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We perform a lattice Monte Carlo calculation of the two-point functions of the energy-momentum
tensor at finite temperature in the SU(3) gauge theory. Unprecedented precision is obtained thanks to a
multilevel algorithm. The lattice operators are renormalized nonperturbatively and the classical discre-
tization errors affecting the correlators are corrected for. A conservative upper bound for the shear
viscosity to entropy density ratio is derived, �=s < 1:0, and our best estimate is �=s � 0:134�33� at T �
1:65Tc under the assumption of smoothness of the spectral function in the low-frequency region.
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I. INTRODUCTION

Models treating the system produced in heavy ion colli-
sions at Relativistic Heavy Ion Collider (RHIC) as an ideal
fluid have had significant success in describing the ob-
served flow phenomena [1,2]. Subsequently the leading
corrections due to a finite shear viscosity were computed
[3], in particular, the flattening of the elliptic flow coeffi-
cient v2�pT� above 1 GeV. It is therefore important to
compute the QCD shear and bulk viscosities from first
principles to establish this description more firmly. Small
transport coefficients are a signature of strong interactions,
which lead to efficient transmission of momentum in the
system. Strong interactions in turn require nonperturbative
computational techniques. Several attempts have been
made to compute these observables on the lattice in the
SU(3) gauge theory [4,5]. These calculations are based on
the Kubo formulas, which relate each transport coefficient
to a spectral function ��!� at vanishing frequency. Even on
current computers, these calculations are highly nontrivial,
due to the falloff of the relevant correlators in Euclidean
time (as x�5

0 at short distances), implying a poor signal-to-
noise ratio in a standard Monte Carlo calculation. The
second difficulty is to solve the ill-posed inverse problem
for ��!� given the Euclidean correlator at a finite set of
points. Mathematically speaking, the uncertainty on a
transport coefficient � is infinite for any finite statistical
accuracy, because adding �!��!� to ��!� merely corre-
sponds to adding a constant to the Euclidean correlator of
order �, while rendering � infinite. Therefore, smoothness
assumptions on ��!� have to be made, which are reason-
able far from the one-particle energy eigenstates, and can
be proved in the hard-thermal-loop framework [6].

In this paper we present a new calculation which dra-
matically improves on the statistical accuracy of the
Euclidean correlator relevant to the shear viscosity through
the use of a two-level algorithm [7]. This allows us to
derive a conservative upper bound on the viscosity and a
useful estimate of the ratio �=s, which has acquired a

special significance since its value 1=4� in a class of
strongly coupled supersymmetric gauge theories [8] was
conjectured to be an absolute lower bound for all substan-
ces [9].

II. METHODOLOGY

In the continuum, the energy-momentum tensor
�T���x� �

1
4���F

a
�	Fa�	 � Fa�
Fa�
, being a set of

Noether currents associated with translations in space
and time, does not renormalize. With L0 � 1=T the inverse
temperature, we consider the Euclidean two-point function
(0< x0 < L0)

 C�x0� � L5
0

Z
d3xh �T12�0� �T12�x0;x�i: (1)

The tree-level expression is Ct:l:�x0� �
32dA
5�2 �f��� � �4

72�,
with � � 1� 2x0

L0
, dA � 8 the number of gluons, and

f�z� �
R
1
0 dss

4cosh2�zs�=sinh2s. The correlator C�x0� is
thus dimensionless and, in a conformal field theory, would
be a function of Tx0 only.

The spectral function is defined by

 C�x0� � L5
0

Z 1
0
��!�

cosh!�12L0 � x0�

sinh!L0

2

d!: (2)

The shear viscosity is given by [4,10]

 ��T� � �
d�
d!

��������!�0
: (3)

Important properties of � are its positivity, ��!�=! � 0,
and parity, ���!� � ���!�. The spectral function that
reproduces Ct:l:�x0� is

 �t:l:�!� �
At:l:!4

tanh1
4!L0

� BL�4
0 !��!�; (4)

 At:l: �
1

10

dA
�4��2

; B �
�
2�
15

�
2
dA: (5)

While the !4 term is expected to survive in the interacting
theory with only logarithmic corrections, the � function at*meyerh@mit.edu
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the origin corresponds to the fact that gluons are asymp-
totic states in the free theory and implies an infinite
viscosity.

On the lattice, translations only form a discrete group, so
that a finite renormalization is necessary, �T���g0� �

Z�g0� �T�bare�
�� . We employ the Wilson action [11], Sg �

1
g2

0

P
x;���Trf1� P���x�g, on an L0 � L3 hypertoroidal lat-

tice, and the following discretized expression of the
Euclidean energy:

 

�T �bare�
00 �x� �

2

a4g2
0

�X
k

Re TrP0k�x� �
X
k<1

Re TrPkl�x�
�
:

One of the lattice sum rules [12] can be interpreted as a
nonperturbative renormalization condition for this particu-
lar discretization, from which we read off Z�g0� � 1�
1
2 g

2
0�c	 � c��. The definition of the anisotropy coefficients

c	;� can be found in [13], where they are computed non-
perturbatively. With a precision of about 1%, a Padé fit
constrained by the one-loop result [14] yields

 Z�g0� �
1� 1:0225g2

0 � 0:1305g4
0

1� 0:8557g2
0

; �6=g2
0 � 5:7�:

(6)

III. NUMERICAL RESULTS

We report results obtained on a � � 6=g2
0 � 6:2, 8	

203 lattice and on a � � 6:408, 8	 283 lattice. The first is
thus at a temperature of 1:24Tc, the second at T � 1:65Tc.
We use the results for aTc obtained in [15] and the non-
perturbative lattice � function of [16] to determine this. We
employ the two-level algorithm described in [7]. The com-
puting time invested into the 1:65Tc simulation is about
860 PC days. Following [4], we discretize 1

4 h�
�T11 � �T22�	

� �T11 � �T22�i instead of h �T12
�T12i (the two are equal in the

continuum) to write C�x0� �
L5

0

L3 hO��0�O��x0�i � O�a2�,
where

 O��x0� �
1

2
a3
X

x
f �T11 � �T22g�g0; x�

�
2Z�g0�

ag2
0

X
x

Re TrfP10 � P13 � P20 � P23g�x�:

The three electric-electric, magnetic-magnetic, and
electric-magnetic contributions to C�x0� are computed
separately and shown on Fig. 1. We apply the following
technique to remove the tree-level discretization errors
[17] separately to CBB, CEE, and CEB. First, �x0 is defined
such that Ct:l:

cont� �x0� � Ct:l:
lat�x0�. The improved correlator is

defined at a discrete set of points through �C� �x0� � C�x0�,
and then augmented to a continuous function via �C� �x�i�0 � �


� �Ct:l:
cont� �x

�i�
0 �, i � 1, 2, where �x�1�0 and �x�2�0 correspond to

two adjacent measurements.

The resulting improved correlator, normalized by the
continuum tree-level result, is shown on Fig. 2. One ob-
serves that the deviations from the tree-level result are
surprisingly small, while deviations from conformality
are visible. The latter is not unexpected at these tempera-
tures, where p=T4 is still strongly rising [18]. Finite-
volume effects on the T � 1:65Tc lattice are smaller than
one part in 103 at tree level. Nonperturbatively, at the same
temperature with resolution L0=a � 6, increasing L=a
from 20 to 30 reduces �C�L0=2� by a factor 0.922(73).
While not statistically compelling as it stands, the effect
deserves further investigation.
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FIG. 1. The correlators that contribute to C�x0� �
1
4 	

�CBB � CEE � 2CEB�. Filled symbols correspond to T �
1:65Tc, open symbols to 1:24Tc. Error bars are smaller than
the data symbols.
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FIG. 2. The tree-level improved correlator �C�x0� normalized to
the tree-level continuum infinite-volume prediction. The four
points in each sequence are strongly correlated, but their covari-
ance matrix is nonsingular.
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The entropy density is obtained from the relation s �
��� p�=T and the standard method to compute �� p
([13], Eq. 1.14). We find s=T3 � 4:72�3��5� and
5.70(2)(6), respectively, at T=Tc � 1:24 and 1.65 [the first
error is statistical and the second is the uncertainty on
Z�g0�]. The Stefan-Boltzmann value is 32�2=45 in the
continuum and 1.0867 times that value [13] at L0=a � 8.

IV. UNSATISFACTORY ATTEMPTS TO EXTRACT
THE VISCOSITY

In order to compare with previous studies [4,5], we fit
�C�x0� with a Breit-Wigner ansatz

 ��!�=! �
F

1� b2�!�!0�
2 �

F

1� b2�!�!0�
2 ; (7)

although it clearly ignores asymptotic freedom, which
implies that ��!� 
!4 at !� T [6]. The result of a
correlated fit at T � 1:65Tc using the points at Tx0 �
0:5, 0.35, and 0.275 is a3F � 0:78�4�, �b=a�2 � 240�30�,
and a!0 � 2:36�4�, and hence �=sjT�1:65Tc � 0:33�3�. A
comparison of this to the result of Ref. [5], 0.4(4) around
1:5Tc, illustrates the progress made in statistical accuracy.

An ansatz motivated by the hard-thermal-loop frame-
work is [6]

 ��!�=! �
�=�

1� b2!2 � �!�!1�
A!3

tanh!=4T
: (8)

It is capable of reproducing the tree-level prediction,
Eq. (4), and it allows for a thermal broadening of the delta
function at the origin. Fitting the T � 1:65Tc points shown
on Fig. 2, the �2 is minimized for b � 0 (effectively
eliminating a free parameter), A=At:l: � 0:996�8�, !1=T �
7:5�2�, and �=s � 0:25�3�, with �2

min � 4:0. Thus, while
the ansatz is hardly compatible with the data, which could
be due in part to cutoff effects, the data favor A being close
to its tree-level value.

V. A BOUND ON THE VISCOSITY

The positivity property of ��!� allows us to derive an
upper bound on the viscosity, based on the following
assumptions:

(1) the contribution to the correlator from !>� is
correctly predicted by the tree-level formula,

(2) the width of any potential peak in the region !< T
is no less than T.

The standard QCD sum rule practice is to use perturba-
tion theory from the energy lying midway between the
lightest state and the first excitation. With this in mind
we choose � � max�12 �M2 �M2 � � 2:6 GeV; 5T�,
where M2�� are the masses of the two lightest tensor glue-
balls. To derive the upper bound we conservatively assume
that, for!<

���
2
p
T, ��!�=! is a Breit-Wigner of width � �

T centered at the origin (a Gaussian would not make any
significant difference). At T < 2Tc, this is numerically

consistent with resummed perturbation theory, which pre-
dicts a Breit-Wigner centered at the origin of width � � 2�
[6], where � � 
sNT is the gluon damping rate. The tree-
level spectral function instead badly violates assumption

(2). From C�12L0� � L5
0�
R ��

2
p
T

0 �BW�!� �
R
1
� �t:l:�!��	

d!
sinh!L0=2 we obtain (with 90% statistical confidence level)

 �=s <
�

0:96 �T � 1:65Tc�;
1:08 �T � 1:24Tc�:

(9)

VI. THE SPECTRAL FUNCTION

As illustrated above, it is rather difficult to find a func-
tional form for ��!� that is both physically motivated and
fits the data. In a more model-independent approach, ��!�
is expanded in an orthogonal set of functions, which grows
as the lattice resolution on the correlator increases, and
becomes complete in the limit of L0=a! 1. We proceed
to determine the function ���!� � ��!�= tanh�12!L0� by
making the ansatz

 ���!� � m�!��1� a�!��; (10)

where m�!�> 0 has the high-frequency behavior of
Eq. (4), and correspondingly define �K�x0; !� �
cosh!�x0 �

1
2L0�= cosh1

2!L0. Suppose that m�!� already
is a smooth approximate solution to ���!�; inserting (10)
into Eq. (2), one requires that a�!� �

P
‘c‘a‘�!�, with

fa‘g a basis of functions which is as sensitive as possible
to the discrepancy between the lattice correlator and
the correlator generated by m�!�. These are the eigen-
functions of largest eigenvalue of the symmetric
kernel G�!;!0� �

RL0
0

dx0

L0
M�x0; !�M�x0; !

0�, where
M�x0; !� � �K�x0; !�m�!�. These functions satisfyR
1
0 d!a‘�!�a‘0 �!� � �‘‘0 and have an increasing number

of nodes as their eigenvalue decreases. Thus the more data
points available, the larger the basis and the finer details of
the spectral function one is able to determine.

To determine the spectral function from N points of the
correlator, we proceed by first discretizing the ! variable
into an N!-vector. The final spectral function is given by
the last member ��N� of a sequence whose first member is
��0� � m and whose general member ��n� reproduces n
points (or linear combinations) of the lattice correlator. For
n � 1, ��n� � ��n�1��1�

Pn
‘�1 c

�n�
‘ a

�n�
‘ � and the functions

a�n�‘ �!� are found by the singular-value decomposition [19]
of the N! 	 n matrix M�n�t, where M�n�ij � �K�x�i�0 ;!j�	

���n�1��!j�. The ‘‘model’’ m�!� is thus updated and
agrees with ��!� at the end of the procedure. We first
performed this procedure on coarser lattices with L0=a �
6 at the same temperatures, starting from m�!� �
At:l:!

4=�tanh�14!L0� tanh�12!L0�tanh2�c!L0�� with 1
4 �

c � 1
2 , and then recycled the output as seed for the L0=a �

8 lattices. On the latter we used the N � 4 points shown on
Fig. 2.
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The next question to address is the uncertainty on ��!�.
It is important to realize that, even in the absence of
statistical errors, a systematic uncertainty subsists due to
the finite number of basis functions we can afford to
describe ��!� with. A reasonable measure of this uncer-
tainty is by how much ��!� varies if one doubles the
resolution on C�x0�. This can be estimated by ‘‘generat-
ing’’ new points by using the computed ��N��!�. On
the other hand, we perform a two-point interpolation
in x0 space [we chose the form �
� ��x0 �
1
2L0�

2�=sin5��x0=L0�], and take the difference between
these and the generated ones as their systematic uncer-
tainty. In practice, this difference is added in quadrature
with the statistical uncertainty. Next we repeat the proce-
dure to find � described above with N ! 2N: if we use as
seed ��N�, then by construction it is left invariant by the
iterative procedure, but the derivatives of ��2N� with respect
to the 2N points of the correlator can be evaluated. The
error on ��!� is then obtained from a formula of the type
����2 �

P2N
i�1�

@�
@Ci
�2��Ci�2, which, however, keeps track of

correlations in x0 and Monte Carlo time. This is the error
band shown on Fig. 3, and the corresponding shear vis-
cosity values are

 �=s �
�

0:134�33� �T � 1:65Tc�;
0:102�56� �T � 1:24Tc�:

(11)

These results are still subject to the assumption of smooth-

ness of the spectral function on the scale T for !< T,
which can be weakened (but not removed entirely) by
simulating on a finer lattice. Finally the positivity of
��!� provides a consistency check in our method.

It is also interesting to check for the stability of the
solution under the use of a larger basis of functions. If
instead of starting from ��N��!� we restart from ��0� (the
output of the L0=a � 6 lattice) and fit the 2N (dependent)
points using 2N basis functions fa‘g, we obtain the curves
drawn on Fig. 3. As one would hope, the oscillations of
��2N��!� are covered by the error band.

VII. CONCLUSION

Using state-of-the-art lattice techniques, we have com-
puted the correlation functions of the energy-momentum
tensor to high accuracy in the SU(3) pure gauge theory. We
have calculated the leading high-temperature cutoff effects
and removed them from the correlator relevant to the shear
viscosity, and we normalized it nonperturbatively, exploit-
ing existing results. We obtained the entropy density with
an accuracy of 1%. The most conservative result obtained
on the shear viscosity is the upper bound, Eq. (9), which
comes from lumping the area under the curve on Fig. 3 in
the interval �0; 6T� into a peak of width � � T centered at
the origin. Second, our best estimate of the shear viscosity
is given by Eq. (11), subject to the assumption formulated
below the equation, using a new method of extraction of
the spectral function. The errors contain an estimate of the
systematic uncertainty associated with the limited resolu-
tion in Euclidean time. We are extending the calculation to
finer lattice spacings and larger volumes to further consoli-
date our findings.

The values (11) are intriguingly close to saturating the
KSS bound [9] �=s � 1=4�. We note that in perturbation
theory, ��=s�Nf�3=��=s�Nf�0 is close to 1 [20]. Assuming
perturbation theory predicts this double ratio more accu-
rately than �=s itself, our results corroborate the picture of
a near-perfect fluid that has emerged from the RHIC ex-
periments, with the magnitude of the anisotropic flow
incompatible with �=s * 0:2 [3].
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