
Geometry for the accelerating universe

Raffaele Punzi,1 Frederic P. Schuller,2 and Mattias N. R. Wohlfarth3

1Dipartimento di Fisica ‘‘E. R. Caianiello’’, Università di Salerno, 84081 Baronissi (SA) Italy,
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The Lorentzian spacetime metric is refined to an area metric which naturally emerges as a generalized
geometry in quantum string and gauge theory. Employing the area metric curvature scalar, the Einstein-
Hilbert gravitational action is reinterpreted as dynamics for an area metric. The area metric cosmology of
the radiation-dominated early universe does not depart from general relativity, enabling successful
nucleosynthesis. But intriguingly, without the need for dark energy or fine-tuning, area metric cosmology
explains the observed small acceleration of the late universe.
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Assuming Einstein’s equations for the gravitational
field, explanations for the observed accelerating expansion
of our Universe [1,2] require some form of dark energy [3].
In its simplest incarnation, dark energy amounts to a
positive cosmological constant, but its conceivable physi-
cal origins predict a value not even close to the required
one [4]. This has prompted attempts to deform the
Einstein-Hilbert action for the spacetime metric [5], so to
avoid the introduction of dark energy. While partly suc-
cessful, this typically just shifts the problem to the intro-
duction of an unusually small deformation scale, and a
largely ad hoc choice of the deformed action. The most
serious stroke, however, is delivered by Lovelock’s theo-
rem [6] which asserts that, in four dimensions, any action
for a spacetime metric different from the Einstein-Hilbert
action results in field equations of higher than second
derivative order, with all the associated problems [7].

In this paper, we circumvent both Lovelock’s theorem
and the introduction of a deformation scale by reading the
Einstein-Hilbert action not as an action for a spacetime
metric, but as an action for an area metric. An area metric is
a fourth-rank tensor field, which measures two-
dimensional tangent areas in close analogy to the way a
metric measures tangent vectors [8]. This yields a consis-
tent classical gravity theory with second order field equa-
tions, which is a structural, and hence rigid, refinement of
general relativity. We show that the predictions of area
metric gravity coincide with those of general relativity
for radiation-dominated phases of the early universe, but
they stunningly differ at late times. The observed small
accelerating expansion of our Universe appears as a new
exact solution of the field equations, without any additional
assumptions such as dark energy or any form of fine-
tuning, see Fig. 1.

Far from being an exotic structure, area metrics naturally
emerge in the quantization of fundamental theories whose
classical formulation is based on a metric spacetime struc-

ture. This applies to gauge theories, gravity, and string
theory: backreacting photons in quantum electrodynamics
effectively propagate in an area metric background [9];
canonical quantization of gravity à la Ashtekar [10] natu-
rally leads to an area operator [11]; the massless states of
quantum string theory give rise to the Neveu-Schwarz two-
form and dilaton besides the graviton, producing a gener-
alized geometry which may be neatly absorbed into an area
metric; the low energy action for D-branes [12,13] is a true
area metric volume integral [8]. But even for classical
electrodynamics, the historical birthplace of metric space-
time, it has been observed early on that not a spacetime
metric, but an area metric, presents the natural and most
general background structure [14]; the deflection of light in
gravitational fields then is as rich as that in known optical
media. In the mathematical literature, the idea to base
geometry on an area measure goes back to Cartan [15],
who demonstrated that metric and area metric geometry
are equivalent in three dimensions. This reconciles the
postulate of an area metric spacetime with the fact that
we can measure lengths and angles in three-dimensional
spatial sections.

In four dimensions, area metric geometry is a general-
ization of metric geometry: while every metric induces an
area metric, not every area metric comes from an under-
lying metric. The additional degrees of freedom may be
viewed as arising from string theory, where generalized
geometries play an increasingly important role: different
ideas by Hitchin [16] and Hull [17] have been applied to
understand flux compactifications acted on with T-dualities
[18] or mirror symmetry [19], and compactifications with
duality twists [20]. The intimate relation of an area metric
spacetime structure to string theory is further revealed by
the fact that the minimal classical mechanical object one
may discuss in an area metric background is a string. In the
present note this plays a role in our discussion of fluids in
area metric cosmology; these cannot consist of particles,
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but must be based on an integrable distribution of string
world sheets, which leads us to develop the notion of a
string fluid.

We now turn to a precise geometric formulation of the
above ideas in four dimensions. Where detailed proofs are
omitted, we refer the reader to our companion paper [21]
for full detail. Our guiding principle in the construction of
area metric gravity is downward compatibility to metric
spacetime, paying tribute to the phenomenal success of
standard general relativity as a theory of gravity. So first
consider a familiar metric manifold �M;g� which naturally
induces the area metric

 Cg abcd � gacgbd � gadgbc; (1)

since Cg abcdXaYbXcYd measures the squared area of a
parallelogram spanned by vectors X and Y. The basic
idea of area metric geometry is to promote area metrics
to a structure in their own right, by keeping salient alge-
braic properties of the metric-induced case: we define an
area metric spacetime �M;G� as a smooth four-
dimensional manifold M equipped with a fourth-rank co-
variant tensor field G with the symmetries

 Gabcd � Gcdab; Gabcd � �Gbacd; (2)

and the property that G is invertible. Here invertibility is
understood as follows: due to its symmetries the indices of
G may be combined to antisymmetric Petrov pairs �ab� so
that G can be represented by a symmetric 6� 6 matrix
which is required to be nondegenerate. The determinant
DetG over this 6� 6 matrix gives rise to a volume form
!G with components !G abcd � jDetGj1=6�abcd, where �
is the Levi-Civita tensor density normalized such that
�0123 � 1. The inverse area metric G decomposes uniquely
into a cyclic area metric Ca�bcd� � 0 and a totally antisym-
metric four-tensor that is dual to a scalar,

 Gabcd � Cabcd ��!abcd
C : (3)

We now construct area metric curvature tensors, which
are downward compatible to their metric counterparts, in
two steps. First, note that �M;G� gives rise to an effective
metric gG fully defined by area metric data. Using the
above decomposition,

 gabG �
1

2

@2

@pa@pb

��������p�d�
�Gijklpipjpkpl�1=2 (4)

for the Fresnel tensor

 G ijkl � �
1

24
!C abcd!C pqrsCabp�iCjjcqjkCl�drs: (5)

This construction can be motivated in detail by considering
wave propagation on area metric manifolds in the geomet-
ric optics limit [21], where wave vectors k obey the quartic
Fresnel equation Gabcdkakbkckd � 0, see [22,23]. The ef-
fective metric generally does not contain all information of
the area metric, which follows from a simple counting of

the independent components. In particular, the reinduced
area measure CgG generally does not agree with G in
dimensions greater than three. But if we consider almost
metric area metrics for which C � Cg for some metric g in
the decomposition (3), so that

 Gabcd � gacgbd � gadgbc ��!abcd
g ; (6)

then the effective metric gG recovers g up to a sign,
showing downward compatibility at the level of the effec-
tive metric. An important example for almost metric space-
times is area metric cosmology: imposing isotropy and
homogeneity on a four-dimensional area metric, by requir-
ing that LKG � 0 for the symmetry-generating vector
fields K, leaves us with an area metric of the form (6),
where g takes the standard Robertson-Walker form, and
the additional scalar � depends only on time.

The effective metric gG with its torsion-free Levi-Civita
connection rLC are used to define the following covariant
derivative on antisymmetric tensors �:

 �rf��ab � �rLC
f ��ab � 1

2X
ab
cdf�cd; (7)

where Xabcdf �
1
4G

abijrLC
f Gijcd. Up to a symmetry con-

dition, r is the unique covariant derivative with rG � 0,
so that, for instance, areas are preserved under parallel
transport. This construction provides a true area metric
connection, without using data additional to G. This com-
pletes the second step in our construction of the area metric
curvature tensor, whose definition is now standard:
RG�X; Y�� � �rX;rY���r�X;Y��, so that
 

Rab
G cdij � 4��a

�cR
b�
d�ij � �r

LC
i Xabcdj

� 1
2X

ab
stiX

st
cdj � �i$ j��: (8)

Natural contraction yields the area metric Ricci tensor, and
the unique area metric curvature scalar of linear order in
Ra1a2

G , the area metric Ricci scalar:

 R G mn �Rpq
G pmqn; RG � gmnG RG mn: (9)

All of the above curvature tensors reduce to their metric
counterparts if the area metric is almost metric (6). Thus
area metric geometry allows us to devise a gravity theory
different from Einstein’s without modifying the form of the
Einstein-Hilbert action; replacing all metric quantities by
their area metric counterparts, the latter is reinterpreted as
an action on an area metric manifold:

 Sgrav � Sm �
1

2�

Z
M
!GRG �

Z
M
Lm: (10)

A gravitational constant � appears, and Lm represents the
matter Lagrangian density. Importantly, the equations of
motion are now derived by variation with respect to the
inverse area metric G, which leads to a fourth-rank tensor
equation

 Kabcd � �Tabcd; (11)
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where we have, schematically, the gravitational variation
K � jDetGj�1=6���Sgrav�=�G�1 and the energy-
momentum tensor T � �jDetGj�1=6�Sm=�G�1.
Diffeomorphism invariance of the action implies an area
metric Bianchi identity for the gravitational part of the
action, and a conservation law for the area metric
energy-momentum tensor; see [21] for the full computa-
tion, and [24] for the relation to conventional energy
momentum.

For applications to cosmology, where the area metric
takes the almost metric form (6), the full equations of
motion simplify considerably. Lengthy algebra reveals
that in the almost metric case the gravitational variation
K is induced from a symmetric two-tensor and a scalar. If
the tensor Tabcd happens to be likewise induced from a
symmetric second rank tensor Tab and a scalar T�, which is
the case if and only if the irreducible Weyl component of
Tabcd vanishes [24], then the full field equations (11), for
~� � �1��2��1=2, reduce to

 �Tab � Rab �
1
2Rgab �

~��1�ra@b ~�� gab� ~��;

�T� � � ~��1� ~�2�1=2R:
(12)

In particular, these equations are valid in vacuo; suitable
field redefinitions reveal conformal equivalence to Einstein
gravity minimally coupled to a massless scalar field. So the
original vacuum theory is causal. We also conclude that
any vacuum solution �M;g� of Einstein gravity is a vacuum
solution of area metric gravity (setting ~� � 1 or ~�! 0
with appropriate conditions on the derivatives). Including
matter, however, it is no longer true that all solutions of
Einstein gravity lift to solutions of area metric gravity. The
energy-momentum tensor for Maxwell electrodynamics on
area metric spacetime, for instance, is not induced from a
symmetric two-tensor and a scalar. In other words, not only
is an area metric spacetime a possible background for
electrodynamics, but the backreaction via the area metric
Einstein-Hilbert action requires a truly area metric
background.

The most prominent example of matter which is com-
patible with almost metric backgrounds arises in area
metric cosmology. Recall that in general relativity perfect
fluids are the most general matter consistently coupling to
cosmology, due to the way symmetries restrict the energy-
momentum tensor. This is also the case in area metric
geometry, which however does not admit fluids based on
point particles in the first place; we have to resort to string
fluids based on continuous distributions of world sheets. A
three-component string fluid with local tangent surfaces
�I � @t ^ vI for three g-spacelike vectors vI is required to
isotropically fill the spatial sections. Then the general
source tensor Tabcd equals

 

~�� ~p
4

X
I

Gabij�
ij
I Gcdkl�

kl
I � ~pGabcd � �~�� ~q�G�abcd�

(13)

in terms of three time-dependent functions ~�, ~p, and ~q.
This string fluid tensor is induced by a two-tensor and by a
scalar, as is needed for the equations to take the simple
form (12). Using a time/space split,

 T00 � 12
~�� ~q�2

1��2 ; T� �
24�~q

1��2 ;

T�� � 4
�~�� 2~p� �2~�� 2~p� 3~q��2

1��2 g��:

(14)

Careful evaluation of the Eqs. (12) now reveals a re-
markable correspondence between, on the one hand, area
metric cosmology (determined by g and �) plus string
fluid matter (~�, ~p, and ~q), and, on the other hand,
Einstein cosmology (g) plus perfect fluid matter (� and
p). The effective energy density and pressure of the perfect
fluid emerge as

 � � 3�x� y�; p � x� y (15)

for x � �H _~� ~��1 � 4��~�� ~q� ~�2 and y � 4�~q, whereH
is the Hubble function. Recall ~� � �1��2��1=2 which
obeys � ~� � @V� ~��=@ ~� with potential

 V� ~�� � 4��~�� ~p� ~q� ~�2 � 4��~�� ~q� ~�4: (16)

We now discuss area metric cosmology for specific epochs
in the evolution of the universe.

The early universe is dominated by radiation consisting
of ultrarelativistic fermions and gauge bosons. While the
latter directly couple to the area metric G [21], the spin
structure needed for fermions derives from the effective
metric gG determined by G. Radiation fields are, as usual,
identified as those with null physical momentum with
respect to the Fresnel tensor. In cosmology this leads to
the condition !abcd

G Tabcd � 0 for the energy-momentum
four-tensors of both massless Dirac spinors and gauge
fields, see [24]. Imposing this condition on the string fluid
energy-momentum tensor (13) leads to ~q � 0. Hence, as
can be seen from (15), area metric cosmology with a
radiation string fluid is equivalent to Einstein cosmology
with a standard perfect fluid with fixed constitutive relation

 p � 1
3�: (17)

It follows that all results of Einstein cosmology in
radiation-dominated epochs directly carry over to area
metric cosmology without modification. In particular, nu-
cleosynthesis is unaffected.

For the late universe, matter has spread out so much that
interactions are no longer important, so that we may spe-
cialize to noninteracting string dust, whose parameters ~p,
~�, and ~q can be identified from the condition that energy
conservation should be implied by the minimal surface
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equation and by a generalized continuity equation [21],
which yields

 ~p � 0; ~q � �~�: (18)

We now provide exact solutions for the string dust case
with ~� � 0. Using R00 � �3 _H � 3H2 and R�� �
�2ka�2 � _H � 3H2�g��, one collects the full set of equa-
tions from (12), (14), and (16). The equations of area
metric cosmology filled with string dust then become

 

~� � � _a; ~� � 	a�2; 0 � �a�
_a2

a
�
k� 4�	

a
(19)

for 
 � k� 4�	 , and integration constants � and 	 . These
equations are exactly solved by the scale factor

 a�t� �
� ������������������
c�t� t0�

p
for 
 � 0;�������������������������������������

c
�1 � 
�t� t0�2
p

for 
 � 0;
(20)

with integration constants c and t0. The different types of
solutions are presented in Fig. 1, and discussed in detail in
[21]. Remarkably we find that area metric cosmology
allows accelerating late-time evolution of a dust-filled
universe for 
 < 0, c < 0, and any value of the cosmologi-
cal curvature k.

So we have shown that area metric cosmology provides
an appropriate description for the early and late-time evo-
lution of our universe: first, by explaining the radiation-
dominated early epochs in precisely the same manner as
does Einstein cosmology, enabling standard nucleosynthe-
sis; second, and more strikingly, by explaining the present
acceleration of the Universe. This explanation neither in-
vokes concepts such as a cosmological constant or dark
energy nor fine-tuning since the acceleration automatically
tends to small values at late time. While these results are
pure consequences of area metric geometry, the discussion
of the very early universe in its inflationary epoch would
require further assumptions, just as in the standard model
of cosmology, and so would not present a genuine test of

the area metric spacetime structure. Hence, observations of
the cosmic microwave background, whose understanding
is based on an inflationary phase, cannot confidently dis-
tinguish area metric from metric spacetime.

It is remarkable that the single fundamental hypothesis
of area metric geometry turns Einstein gravity into a con-
sistent alternative gravity theory which reproduces the
successes of general relativity in the early universe, but
surprisingly, without further assumptions, explains the
present acceleration of the universe, one of the most in-
triguing cosmological observations of recent times. The
fact that these results crucially depend on the observed
standard model fields being naturally coupled to area met-
ric backgrounds shows the consistency, and relevance, of
our findings far beyond pure gravity.
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