectral sensitivity
(PSD), Sh�f�, and is given by

 �x; h� � 2
Z 1

0

~x��f�~h�f� � ~x�f�~h��f�
Sh�f�

df: (2.1)

Note that for simplicity, we will ignore the time twithin the
inner product expressions. A template and a signal can be
normalized according to

 ĥ �
h������������
�h; h�

p ; ŝ �
s����������
�s; s�

p : (2.2)

The signal-to-noise ratio (SNR) after filtering by h�t� is

 � �
�x; h�������������
�h; h�

p � �x; ĥ�: (2.3)

The simulations that we will perform assume that template
and signal are normalized, that is �ĥ; ĥ� � 1, and �ŝ; ŝ� �
1. In this paper, we are interested in the fraction of the
optimal SNR obtained by filtering the signal x�t� with a set
of template h�t�, therefore, we can ignore the noise n�t�,
and �x; ĥ� becomes �ŝ; ĥ�. Strictly speaking, �ŝ; ĥ� does not
refer to a SNR anymore, but to the ambiguity function,
which is by definition always less than or equal to unity if
the two waveforms are normalized. In the following, we
shall use the notion of match introduced in [10]; the match
between two templates is the inner product between two
templates that is maximized over the time (using the
inverse Fourier transform) and the initial orbital phase
(using a quadrature matched filtering).

The incoming signal has unknown parameters and one
needs to filter the data through a set of templates, i.e., a
template bank. The templates are characterized by a set of
p parameters #�;� � 0; 1; . . . ; p� 1. The templates in
the bank are copies of the signal corresponding to a set of
values #�i ; i � 0; 1; . . . ; Nb � 1, where Nb is the total
number of templates. A template bank is optimally de-
signed if Nb is minimal and if for any signal there always
exists at least one template in the bank such that

 min
#0�

max
i
�ŝ�# 0��; ĥ�#�i �� � MM; (2.4)
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where MM is the minimal match mentioned earlier.
Usually, in searches for (ICB), the value of the minimal
match is set by the user to 95% or 97%, which corresponds
to a decrease in detection rate of 15% and 9%, respectively.
Nevertheless, the minimal match may have a much smaller
value for the first stage of a hierarchical search (e.g., 80%),
or for a one-stage search of periodic signals (e.g., 70% or
lower).

The distance between two infinitesimally separated nor-
malized templates on the signal manifold is given by
[10,11]

 jjh�#� � d#�� � h�#��jj2 � jjh�d#
�jj2

� �h�; h��d#�d#�

� g��d#
�d#�; (2.5)

where h� is the partial derivative of the signal h with
respect to the parameter #�. So, the quadratic form

 g�� � �h�; h�� (2.6)

defines the g�� metric induced on the signal manifold. The
metric is used to calculate the spacings dxi between tem-
plates in each, which are given by

 dxi � 2

�������������������
1�MM
gii

s
; i � 0; 1; . . . ; p� 1: (2.7)

In practice, using such dxi leaves a fraction of the parame-
ter space uncovered, and overlap between templates is
required (e.g., in the square placement, spacings are ac-
tually set to dxi=

���
2
p

).
Since we restrict ourself to the case of nonspinning

waveforms, h�t� depends on 4 parameters only: the two
component masses, m1 and m2 which may vary from
subsolar mass to tens of solar mass systems, the initial
orbital phase ’C, and the time of coalescence tC. We can
maximize over tC and ’C analytically, therefore the pa-
rameter space that we need to cover with our template bank
is a 2-dimensional space only. For conciseness, we can
represent the GW waveform with a simplified expression
given by

 h�t� �
4A�M
D

	�Mf�t�
2=3 cos	’�t� � ’C
; (2.8)

where f�t� is the (invariant) instantaneous frequency of the
signal measured by a remote observer, the phase of the
signal ’�t� � 2�

R
tC f�t�dt is defined so that it is zero

when the binary coalesces at time t � tC, and A is a
numerical constant representing the amplitude [21]. The
asymmetric mass ratio is � � m1m2=M

2, where M �
m1 �m2 is the total mass of the system. There exist
amplitude corrections up to 2.5PN [22], the importance
of which for detection and estimation is shown in [23].
However, in this work, we use restricted post-Newtonian
models only and limit PN expansion of the phase to 2PN

order. Moreover, in the template bank placement, namely,
for the metric computation, we consider the stationary
phase approximation (SPA) [24], for which the metric
can be derived analytically [12]. Nevertheless, other tem-
plate families can be used both for injection and filtering
(see Sec. IVA).

B. Example: The square template bank

The placement that we proposed in [12] uses the metric
based on the (SPA) model, and the spacings dxi, as defined
in Eq. (2.7). Since the model h explicitly depends on the
two mass parameters M and �, then the spacings dxi are a
function of these two quantities as well. However, the
metric expressed in these two coordinates is not a constant;
it is not a constant either if we were to use the component
masses,m1 andm2. The preference of chirp times, denoted
�0 and �3 [see Appendix B, Eqs. (B1)] as coordinates on
the signal manifold is indeed more practical because these
variables are almost Cartesian [24,25]. Although not per-
fectly constant for PN order larger than 1PN, we shall
assume that the metric is essentially constant in the local
vicinity of every point on the manifold. We could use any
combinations of chirp times, but using the pair �0 � �3,
there exists analytical inversion with the pair M� � (see
Appendix B 1).

The parameter space to be covered is defined by the
minimum and maximum component masses of the systems
considered (mmin and mmax), and possibly the minimum
and maximum total mass (Mmin and Mmax) as shown in
Fig. 1. The lower cutoff frequency fL, at which the tem-
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FIG. 1 (color online). Example of parameter space and hex-
agonal template bank placement. The parameter space is defined
by the individual mass components (from 3M� to 30M�) and the
lower cutoff frequency (fL � 40 Hz). The bottom line corre-
sponds to m1 � m2 (i.e., � � 0:25). The two other boundaries
meet where m1 � mmin and m2 � mmax. The bottom left point of
the parameter space corresponds to m1 � m2 � mmax whereas
the top right point corresponds to m1 � m2 � mmin. The circles
give the position of each template that is needed to cover the
entire parameter space (black curves). Even though some tem-
plates lie outside the parameter space boundaries, these are
required to fully cover the parameter space.
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plate starts in frequency, sets the length of the templates
and therefore directly influences the metric components,
the parameter space, and the number of templates Nb. In
[12], we showed how the size of the template bank changes
with fL. We also investigated the loss of match due to the
choice of fL. We generally set fL so that the loss of match
is of the order of a percent.

We briefly remind the reader how the proposed square
template bank works. First, templates are placed along the
m1 � m2 or � � 0:25 line starting from the minimum to
the maximum mass. Then, additional templates are placed
so as to cover the remaining part of the parameter space, in
rows, starting at � � 0:25 along lines of constant �3 until a
template lies outside the parameter space. The spacing
between lines is set adequately. Distances between tem-
plates are based on a square lattice. An example of such a
placement is shown in Fig. 2. One of the limitations of the
placement is that templates are not placed along the eigen-
vectors of the metric but along the standard basis vectors
that describe the �0, �3 space. This approximation make the
ellipses slightly more overlapping than requested and may
also create holes when the orientation of the ellipses varies
significantly (i.e., at high mass regime). The square place-
ment is also overefficient as compared to a hexagonal
placement (see Fig. 3).

C. Bank efficiencies

Independently of the template bank placement, the tem-
plate bank must be validated to check whether it fulfills the
requirements [e.g., from Eq. (2.4)]. First, we perform
Monte Carlo simulations so as to compute the efficiency
vector, E, given by

 E ��s; �h� � fmax
j
�ŝ�#si �; ĥ�#

h
j ��gi�1;...;Ns;j�1;...;Nb (2.9)

where Nb is the number of templates in the bank, Ns the
number of injections.

The vectors #s and #h correspond to the parameters of
the simulated signals and the templates, �s and �h are the
models used in the generation of the signal and template,
respectively. In all the simulations, we set #s �
fm1; m2; ’C; tCg. Furthermore, we can analytically max-
imize over the unknown orbital phase ’C and, therefore,
#h � fm1; m2g.

The efficiency vector E and the signal parameter vector
#s are useful to derive several figures of merit. The cumu-
lative distribution of E (Fig. 3, bottom panel) indicates how
quickly matches drop as the minimal match is reached.
Nevertheless, the cumulative distribution function of E
hides the dependency of the matches upon masses.
Therefore, we also need to look at the distribution of E
versus total massM (e.g., Fig. 3, top panel), or versus �, or
chirp mass, M (see appendix for an exact definition).
Usually, we look at EM only. Indeed, in most cases, the
dynamical range of � is small [from 0.1875 to 0.25 in the

(BNS) case]. Finally, we can quantify the efficiency of a
template bank with a unique value, that is the safeness, S,
given by

 S R��s; �h� � minE��s; �h�: (2.10)
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FIG. 2 (color online). Two instances of template bank place-
ments. In the two plots, we focus on a small area of the
parameter space presented in Fig. 1. We used a square (top
panel) and hexagonal (bottom panel) placement. For conve-
nience, we rescale the metric components so that, g00 � g11.
Each template position is represented by a small circle. Around
each template position, we plot an ellipse that represents an
isomatch contour of MM � 0:95%. Each ellipse contains an
inscribed square or hexagon which emphasizes how ellipses
overlap each other. We can see that squares (top) slightly overlap
each other. This is because templates are laid along the �3 equal
constant line and not along the eigenvector directions, which
change over the parameter space. In the hexagonal placement,
we take care of this problem shortcoming, and therefore hex-
agons are perfectly adjacent to each other: the placement is
optimal.
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Ideally, we should have a template bank such that SR 
MM. SR is a generalization of the left-hand side of
Eq. (2.4) on Ns injections. The higher Ns is, the more
confident we are with the value of the safeness. Ideally,
the number Ns should be several times the size of the
template bank that is Ns � Nb, so that statistically we
have at least one injection per template. The subindex R
of the safeness is the ratio betweenNs andNb and indicates
the relevance of the simulations. The safeness provides

also a way of characterizing the template bank: if SR is
less than the expected minimal matchMM, then the bank is
underefficient. Conversely, a template bank can be over-
efficient as in Fig. 3.

III. HEXAGONAL PLACEMENT BASED ON THE
METRIC

In the �0, �3 basis vectors, both amplitude and orienta-
tion of the eigenvectors change, which may imply a labo-
rious placement. In this section, we describe the hexagonal
placement that is conceptually different from the square
placement and takes into account the eigenvectors change
throughout the parameter space.

A. Algorithm

Although the hexagonal placement algorithm is inde-
pendent of any genetic or evolutionary algorithms, it can be
compared to biological process, and we will use this anal-
ogy to explain the placement. First, let us introduce a cell
that contains a template position (e.g., �0 � �3), the metric
components defined at this position, and a unique identi-
fication number that we refer to as an ID. A cell covers an
area defined by an ellipse with semiaxis equal to dxi=2.
The goal of a cell is to populate the parameter space with
an offspring of at most 6 cells (hexagonal placement). A
cell can be characterized by the following principles:

(1) Initialization.—A cell is created at a given position
in �0 � �3 plane, not necessarily at a physical place
(i.e., � can be less than 1=4). The initialization
requires that

(i) metric components at ��0 � �3� are
calculated,

(ii) a unique ID number is assigned,
(iii) 6 connectors are created and set to zero.

Finally, if the cell area intersects with the parameter space,
then it has the ability to survive in its environment: it is
fertile. Conversely, a cell whose coverage is entirely out-
side the parameter space is sterile.

(2) Reproduction.—A fertile cell can reproduce into 6
positions that are the corner of a hexagon inscribed
in the ellipse whose semiaxes are derived from the
metric components dxi’s. A cell that has reproduced
is a mother cell and its offspring is composed of 6
daughter cells. Once a daughter cell is initialized, it
cannot reproduce in place of its mother. This is
taken into account via the connection principle.

(3) Connection.—Following the reproduction process,
a mother cell sets the connections with its daughter
cells by sharing their IDs. Therefore, a mother cell
knows the IDs of its daughter cells and vice versa.
Moreover, when a mother cell reproduces, it also
sets up the connections between two adjacent
daughters so that they both know their IDs. These
connections prevent cells from reproducing in a
direction that is already populated.

FIG. 3 (color online). Efficiencies of the square template bank.
For convenience we remind the reader of some results of the
square template bank provided in [12]. In the simulations, we
used stationary phase approximant models for both injections
and templates. Injections consist of binary neutron stars. We
used 4 design sensitivity curves (LIGO-I, advanced LIGO,
VIRGO and GEO), and for each of them we performed 10 000
injections. In the top panel, we show all the results together: all
injections are recovered with a match higher than 95%, as
requested. In the bottom panel, we decomposed the 4 simulations
and show that all of them behave similarly. Most of the injections
are recovered with even higher matches (above 97%) showing
the overefficiency of the placement.
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(4) Sterility.—A cell becomes sterile (cannot reproduce
anymore) when both reproduction and connection
principles have been applied. A cell that is outside
the parameter space is also sterile (checked during
the initialization).

(5) Exclusivity.—The reproduction process is exclu-
sive: only one cell at a time can reproduce. It is
exclusive because a cell cannot start to reproduce
while another cell is still reproducing.

The cell population evolves by the reproduction of their
individuals over as many generations as needed to cover
the entire parameter space. The first generation is com-
posed of one cell only. The position of this first cell
corresponds to m1 � mmin; m2 � mmax. We could start at
any place in the parameter space. Other choices such as
m1 � m2 � mmax or m1 � m2 � mmin work as well; the
bank sizes fluctuate depending on the initial template but
not significantly (e.g., for a BBH case with LIGO PSD, the
bank sizes are 532, 543, and 555, respectively). The first
cell is initialized (first principle). Then, the cell reproduces
into 6 directions (second principle). Once the reproduction

is over, the connectors between the mother cell and its
daughters are set (third principle), and finally, the cell
becomes sterile (fourth principle). This loop over the first
cell has created a new generation of 6 cells, and each cell
will now follow the four principles again. However, the
new generation of cells will not be able to reproduce in 6
directions. Indeed, connectors between the first mother cell
and its daughters have been set, and therefore the new cell
generation cannot propagate towards the mother direction.
Furthermore, the 6 new cells have already 2 other adjacent
cells. Therefore, each cell of the second generation can
reproduce 3 times only. Moreover, some of the cells might
be outside the parameter space and are sterile by definition.
Once a new generation has been created, the previous
generation must contain sterile cells only. The algorithm
loops over the new generation while there exist fertile cells.
The first generation is a particular case since it contains
only one cell. However, the following generations are not
necessarily made of a unique cell, and the reproduction
warrants a careful procedure: the reproduction takes place
cell after cell starting from the smallest ID. Moreover, in

(a)Initialization (b)Reproduction cell 1 (c)Connections

(d)Initialization (e)Reproduction cell 2 (f )Reproduction cell 3

FIG. 4 (color online). Hexagonal template bank placement. Using the terminology that is introduced in the text, we can describe the
template bank placement algorithm as follows. First, in subfigure (a), a cell/template is arbitrary placed in the parameter space. Its
coordinates correspond to m1 � mmin and m2 � mmax, and its ID is 1. In subfigure (b), the cell with ID � 1, which is also a mother
cell, reproduces 6 new cells according to an optimal hexagonal lattice that takes into account its metric components. In subfigure (c)
the connection between the offsprings and the mother cell are created (solid arrows). Cells that belong to the same generation (white
ellipses) are also connected if they are adjacent to each other (dashed arrows). In subfigure (d), the new cells can start to reproduce.
However, the reproduction is exclusive: reproduction takes place cell after cell, and the cell with lowest ID is chosen to reproduce first.
In subfigure (e), therefore, the cell with ID equals 2 starts to reproduce. Because connections already exist with other cells, this cell will
reproduce only 3 directions (i.e., 8, 9 and 10). In subfigure (f), the cell with ID equals 3 starts to populate. The 3 new cells (IDs 11,12
and 13) created by the cell with ID � 2 have to wait for the current generation (IDs 3 to 7) to fully reproduce. The cells spread until the
boundary of the parameter space is reached.

T. COKELAER PHYSICAL REVIEW D 76, 102004 (2007)

102004-6



agreement with the fifth principle, the cells of the newest
generation wait until all the cells of the previous generation
have reproduced. The reproduction over generations stops
once no more fertile cells are present within the population.
Since the parameter space is finite, the reproduction will
automatically stop. Figure 4 illustrates how the first 3
generations populate the parameter space.

Once the reproduction is over, some cells might be out-
side the physical parameter space, or outside the mass
range requested. An optional final step consists in ‘‘push-
ing back’’ the corresponding cells inside the parameter
space. First, we can push back the nonphysical cells only,
that is the cells that are below the � � 1=4 line towards the
relevant eigenvector directions onto the � � 1=4 line.
Second, there are other cells for which mass parameters
correspond to physical masses but that are outside the
parameter space of interest. Nothing prevents us from
pushing these cells back into the parameter space as well.
This procedure is especially important in regions where the
masses of the component objects are large. Indeed, keeping
templates of mass larger than a certain value causes prob-
lems owing to the fact that the search pipeline uses a fixed
lower cutoff frequency and the waveforms of mass greater
than this value cannot be generated. In the simulations
presented in this paper, we move the cells that are below
the � � 1=4 boundary, and keep the cells that are outside
the parameter space but with �> 1=4. Useful equations
that characterize the boundaries of the parameter space are
provided in Appendix B. A flow chart of the algorithm is
also presented in Appendix C (see Fig. 11).

An example of the proposed hexagonal placement is
shown in Fig. 1. In this example, the minimum and maxi-
mum individual mass component are 3M� and 30M�, and
the lower cutoff frequency is of 40 Hz. We can see that
none of the templates are placed below the equal mass line
whereas some are placed outside the parameter space.
Figure 2 gives another placement example.

B. Size, gain and computational cost

The ratio of a circle’s surface to the area of a square
inscribed within this circle is �R2=�2R2�  1:57, where R
is the circle’s radius. The ratio of the same circle’s surface

to an inscribed hexagon equals �R2=�3
���
3
p
R2=2�  1:21.

The ratio of the square surface to the hexagon surface is
therefore about 29%, which means that about 29% fewer
templates are needed to cover a given surface when a
hexagonal lattice is used instead of a square lattice; com-
putational cost could be reduced by the same amount.
Tables I and II summarize the sizes of the proposed square
and hexagonal template bank placements. The hexagonal
template bank reduces the number of templates by about
40% (see Table. III). This gain is larger than the expected
29%, and is related to the fact that we take into account the
evolution of the metric (orientation of cells/ellipses) on the
parameter space.

Computational time required to generate a hexagonal
bank appears to be smaller than the square bank. In
Table IV, we record the approximate time needed to gen-
erate each template bank, which is of the order of a few
seconds even for template banks as large as 100 000 tem-
plates. It is also interesting to note that most of the com-
putational time is spent in the computation of the moments
(used by the metric space) rather than in the placement
algorithm.

The template bank size depends on various parameters
such as the minimal match and lower cutoff frequency that
strongly influence the template bank size. Other parame-
ters such as the final frequency at which moments are
computed, or the sampling frequency may also influence
the bank size. There are also refinements that can be made

TABLE II. Typical hexagonal template bank size. We summa-
rize the number of templates of typical hexagonal template
banks. We consider several design sensitivity curves such as
LIGO, VIRGO, . . .(see Appendix A for analytical expressions
and lower cutoff frequencies), and 4 typical parameter spaces
(see Sec. IV for the mass range).

Bank size EGO GEO 600 LIGO-I LIGO-A Virgo

BBH 4109 838 532 1712 3283
BHNS 71 478 12 382 7838 27 511 57 557
BNS 16 036 3576 2319 6969 12 958
PBH 205 439 41 354 26 732 84 154 167 725

TABLE I. Typical square template bank size. We summarize
the number of templates of typical square template banks. We
consider several design sensitivity curves such as LIGO,
VIRGO, . . .(see Appendix A for analytical expressions and
lower cutoff frequencies), and 4 typical parameter spaces (see
Sec. IV for the mass range).

Bank size EGO GEO 600 LIGO-I LIGO-A Virgo

BBH 5582 1229 744 2238 4413
BHNS 94 651 16 409 9964 35 869 74 276
BNS 22 413 5317 3452 9743 17 764
PBH 303 168 62 608 39 118 122 995 242 609

TABLE III. Size reduction between the square and hexagonal
template banks. We summarize the template bank size ratio (in
percentage) between the hexagonal and square placements. The
ratios are calculated with the numbers provided in Tables. I and
II. For various PSDs and parameter spaces, we can see that on
average the gain is about 40%.

EGO GEO 600 LIGO-I LIGO-A Virgo Average

BBH 36 47 40 31 34 37.6
BHNS 32 33 27 30 29 30.2
BNS 40 49 49 40 37 43.0
PBH 48 51 46 46 45 47.2
Average 39 45 40.5 36.75 36.25 39.5
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on the placement itself. Two main issues arise from our
study. First, the hexagonal placement populates the entire
parameter space. Yet, parameter space is not a square but
rather a triangular shape. In the corner of the parameter
space, a hexagonal placement is not needed anymore: a
single template overlaps with two boundary lines. In this
case, hexagonal placement can be switched to a bisection
placement that places templates at equal distances from the
two boundary lines. A secondary issue is that the hexago-
nal placement is aligned along an eigenvector direction.
Nothing prevents us from placing templates along the other
eigenvector direction. It seems that this choice affects
neither the efficiencies nor the template bank size
significantly.

IV. SIMULATIONS

The proposed square and hexagonal template bank
placements are used to search for various (ICB) in the
LIGO and GEO 600 GW-data. They are used to search
for primordial black holes, binary neutron stars, binary
black holes and a mix of neutron stars and black holes.
In the past, the parameter space was split into subspaces
that encompass different astrophysical binary systems such
as (PBH), (BNS), (BBH), and/or (BHNS) [14–18]. We can
filter the data through a unique template bank that covers
the different types of binaries, however, we split the pa-
rameter space into the same 4 subspaces that have been
used to validate the square template bank placement so that
we can compare results together. We use the same mass
range as in our companion paper, that is PBH binaries with
component masses in the range 	0:3–1
M�, (BNS)
	1–3
M�, (BBH) 	3–30
M�, and (BHNS) with one neutron
star with component mass in the range 	1–3
M� and a
black hole with component mass in the range 	3–60
M�,
in which case the template bank must cover 	4–63
M� in
total mass. We also use the same PSD by incorporating the
design sensitivities of current detectors (GEO, VIRGO and
LIGO-I) and advanced detectors [advanced LIGO (or
LIGO-A), and EGO]. Each of the PSDs has a design

sensitivity curve, provided in Appendix A. The lower cut-
off frequencies are the same as in [12] and are summarized
in the appendix as well. In the case of the EGO PSD, which
we have not used previously, we set the lower cutoff
frequency fL � 20 Hz. Actually, this value can be de-
creased to about 10 Hz for the (BBH) case, increasing
the template bank sizes.

In all the simulations, we tend to use common parame-
ters so as to simplify the interpretation. We use a sampling
frequency of 4096 Hz over all simulations because the last
stable orbit fLSO � 1=�63=22�M� is less than the Nyquist
frequency of 2048 Hz for most of the (BBH), (BHNS), and
(BNS) signals. The computational time is strongly related
to the size of the vectors, whose length depends on the time
duration of the template/signal used in our simulations. In
order to optimize the computational cost, in each search,
we extract the longest template duration that we round up
to the next power of 2. The vector duration is then multi-
plied by 2 for safety. We set the minimal match to 95%. We
considered 5 types of template families that are described
later. We can estimate the number of simulations. For
instance, using Ns injections, with 5 different PSDs, 4
searches (BNS, BBH, . . .), and 5 template families, we
have a total of Ns � 5� 4� 5 � 100� Ns injections,
which need to be filtered through Nb templates. If we
approximate Nb to be 10 000 and Ns to be 10 000 as
well, it is clear that computational cost is huge. In order
to speed up the simulations, we chose not to filter signals
with all the available templates, but only a relevant fraction
of them around the injected signal; this selection is trivial
since template and signal are based on the same model.

A. Description of the physical models

Theoretical calculations using post-Newtonian approxi-
mation of general relativity give waveforms as expansions
in the orbital velocity v, where v � �2�Mf�t��1=3. The PN
expansions are known up to order v5 in amplitude and v7 in
phase. However, we limit this study to restricted post-
Newtonian, that is all amplitude corrections are discarded.
Moreover, we expand the flux only to 2PN order. The
energy function E�v� and the flux F �v� are given by

 E�v� � EN
X
k

Ekv2k; F �v� � F N

X
j

F jvj: (4.1)

We can obtain the phase starting from the kinematic equa-
tions dt � �dt=dE��dE=dv�dv and d�=dt � 2�f�t� and
the change of binding energy F � �dE=dt giving a phas-
ing formula of the form [26].

 t�v� � tref �m
Z vref

v

E0�v�
F �v�

dv;

��v� � �ref � 2
Z vref

v
v3 E

0�v�
F �v�

dv:

(4.2)

TABLE IV. Computational cost for different template banks.
We assume MM � 95%, a Vigo-like PSD with fL � 30 Hz, a
segment duration of 256 s, and a sampling of 4 kHz. Most of the
computation time is spent in the computation of the moments,
that depend on the duration of the segment. Using a short
duration vector of a couple of seconds, the computational time
decreases by about 6 s showing that the time spent in the
placement itself is negligible even for large template banks
(computations performed on an AMD Athlon 1.6 Hhz).

mmin mmax Nsquare Time(s) Nhexa Time(s)

0.5 30 182 136 29.0 124 652 13.5
1 3 10 187 6.7 7251 5.7
1 30 34 095 8.7 24 501 6.0
3 30 2422 5.7 1764 5.2
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There are different ways in which the above equations can
be solved. For convenience, we introduce labels so as to
refer to different physical template families that are used
within the gravitational-wave community and in our simu-
lations.

TaylorT1.—If we integrate Eqs. (4.2) numerically, we
obtain the so-called TaylorT1 model. If instead, we use the
P-approximant for the energy and flux functions [21,27],
then one generates the PadeT1 model.

TaylorT2.—We can also expand E0�v�=F �v� in a Taylor
expansion in which case the integrals can be solved ana-
lytically to obtain the phase in terms of polynomial ex-
pressions as a function of v, which corresponds to
TaylorT2 model [27]. This model is not used in this paper
but results are very similar to the TaylorT3 model.

TaylorT3.—From TaylorT2, t�v� can be inverted and the
polynomial expression of v used within the expression for
��v� to obtain an explicit time-domain phasing formula in
terms of t. This corresponds to the TaylorT3 model.

EOB.—The nonadiabatic models directly integrate the
equations of motion (as opposed to using the energy bal-
ance equation) and there is no implicit conservation of
energy used in the orbital dynamics approach [21,28–
30]. The EOB maps the real two-body conservative dy-
namics onto an effective one-body problem wherein a test
mass moves in an effective background metric.

TaylorF2.—The phasing formula is expressed in the
Fourier domain, and is equivalent to the (SPA) case already
mentioned.

B. SPA-model results

First, we validate the hexagonal template bank with a
model based on the (SPA) (also labeled TaylorF2), used to
compute the metric components. We set �s � �h �
Taylor F2, and compute E and SR. We intensively tested
this bank by setting Ns � 200 000 for each PSD and each
parameter space considered. Using the template bank size
from Table II, the ratio R between template bank size and
number of simulations varies from 1.7 to 375, which is
much larger than unity in agreement with discussions that
arose in Sec. II C. The results are summarized in Figs. 5
and 6.

In Fig. 5, we notice that the hexagonal bank is efficient
over the entire range of PBH binary, BNS, and BHNS
searches. Moreover, the safeness is close to the minimal
match (SR 2 	95%–96%
); by looking at the cumulative
efficiencies, the bank seems to be neither under- nor over-
efficient. However, looking more closely at EM (see Fig. 6),
we can identify a small overefficient region in the BHNS
case, where the efficiency is always larger than 97% for
signals with total mass between 	4–20
M�.

In the BBH case, the bank is also efficient for the various
PSDs with total mass between 	6–40
M�, and similarly to
the BHNS case, it is overefficient (above 97%) for systems
with total mass between 	8–20
M�. The bank is also under-
efficient with matches as low as 93% but for very high
mass systems above 40M�. The match below the minimal
match are related to the LIGO-I PSD only, for which the
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FIG. 5 (color online). Cumulative efficiencies of the hexagonal template bank. Both template and signal are based on TaylorF2
model. From top left to bottom right (clockwise), injection and template bank cover the PBH binary, BNS, BHNS, and BBH
inspiralling compact binaries.
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lower cutoff frequency is 40 Hz. For high mass and nearly
equal mass systems, the waveforms tend to be very short
and contain only a few cycles: the metric is not a good
approximation anymore. It also explains the feature seen at
high mass, that shows some oscillations in the matches: a
single template matches with many different injected sig-
nals. One solution to prevent matches from dropping below

the minimal match is to refine the grid for high mass range
by decreasing the distances (i.e., increasing MM) between
templates in this part of the parameter space. However, the
high mass also correspond to the shortest waveforms which
lead to a high rate of triggers in real data analysis.
Therefore it is advised not to overpopulate the high mass
region. Overall, the hexagonal placement has the same

FIG. 6 (color online). Efficiencies of the hexagonal template bank. Both template and signal are based on TaylorF2 model. From top
left to bottom right (clockwise), injection and template bank cover the PBH binary, BNS, BHNS, and BBH inspiralling compact
binaries.

FIG. 7 (color online). Hexagonal template bank efficiencies using TaylorT1 model. From left to right, results of the BNS, BHNS, and
BBH injections.
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behavior as in [12] but the bank is not overefficient any-
more in most cases.

C. Non SPA-model results

The square and hexal tgonaemplate banks are designed
for TaylorF2 model. Yet, models presented in Sec. IVA do
not differ from each other significantly as long as v� c,

which is the case for PBH, BNS waveforms and most of the
BHNS and BBH waveforms. Therefore, we expect the
efficiencies of the template banks to be equivalent to the
SPA-model results.

The models used in this section have the same PN order
(i.e., 2PN) as in the TaylorF2 model. The simulation pa-
rameters are identical except the number of simulations

FIG. 8 (color online). Hexagonal template bank efficiencies using TaylorT3 model. From left to right, results of the BNS, BHNS, and
BBH injections.

FIG. 9 (color online). Hexagonal template bank efficiencies using PadeT1 model. From left to right, results of the BNS, BHNS, and
BBH injections.
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that is restricted toNs � 10 000 for computational reasons.
Finally, we tested only the BNS, BHNS and BBH searches.
The PBH using the SPA model being sufficient for a
detection search.

1. TaylorT1, TaylorT3, PadeT1

The TaylorT1, TaylorT3 and PadeT1 models give very
similar results that are summarized in Figs. 7–9. The safe-
ness is greater than the minimal match for the BNS and
BHNS searches, for all three waveforms. More precisely,
SR  95% for the BNS case, and it is slightly overefficient
for the BHNS case for total mass above 20M�, especially
in the case of the PadeT1 model. In the BBH case, the bank
is efficient between 	6–45
M�. Then, matches drop to 93%
for the same reason as in the case of SPA discussion.
Therefore, we conclude that the proposed template bank
is also efficient for TaylorT1, TaylorT3 and PadeT1
models.

2. EOB

We also investigate the efficiency of the hexagonal
template bank using EOB templates and signals. The
EOB model is intrinsically different from the previous
models. The results are summarized in Fig. 10. The safe-
ness is slightly under the requested minimal match (SR �
94:5%  95%). The template bank is efficient for BNS,
BHNS and BBH cases. There is no overefficiency noticed
in any of the mass range considered. We can also notice
that the cumulative EM drops quickly and therefore we

think that the proposed bank can be used with the EOB
model as well.

V. DISCUSSION AND CONCLUSIONS

In this paper, we described a hexagonal template bank
placement for the search of nonspinning inspiralling com-
pact binaries in ground-based interferometers such as
LIGO. The placement is based on a metric computed on
the signal manifold of a stationary phase approximation
model. The proposed hexagonal template bank size is
about 40% smaller than the square template placement
that was previously used to analyze LIGO science runs
(i.e., [18]). Yet, the matches between signal and templates
are above the required minimal match. Therefore, the
template bank described in this paper is not overefficient:
it behaves as required. The main consequence is a reduc-
tion of 40% of the computational cost required to search
for inspiralling compact binaries with respect to previous
searches.

The proposed template bank is not unique. Several
parameters can be tuned such as the sampling frequency,
the final frequency used in the computation of the mo-
ments, the placement of the template along one eigenvector
or the other, each of which can be investigated in more
detail.

The bank was tested with the aid of many simulations
that use design sensitivity curves for advanced and current
detectors, and various inspiralling compact binaries with
total mass between 	0:6–63
M�. We used a model based on
stationary phase approximation and showed that the tem-
plate bank is efficient for most of the parameter space

FIG. 10 (color online). Hexagonal template bank efficiencies using EOB model. From left to right, results of the BNS, BHNS, and
BBH injections.
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considered. The higher end of the mass range was slightly
underefficient in the BBH case but this is partly related to
the shortness of the signal and templates considered.

The proposed template bank can be used for various
template families, not only the stationary phase approxi-
mation family. In particular, we tested the TaylorT1,
TaylorT3, PadeT1, and EOB models at 2PN order, that
have been used for simulated injections in the various
LIGO science runs. It is interesting to see that the proposed
template bank is efficient for most of the models consid-
ered in this paper. It is also worth noticing that in some
cases the template bank is still overefficient even though
the bank size is already reduced by 40% (e.g., high mass
BHNS injections).

The models that have been investigated in this paper are
all based on 2PN order, therefore template families based
on higher PN order should be investigated. In the future,
we also plan to consider the case of amplitude corrected
waveforms. All simulations presented in this paper use the
same model for both the template and signal generation. It
would be interesting to see how the template bank per-
forms when templates are based on one model (say, Padé)
and the signals are from another (say, EOB).

This hexagonal template bank is currently used within
the LIGO project to search for nonspinning inspiralling
compact binaries in the fifth science run.
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APPENDIX A: DETECTOR’S POWER SPECTRAL
DENSITIES

The simulations that we performed use different PSD
curves that are used to compute the inner products
[Eq. (2.1)]. The different expressions provided use the
quantity x � f=f0, where f is the frequency and f0 is a
constant. We summarize the different design sensitivity
curves that have been used in our simulations together
with the lower cutoff frequency fL:

(i) The EGO PSD [23] is given by

 Sh�f� � S0

�
xp1 � a1xp2 � a2

1� b1x� b2x2 � b3x3 � b4x4 � b5x5 � b6x6

1� c1x� c2x
2 � c3x

3 � c4x
4

�
(A1)

where S0�1:61�10�51 and f0 � 200 Hz. The
other parameters are: p1��4:05, p2��0:69, a1�
185:62, a2�232:52, b1�31:184, b2 � �64:72,
b3�52:24, b4��42:16, b5 � 10:17, b6�11:53,
c1�13:58, c2��36:46, c3�18:56, and c4�
27:43.
The lower cutoff frequency is fL � 20 Hz.

(ii) The GEO PSD is given by [31]

 Sh�f� � S0

�
10�46x�30 � 34x�1

� 20
	1� x2 � 0:5x4


1� 0:5x2

�
(A2)

where S0 � 10�46 and f0 � 150 Hz. The lower
cutoff frequency is fL � 40 Hz.

(iii) The LIGO-I PSD [31] is given by

 

Sh�f� � S0f�4:49x��56 � 0:16x�4:52 � 0:52

� 0:32x2g; (A3)

where S0 � 9� 10�46 and f0 � 150 Hz. The
lower cutoff frequency is fL � 40 Hz.

(iv) The advanced LIGO PSD is based on data pro-
vided in [31] and given by

 Sh�f� � S0

�
x�4:14 � 5x�2

� 111
�
1� x2 � 0:5x4

1� 0:5x2

��
; (A4)

where S0 � 10�49 and f0 � 215 Hz. The lower
cutoff frequency is fL � 20 Hz.

(v) Finally, the VIRGO PSD is based on data pro-
vided by Vinet [32] and is approximated by

 Sh�f� � S0

�
�7:87x��4:8 �

6

17
x�1 � �1� x2�

�
;

(A5)

where S0 � 10:2� 10�46 with f0 � 500 Hz.
The lower cutoff frequency is fL � 20 Hz.

APPENDIX B: PARAMETER SPACE TOOLS

1. Basic relations

Here is a summary of the relationship between individ-
ual masses m1, m2, and the two chirp time parameters �0

and �3, that are given by

 

�0 �
5

256�fL�
��MfL��5=3; �3 �

1

8fL�
��MfL��2=3;

(B1)
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where fL is the lower cutoff frequency of the template/
signal, M � m1 �m2, and � � m1m2=M

2. The inversion
is straightforward; M and � are given by

 M �
5

32�2fL

�3

�0
; � �

1

8fL�3

�
32��0

5�3

�
2=3
: (B2)

It is convenient to introduce the constants A0 and A3 given
by

 A0 �
5

256��fL�
8=3
; A3 �

�

8��fL�
5=3
; (B3)

so that Eq. (B1) becomes

 �0 �
A0

�
M�5=3; �3 �

A3

�
M�2=3: (B4)

Finally, the chirp mass, M, is given by

 M � �3=5M (B5)

that allows �0 to be expressed as a function of chirp mass
only:

 �0 � A0M
�5=3: (B6)

2. Parameter space boundaries relations

The parameter space is defined by three boundaries (see
Fig. 1). On each of these boundaries, we want to express �3

as a function of �0. Using (B4), we can eliminate M and
express �3 as a function of �0 and �:

 �3 �
A3

�

�
��0

A0

�
2=5
: (B7)

We can also eliminate �, and express �3 as a function of �0

and M:

 �3 �
A3

A0
�0M: (B8)

The lower boundary corresponds to m1 � m2, or � �
1=4. Using Eq. (B7), we can express �3 as a function of �0

only

 �3 �

�
4A3

�
�0

4A0

�
2=5
�
��1=4

: (B9)

The second boundary is defined bym1 � mmin andm2 in
	mmin �mmax
. The third boundary is defined by m1 �
mmax and m2 in 	mmin �mmax
. On those two boundaries,
we can assume that m1 is set to one of the extremity of the
mass range, denoted me. Then m2 � M�me, and � �
�Mme�=�M�me�

2. Starting from

 �0 �
A0

�
�M��5=3; (B10)

we replace � by its expression as a function of M and me,
and obtain after some algebra a cubic equation of the form

 x3 � px� q � 0 (B11)

where x � M1=3, p � �A0=��0=me� and q � �me � 0,
where me is either set to mmin or mmax depending on which
side of the parameter space we are. The solution for x is
standard and is given by
 

�

�
�
q
2
�

1

2

���������������������
27q2 � 43

27

s �
1=3

�

�
�
q
2
�

1

2

�������������������������
27q2 � 4p3

27

s �
1=3

(B12)

We replace, M � x3 in Eq. (B8) to obtain the value of �3

on the boundaries when �0 is provided.

APPENDIX C: FLOW CHART OF THE
HEXAGONAL PLACEMENT ALGORITHM

Input
data

Is there at
least one

fertile cell ?

1 - Power Spectral Estimation
2 - Moments computation

Initialisation : a fertile
cell is placed in the

parameter space

START

Cleaning :
cells in non-physical positions are push

back towards the parameter space.

From first fertile cell

Reproduction i-th cell

i=i+1

N fertile
cells, i=0

Initialize the new
cells

END

YES

NO

YES

1 - Minimal match
2 - Model
3 - Sampling
4 - Parameter space

Optional Cleaning :
Cells outside the parameter space (high

mass) are push back towards the
parameter space.

Connection

NO

i<N ?

FIG. 11 (color online). Flow chart of the hexagonal placement
algorithm. See the text for detailed description of the initializa-
tion, reproduction, and connection process.
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