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We use the chiral quark soliton model to estimate masses and widths of the two eikosiheptaplets (27-
plets of SU(3) flavor) of spin 3=2 and 1=2 that emerge in the rigid rotator quantization. We use as input:
hyperon decays, �� mass, and width. While 273=2 has small widths (although much larger than the values
allowed by the partial wave analysis), 271=2 has large decay widths to antidecuplet. However, exactly for
this decay channel the widths are suppressed in the large Nc limit.
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I. INTRODUCTION

One of the most puzzling results of the chiral quark-
soliton model (�QSM) for exotic baryons consists in a very
small hadronic decay width, governed by the decay con-
stant G10. While the small mass of exotic states is rather
generic for all chiral models [1–3] the smallness of the
decay width appears as a subtle cancellation of three differ-
ent terms [3] that contribute to G10. We are therefore
trapped between two extremes. On one hand � decay
width which is suppressed in large Nc limit is numerically
rather large, above 100 MeV, on the other hand �� decay
width which scales like N0

c , is numerically tiny,
below 1 MeV. If narrow pentaquarks exist, the large Nc
argument is not enough to claim consistency of the model,
and some degree of cancellation in the decay coupling is
needed. In this paper we investigate this problem for the
next exotic SU(3) representation, namely, 27-plet, called
eikosiheptaplet.

Following the prescription of Adkins, Nappi, and Witten
[4] (criticized recently in Ref. [5]) the decay width in
solitonic models is calculated in terms of a matrix element
M of the collective axial current operator corresponding to
the emission of a pseudoscalar meson ’:

 

Ô�8�’ � 3� const� pi’

�
X3

i�1

�
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�8�
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�
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�
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�8�
’i �G1dibcD

�8�
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G2���
3
p D�8�’8Ŝi

�
(1)

where in the last line of Eq. (1) we have displayed the
operator in the form often used in the literature. Here D�8�’i

are SU(3) Wigner matrices, Ŝi collective spin operator, pi’
meson momentum (for more details on the collective
quantization and baryon wave functions see e.g.
Ref. [6]). Constants a1;2;3 are constructed from the so
called moments of inertia that are calculable in �QSM
[7,8]. A multiplicative constant has to be fixed from
the generalized Goldberger-Treiman relation [3,9].
Alternatively, following the model-independent approach
of Adkins and Nappi [10], one can treat a1;2;3 as free
constants and try to extract their phenomenological values
from the hyperon decays [7,9].

The predictive power of the model-independent ap-
proach for exotic baryons is, however, hampered by the
fact that only one linear combination constructed from two
free parameters a1;2, namely

 a1 �
1
2a2;

enters the hyperon decay widths, whereas for the decay
widths of exotic states both a1 and a2 are needed sepa-
rately. The same problem occurs for baryonic masses [2,3]
where no information on the exotica can be retrieved from
the regular baryon spectra alone (and similarly for mag-
netic moments [11]).

One is therefore forced to introduce some additional
assumptions to fix the remaining coefficient. In the original
work of Ref. [3] masses were fixed by a requirement that
nucleon resonance N��1710� was a member of antidecu-
plet. Decay widths were estimated with the help of hyperon
semileptonic decays and g�NN used as an input with some
other simplifying assumptions. A complete phenomeno-
logical analysis in this spirit can be found in Ref. [12].

Another possibility to constrain the undetermined pa-
rameter is to go beyond the SU(3) symmetry limit and
include higher order symmetry breaking terms [9]. Why
may going off the symmetry limit be at all helpful? The
answer is very simple: the baryonic wave functions belong
no longer to pure SU(3) multiplets, but contain ms depen-
dent admixtures of higher representations. For example, a
nucleon contains an admixture of antidecuplet cryptoex-
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otic nucleonic state. As a result, the matrix element of any
operator [e.g. the decay operator (1)] contains—apart from
the leading term—exotic transitions from antidecuplet to
octet as a nonleading correction. By fitting the decay rates
with ms corrections one is therefore able to constrain the
otherwise undetermined parameter.

The first estimate of the �� mass in the Skyrme model
has been done in this way already long ago [2]. More
recently magnetic moments [11] and �� decay width [9]
have been evaluated by applying the above-mentioned
procedure. There all higher representations are treated as
stable hadronic states, rather than as wide resonances. In
particular admixture of eikosiheptaplet (27-plet) here is of
importance (see Fig. 1 of Ref. [13]). Indeed the contami-
nation of baryonic wave functions by eikosiheptaplet
reaches 20%–30%.

It is therefore of importance to check whether the eiko-
siheptaplet may be indeed considered as a (semi) stable
exotic representation. Not only can it mix with ordinary
baryons, but it contains a number of exotic states that may
be of interest by themselves, the isotriplet of � states being
the most prominent example. Since transitions to exotic
representations enter through representation mixing which
itself is of the order of ms, (semi) stability of eikosiheptap-
let has to be valid in the leading order of perturbartive
expansion in the strange quark mass. Therefore in our
analysis of the decay widths we work in the chiral limit.

In chiral models all baryon representations have positive
parity and spin corresponding to the isospin of states with
Y � 1. For eikosiheptaplet that means that we have two
distinct representations, one of spin 3=2 and the second one
of spin 1=2 (i.e. 273=2 and 271=2 respectively), the latter
being heavier. In this work we shall concentrate on the
lightest states, namely, on the isospin triplet of �27, on �27

of isospin 3=2 and on N27 states of isospin 1=2. These
states are light (for 273=2) and have been looked for in
various experiments. Apart from still unconfirmed reports
by STAR [14], recent partial wave (PW) analysis of meson-
nucleon scattering data puts stringent limits on the possible
existence of �27 and �27 states [15]. These states may be
incorporated into the PW analysis provided that their
widths are of the order of tens keV. As we shall see,
�QSM predicts that their widths are an order of magnitude
larger. Although still small on a hadronic scale, they are
much too large to be accommodated by PW analysis.

Throughout this paper we shall assume that �� exists
with mass 1535 MeV and width smaller than 1 MeV. This
input allows us to constrain all model parameters except
��N. If additionally we assume that �3=2 has mass
�1860 MeV, also pion-nucleon sigma term is fixed
��N � 73 MeV.

There have been already a few calculations in the litera-
ture of the eikosiheptaplet masses and widths in chiral
soliton models [16–23]. In this paper we use the mass
formula of Ref. [18]. Generically the mass of the lowest

I � 1 multiplet of �27 states in 273=2 is almost degenerate
with �� of 10. On the contrary, 271=2 is substantially
heavier.

As far as widths are concerned our calculations differ in
three aspects from those of Refs. [16–19]. First, in
Ref. [16] one considers only the leading G0-term, whereas
in Refs. [17–19] the constant G2 has been neglected.
Indeed, G2 (or more precisely a3) is small as it is directly
related to the singlet axial current. Even though it is really
small, it can be safely neglected only if there is no cancel-
lation between G0 and G1, so that the pertinent linear
combination of G0 and G1 is much larger than G2 itself.
In the decays of antidecuplet, 273=2 ! 8�meson and
271=2 ! 10�meson strong cancellations are indeed
present and G2 cannot be neglected. In this paper we use
a3 extracted from the chiral limit fits to the semileptonic
hyperon decays that is definitely not consistent with zero.
Second, we use the Goldberger-Treiman relation to fix the
constant entering Eq. (1), so thatG0;1;2 depend on the decay
in question, whereas in Refs. [16–19] they were considered
as universal. Third, instead of calculating the decay widths
and masses for a fixed choice of model parameters, we
explore the residual freedom within the model and calcu-
late the range of values, rather than only one number.
Finally, some calculations [19] took partially into account
the effects of the symmetry breaking, which is neglected in
our paper.

We show that 273=2 is in a sense ‘‘well behaving’’ having
small widths to octet with most other channels kinemati-
cally suppressed. On the contrary, 271=2 has large decay
widths to antidecuplet, with small decay widths to other
channels. However, precisely in the case of 27! 10 tran-
sition the phase space is formally suppressed in the large
Nc limit. The situation reminds the decay of � and ��, the
first one being numerically large, but formally damped in
the large Nc limit with the second one being numerically
small but O�1� as far as Nc counting is concerned.

The paper is organized as follows. In Sec. II we give an
overview of the nonrelativistic formalism to calculate the
decay widths using the generalized Goldberger-Treiman
relation. We fix two out of three axial constants and define
model parameters. Finally, we calculate the masses of
antidecuplet and eikosiheptaplet. In Sec. III we express
antidecuplet and decuplet amplitudes entering the decay
widths through couplings G10 and G10 and the SU(3)
isoscalar factors. By fixing �� decay width to be below
1 MeV we constrain the axial coupling parameter space
and give results for the decay widths of other members of
antidecuplet. In Sec. IV we repeat the calculations from the
preceding section for eikosiheptaplets of spin 3=2 and 1=2.
We perform phenomenological analysis of the pertinent
decay couplings—the analogs of G10 and G10 —and cal-
culate the decay widths. We summarize our findings in
Sec. V. Some useful group-theoretical formulas are col-
lected in the Appendix.
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II. GENERAL FORMALISM

Throughout this paper we shall use the nonrelativistic
formula for the decay width [3,24]

 � B!B0�’ �
1

8�

p’
MM0

�M2 �
1

8�

p3
’

MM0
�A2: (2)

The ‘‘bar’’ over the amplitude squared denotes averaging
over initial and summing over final spin and over isospin.
Anticipating linear momentum dependence of the decay
amplitude M

 M B!B0�’ � hR
0
S0 ; B

0jÔ�8�’ jRS; Bi (3)

we have introduced reduced amplitude A where the mo-
mentum of the outgoing meson

 p’ �

����������������������������������������������������������������������������������
�M2 � �M0 �m’�

2��M2 � �M0 �m’�
2�

q
2M

(4)

has been factored out. Here R stands for the SU(3) repre-
sentation and S for spin. In Ref. [3] following the approach
of Ref. [25]MM0 in Eq. (2) was replaced by �M�M0�2=4,
and, furthermore, the additional factor M=M0 was inserted
to sum up certain kinematical effects. We will not make
such alterations in the following. Instead, we will apply the
generalized Goldberger-Treiman relation that allows to
relate the axial constants a1;2;3 to the constants G0;1;2 by
means of the following relation [9]:

 G0 � �
M�M0

3f’
a1; G1;2 �

M�M0

3f’
a2;3 (5)

where M and M0 stand for the baryonic masses involved in
the decay B! B0 � ’ and f’ denotes pseudoscalar meson
decay constant in the normalization where f� � 93 MeV,
fK � 115 MeV, and f� � 1:2f� [26] (we neglect �� �0

mixing). The use of Eq. (5) makes constants G0;1;2 decay
dependent in contrast to previous analysis where they were
considered to be universal, with possible modification of
the formula for the width (2).

In contrast to the early exploratory works we now know
for sure that if �� exists it is light and its width is small.
Therefore we use these two pieces of information to con-
strain the mass and the decay width of �� for which we
takeM� � 1535 MeV and ��!N�K � 1 MeV. With these
parameters fixed we calculate the decay widths of decuplet,
antidecuplet, and eikosiheptaplet and discuss uncertainties
of our results coming from the ms corrections. In this
respect we differ from Ref. [9] where ms corrections
were used—as explained in the Introduction—to con-
strain input parameters.

In order to fix the input parameters a1;2;3 we use a fit
from Refs. [7,27] where one uses two linear combinations
of known hyperon decays, that in �QSM are free of the
linear ms corrections

 a1 �
1
2a2 � �2:675; a3 � 0:678: (6)

With these parameters one obtains:

 g�3�A � 1:27; g�8�A � 0:43; g�0�A � 0:68: (7)

These values overshoot present experimental results, espe-
cially for g�0�A (that ranges between 0:15–0:35 [28]). It
should, however, be remembered that g�0�A is sensitive to
the corrections of higher order in ms that pull it down with
respect to the chiral limit estimate (see Fig. 2 in [27]).

Let us stress that parametrization (6) is theoretically
very appealing, because one does not need to refit leading
order parameters a1;2;3 when ms corrections are included.
Nevertheless the overall quality of the fit is of course better
when full formula withms corrections is used [9]. To check
sensitivity of our results to the fitting procedure, we have
also used different set of parameters (that will be called
fit 2 in the following) which better fits g�0�A in the leading
order:

 a1 �
1
2a2 � �5:4; a3 � 0:3 (8)

which gives:

 g�3�A � 1:27; g�8�A � 0:36; g�0�A � 0:3: (9)

Contenting ourselves with input parameters (6) and (8)
we can check our formalism against the hadronic data.
First, let us compute the pion-nucleon coupling constant
g�NN that for both fits reads

 g�NN �
7
10�G0 �

1
2G1 �

1
14G2� � 12:8 (10)

vs. experimental value of 13:1–13:3 [12]. Here the numeri-
cal result has been obtained by putting M � M0 � MN in
Eq. (5). Secondly, anticipating results of the next section,
we can also quote our prediction for the decay width of �
obtained by means of Eq. (2)

 � � � 104 �106� MeV (11)

in fair agreement with experiment [the number in paren-
thesis refers to the parameters of Eq. (8)]. Note that one
may improve this result by including a phenomenological
factorM�=MN [3,25] that would scale (11) up to 134 MeV.
Also ms corrections increase the � width (in this case by
25%–30% [13]).

For the decays of exotic states we have to know a1 and
a2 separately. We therefore parametrize

 a1 � �; a2 � 5:352� 2�; a3 � 0:68: (12)

It follows from the phenomenological analysis of Ref. [9]
that the realistic range for � lies within �3 to �1:9. In
what follows we shall fix � to fit the ‘‘experimental’’ width
for ��. As will be shown in Eq. (25), if we require �� <
1 MeV then �1 � �1:98< �< �2 � �1:814. For com-
parison we will also use fit 2

 a1 � �; a2 � 5:4� 2�; a3 � 0:3 (13)
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varying � within the limits �1 � �1:933< �< �2 �
�1:767. All numerical results in the following will be
presented for fit 1 (12), modifications due the second
choice of input parameters (13) will be discussed in Sec. V.

Finally, in order to use formula (2) we have to specify
masses of exotic states. To this end we parametrize all
exotic masses in terms of one parameter: ��N, i.e. the
pion nucleon sigma term that we will vary within the range
of 40–70 MeV.

In the chiral quark soliton model baryon masses can be
read off from the collective hamiltonian
 

Ĥ � Mcl �
1

2I1
S�S� 1�

�
1

2I2

�
C2�SU�3�� � S�S� 1� �

N2
c

12

�
� Ĥ0 (14)

where the symmetry breaking Hamiltonian takes the fol-
lowing form:

 Ĥ 0 � �D�8�88 � �Y �
	���
3
p D�8�8i Ŝi: (15)

Matrix elements of Ĥ0 can be found e.g. in Refs. [12,18].
For M� � 1535 MeV the model parameters take the fol-
lowing values (in MeV) as functions of ��N [12,13]:

 

1

I2
� 152:4;

1

I2
� 608:7� 2:9��N (16)

and
 

� � 336:4� 12:9��N; � � �336:4� 4:3��N;

	 � �475:94� 8:6��N: (17)

Numerical results for antidecuplet obtained with the help
of Eqs. (16) and (17) are summarized in Table I.

Our choice for the values of ��N in Table I is not
accidental. For ��N � 42 MeV the mass of the cryptoex-
otic nucleon resonance corresponds to the original choice
of [3] who associated it with the known resonance
N��1710�. Almost for sure this choice is now ruled out,
and this implies that the new, narrow (as we will see below)
nucleon resonance needs to be still discovered. There are
several candidates for such states found both in partial
wave analysis [29], � photoproduction on nucleon (see
Ref. [30] and references therein), and at STAR [31].
Next, the value of 55 MeV corresponds to ��N calculated
within the model [32], and moreover it is the value for

which one of the symmetry breaking parameters (15) 	 	
0. Let us note that 	 � 0 in the nonrelativistic limit. Finally
for ��N � 73 MeV the mass of �3=2 corresponds to the
estimate of NA49 [33]. This is also the value preferred by
the recent analysis of �N scattering [34].

For eikosiheptaplet the masses (in MeV) are listed in the
Table II.

Table II deserves a few comments. The first two columns
corresponding to ��N � 42 MeV are in agreement with
the numerical values from Ref. [16] where N��1710� was
taken as input. The last two columns corresponding to the
antidecuplet masses: M�� � 1535 and M�3=2

� 1860 are
in agreement with Refs. [17–19]. Finally, let us observe
that—as can be also seen from Fig. 1—the spin 1=2
eikosiheptaplet is squeezed for smaller values of the hy-
percharge making the heaviest isospin submultiplets al-

TABLE I. Masses of antidecuplets for different values of ��N.

��N 42 MeV 55 MeV 73 MeV

� 1535 1535 1535
N 1709 1681 1642
� 1883 1827 1750
�3=2 2057 1974 1857

TABLE II. Masses of eikosiheptaplets for different values of
��N.

��N 42 MeV 55 MeV 73 MeV
Spin 3=2 1=2 3=2 1=2 3=2 1=2

� 1568 1999 1578 1965 1593 1919
� 1721 2213 1688 2165 1642 2098
N 1715 2158 1717 2087 1721 1988
� 1875 2439 1798 2365 1691 2264
� 1866 2358 1837 2261 1796 2126
� 1862 2318 1856 2209 1850 2058
�3=2 2018 2558 1956 2435 1872 2264
� 2011 2521 1986 2399 1951 2230
� 2160 2677 2115 2504 2052 2265

27 spin 3/2 27 spin 1/21.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Θ

Θ

∆

∆

N

N

Γ

Σ

Σ

Λ

Λ

Ξ3/2

Ξ

Ω

Ξ Ω Ξ3/2 Γ

FIG. 1 (color online). Spectrum of eikosiheptaplet (in GeV) of
spin 3=2 (left) and spin 1=2 (right) for ��N � 73 MeV. Note
large splittings of equal hypercharge multiplets.
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most degenerate. On the other hand, �27 in 273=2 is only a
few tens of GeV above the �� of antidecuplet.

III. DECAY CONSTANTS FOR DECUPLET AND
ANTIDECUPLET

The matrix elements for decuplet and antidecuplet with
S3 � S03 � 1=2 read:

 A �B103=2
! B08 � ’� � 3

8 8
’ B0

�������� 10
B

� �
2������
15
p �G10;

(18)

 A �B101=2
! B08 � ’� � �3

8 8
’ B0

�������� 10
B

 !
1������
15
p �G10;

(19)

where

 G10 � G0 �
1
2G1; G10 � G0 �G1 �

1
2G2: (20)

In order to have an estimate of the width (2) the authors
of Ref. [3] calculated G10 in the nonrelativistic limit of
�QSM [35] and got G10 
 0. It has been shown [36] that
this cancellation between terms that scale differently with
Nc (G0 � N

3=2
c , G1;2 � N

1=2
c ) is actually consistent with

large Nc counting, since in fact

 G10 � G0 �
Nc � 1

4
G1 �

1

2
G2 (21)

where the explicit Nc dependence comes from the SU(3)
Clebsch-Gordan coefficients calculated for large Nc (note
that for arbitrary Nc baryons are built from Nc quarks
rather than from 3). In the nonrelativistic limit (NRL) [36]:
 

G0 � ��Nc � 2�G; G1 � �4G;

G2 � �2G; G� N1=2
c :

(22)

Similar cancellations occur also for the decays of the
eikosiheptaplet [37]. From now on we will keep Nc � 3.

Following steps described in the appendix we obtain the
averaged matrix elements

 

�A2�B103=2
! B08 � ’� �

6

5
8 8
’ B0

�������� 10
B

� �
2
�G2

10;

(23)

 

�A2�B101=2
! B08 � ’� �

3

5
8 8
’ B0

�������� 10
B

" #
2

�G2
10

(24)

where the squares of the isoscalar factors [the quantities in
the square brackets in Eqs. (23) and (24)] are listed in
Table III.

In Fig. 2 we plot scaled coupling constants G10 and G10
[i.e. without Goldberger-Treiman factors �M�M0�=3f’
(5)] as functions of parameter �, where � is given by

Eq. (12). As already explained in the Introduction, G10 is
constant, as the � dependence cancels out, while G10
steeply decreases reaching zero for �0 � �1:897. This is
a reflection of the nonrelativistic cancellation (22) ob-
served for the first time in Ref. [3]. It is obvious that by
an appropriate choice of � in the vicinity of �0 we can
make G10 arbitrarily small. By plugging in parameters (6)
and (12) into (5) and (20) we get that

 � � < 1 MeV! �1 � �1:98< �< �2 � �1:814:

(25)

In Table IV we list the decay widths for the remaining
members of antidecuplet for � � �1:98 (or equivalently
�1:814) for various choices of the masses from Table I
parametrized by the pion-nucleon sigma term ��N:

We see from Table IV that the widths of cryptoexotic
nucleon and � resonances exceed 1 MeV, the width of �3=2

is even larger, however within the limits set by NA49. It is

TABLE III. Isoscalar factors squared for the decays of decup-
let and antidecuplet.

10! 8� 8 10! 8� 8 C2

�! �K �� �! K� N 1

�� ! ��� N ! �� N 1=4
�� ! ��� N ! �� N 1=4
�� ! �K�� N! K�� 1=4
�� ! �K�� N! K�� 1=4

�� ! �K� N �! �K� N 1=6
�� ! ��� �! ��� 1=4
�� ! ��� �! ��� 1=6
�� ! ��� �! ��� 1=4
�� ! K�� �! K�� 1=6

�! �� N �3=2 ! ��� 1=2
�! K�� �3=2 ! �K�� 1=2

TABLE IV. Decay widths in MeV for the decays of antidecu-
plet.

B10 ! ’� B08 �B!’�B0 [MeV]
��N [MeV] 42 55 73

�! K � N 0.95 0.95 0.95
N! �� N 4.18 3.77 3.25
N! �� N 0.99 0.80 0.56
N! K �� 0.24 0.14 0.04
N! K �� 0.02 — —

�! �K � N 1.95 1.53 1.04
�! ��� 4.40 3.57 2.59
�! ��� 2.24 1.77 1.22
�! ��� 0.54 0.25 0.01
�! K �� 0.10 0.01 —

�3=2 ! ��� 8.41 6.01 3.44
�3=2 ! �K �� 4.52 2.89 1.20
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important to observe that the estimate from Ref. [18] is
almost 4 times bigger; it is difficult to comment why
because the authors of Ref. [18] give no details of their
width calculation. One has to remember that the entries in
Table IV constitute in fact the upper limits, since the
widths scale as ��� �0�

2 (with �0 � �1:897), and can
be arbitrarily decreased with an appropriate choice of �. In
the situation when the leading contributions are small, ms
corrections become important, that issue has been studied
in Ref. [13].

IV. DECAY CONSTANTS FOR EIKOSIHEPTAPLET

In this section we shall consider decays of eikosiheptap-
let (27) that can have either spin 1=2 or 3=2, the latter being
lighter. Matrix elements for the decays of eikosiheptaplet
of S � 3=2 (and with S3 � 1=2) read:

 A �B273=2
! B08 � ’� � 3

8 8
’ B0

�������� 27
B

� �
2
���
2
p

9
�G27;

A�B273=2
! B010 � ’� � �3

8 10
’ B0

�������� 27
B

� � ������
10
p

36
� F27;

A�B273=2
! B0

10
� ’� � 3

8 10
’ B0

�������� 27
B

 ! ������
30
p

9
� E27;

(26)

where

 G27 � G0 �
1
2G1; F27 � G0 �

1
2G1 �

3
2G2;

E27 � G0 �G1:
(27)

For S � 1=2 and S3 � 1=2 we have:

 A �B271=2
! B08 � ’� � �3

8 8
’ B0

�������� 27
B

� � ������
10
p

45
�H27;

A�B271=2
! B010 � ’� � �3

8 10
’ B0

�������� 27
B

� � ���
2
p

9
�G027;

A�B271=2
! B0

10
� ’� � 3

8 10
’ B0

�������� 27
B

 !
7
���
2
p

36
�H027;

(28)

where

 H27 � G0 � 2G1 �
3
2G2; G027 � G0 � 2G1;

H027 � G0 �
11
14G1 �

3
14G2:

(29)

In Fig. 2 we plot scaled coupling constants [i.e. without
Goldberger-Treiman factors �M�M0�=3f’ (5)] for decays
of 273=2 and 271=2 together with G10 and G10 (solid lines)
as functions of parameter �, where � is given by Eq. (12).
Together with the aforementioned suppression of G10 we
see strong suppression of F27 (corresponding to 273=2 !

103=2 � ’) and H27 (corresponding to 271=2 ! 81=2 � ’)
for the same range of �. Interestingly, both F27 and H27

vanish [37] in the nonrelativistic limit (22) exactly as G10.
In our parametrization they cross zero for the parameter �
in the range (25). Somewhat smaller suppression is seen for
spin changing transitions G27 (corresponding to 273=2 !

81=2 � ’) and G027 (corresponding to 271=2 ! 103=2 � ’).
Interestingly, in the nonrelativistic limit there is a partial
cancellation in these couplings, namely, the leading Nc
coefficients cancel out [37]. Finally, the remaining cou-
plings E27 (corresponding to 273=2 ! 101=2 � ’) and H027

(corresponding to 271=2 ! 101=2 � ’) are not suppressed
(they are neither suppressed in the nonrelativistic limit).
However, decays to antidecuplet have much smaller phase
space, and they are totally switched off for 273=2. It is
remarkable that our simple phenomenological parametri-
zation (6) and (12) respects—for the � values of interest
(25)—the large Nc suppression in the nonrelativistic limit.

Averaging over spin and isospin, as described in the
Appendix gives:

 

�A2�B273=2
! B08 � ’� �

4

9
8 8
’ B0

�������� 27
B

� �
2
�G2

27;

�A2�B273=2
! B010 � ’� �

25

72
8 10
’ B0

�������� 27
B

� �
2
� F2

27;

�A2�B273=2
! B0

10
� ’� �

5

3
8 10
’ B0

�������� 27
B

" #
2

� E2
27;

(30)

FIG. 2 (color online). Scaled coupling constants G10 and G10 together with couplings of 273=2 (first panel) and 271=2 (second panel)
defined in Eqs. (27) and (29) as functions of parameter �, where � is given by Eq. (12).
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where the quantities in the square brackets denote SU(3)
isoscalar factors. For 271=2 we get

 

�A2�B271=2
! B08 � ’� �

2

45

8 8
’ B0

�������� 27
B

� �
2
�H2

27;

�A2�B271=2
! B010 � ’� �

2

9

8 10
’ B0

�������� 27
B

� �
2
�G0227;

�A2�B271=2
! B0

10
� ’� �

49

72
8 10
’ B0

�������� 27
B

" #
2

�H0227:

(31)

The squares of the relevant SU(3) isoscalar factors are
listed in Table V.

Now we are ready to calculate the decay widths for
273=2. In fact, only decays to the octet baryons have non-
vanishing widths, we list them in the Table VI (’’�0’’
denotes the decay width below 1 MeV, whereas ‘‘�’’
means that the decay is kinematically forbidden).

Decays of 273=2 to decuplet are kinematically forbidden
except for the decays N27 ! ��� and �27 ! �� �
which have widths smaller than 1 MeV. All decays to
antidecuplet are kinematically forbidden. We can therefore
conclude that eikosiheptaplet of spin 3=2 has widths small
enough to justify the rigid rotor quantization. Not only are
the widths numerically smaller than the one of �, but also

in the large Nc limit with the partial nonrelativistic can-
cellation taking place, �273=2!8�8 ! 0 [37].

Our results for �27 presented in Table VI are smaller
than the estimate of Ref. [18]. Although the widths of the
order of tens of MeV can be considered small, one has to
remember that partial wave analysis requires �27 and �27

widths to be of the order of 100 keV [15].
We have concentrated here on the lightest states of

eikosiheptaplet that have been looked for in PW analysis
[15]. Obviously, we can easily calculate widths for the
plethora of the remaining states of eikosiheptaplet. We
have checked that for other states widths are smaller than
the one of �27 quoted above. Assuming ��N � 73 MeV,
we get the following upper bounds for the partial widths of
the next isospin multiplets

 � �!��� � 42 MeV; ��!��� � 75 MeV;

��1=2! �K�� � 68 MeV; ��3=2!��� � 74 MeV:
(32)

For 271=2 we expect larger widths because the available
phase space is much larger. Interestingly, this is not the
case for the decays to octet. The reason is that H27 respon-
sible for these decays is strongly suppressed in the relevant
range of �. Indeed, H27 crosses zero at � � �1:937 i.e.
within the range (25). Moreover, the overall group theo-
retical factor in Eq. (31) is suppressed by factor of 13 with
respect to the decays of antidecuplet (24). These two
suppressions overcome the increase of the phase-space
volume and the decay widths are comparable to those of
101=2. A similar effect takes place for the decays to dec-
uplet (although the decay constant G027 does not cross zero
in the relevant range of �) and the decays are comparable
to those of 273=2 ! 8� 8. Numerical results are given in
Tables VII and VIII.

Unfortunately, as can be seen from Table IX, there is no
suppression for the decays of 271=2 to antidecuplet. Indeed,
the relevant couplingH027 is as large asG10 (responsible for
� decay)—see Fig. 2—and the phase space is also not
suppressed: for �27 ! ���10 the pion momentum is of
the order of 300–400 MeV depending on ��N . Hence the
resulting widths are large.

Therefore one would be tempted to conclude that 271=2

cannot be considered as a semi-stable multiplet and its
description in terms of the rigid rotor fails, at least in the
situations where the transitions 271=2 $ 10 are of impor-
tance. This statement is, however, not supported by the Nc
counting [37]. We shall come back to this issue in the next
section.

V. SUMMARY

In the present paper we have studied masses and decay
widths of exotic baryon eikosiheptaplets (i.e. 27-plets) of
spin 3=2 and 1=2 that follow from the chiral quark-soliton
model in the rigid rotator quantization approach. We have

TABLE V. Isoscalar factors squared for the decays of eikosi-
heptaplet.

27! 8� 8 C2 27! 8� 10 C2 27! 8� 10 C2

�! ��� 3=4
�! K� N 1 �! K�� 1 �! K� N 1=4

N! �� N 9=20 N! �� N 9=80
N! �� N 1=20 N! ��� 1=5 N! �� N 49=80
N! K�� 1=20 N! K�� 4=5 N! K�� 1=20
N! K�� 9=20 N! �K�� 9=40

�! ��� 9=16
�! �� N 1=2 �! ��� 5=16 �! �� N 1=2
�! K�� 1=2 �! K�� 1=8 �! K�� 1=2

TABLE VI. Decay widths in MeV for the decays of 273=2.

273=2 ! 8� 8 � [MeV] � [MeV]
� �1 �2

��N 42 55 73 42 55 73

�27 ! K � N 29 33 39 16 18 21

N27 ! �� N 37 37 38 20 20 21
N27 ! �� N 17 17 17 9 9 9
N27 ! K�� �0 �0 �0 �0 �0 �0
N27 ! K�� 10 10 10 5 5 6
�27 ! �� N 172 152 128 94 83 70
�27 ! K�� 2 — — 1 — —
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also reexamined the widely studied by now antidecuplet
that we use as an input that constrains model parameters.
Rigid rotator quantization predicts a tower of stable exotic
representations of different spins and positive parity, anti-
decuplet, eikosiheptaplet, 35 being most prominent ex-
amples. A question arises, where does the rigid rotator
approach break? Leaving aside fundamental problems
based on claims in the literature that the rigid rotator
approach to exotica is not compatible with large Nc ex-
pansion for QCD [38], we have taken a more modest
phenomenological approach. If the widths of the baryonic
states calculated within the model exceed a certain critical
value that can be taken to be above the � resonance width
(one has to remember that � can be considered as a well
behaved stable state in the large Nc limit), then the model
becomes inconsistent. There are two sources that contrib-
ute to the increase of the width with the increase of the
dimensionality of the SU(3) flavor representation. One is
obvious: for higher representations the pertinent states are
heavier and the phase space is larger. The second source is
the coupling. For the antidecuplet there is only one cou-
pling corresponding to the transition 10! 8 that is exces-
sively small due to the cancellation found in Ref. [3] and
discussed in some detail in Sec. III. For higher representa-
tions there are more couplings corresponding to different
transitions and some of them are not suppressed. For
eikosiheptaplet couplings to the antidecuplet are not sup-
pressed. Obviously if the phase space is large and the
coupling is not suppressed then the widths are large. In
other cases one has to perform explicit calculations to see
what is the interplay between the rising phase space and
small coupling.

We have addressed this question by applying the so-
called model-independent approach [4] in which the gen-
eral group theoretical structure is taken from the model,
while the parameters are fitted to appropriate data. We have
used as an input nonexotic masses and the mass of ��,
semileptonic decay constants, and the assumption that
��� < 1 MeV. The residual freedom was parametrized
by the value of the pion-nucleon sigma term. We have
confined our analysis to eikosiheptaplet (i.e. 27-plet) that
is the only exotic representation (apart from antidecuplet)
appearing in the direct product of two octets. For this
reason eikosiheptaplet might be produced in meson-
nucleus scattering and could subsequently decay to
meson-nucleon or meson-hyperon final states.

Our findings can be shortly summarized as follows.
Based on group theory alone, eikosiheptaplet can decay
into octet, decuplet, and exotic antidecuplet. However, for
273=2 a regular octet is kinematically the only allowed
channel (with two exceptions discussed in Sec. IV).
Furthermore, the transition 27! 8 is governed by a small
decay coupling, G27. Therefore eikosiheptaplet of spin 3=2
has widths of the order of a few tens MeV with one
exception, namely �27 for which � � 70–170 MeV. For

spin 1=2 the situation is different. Decays to the octet and
decuplet have small transition couplings and the resulting
widths are small (see Tables VII and VIII). For the decays
to the antidecuplet, the coupling is large. Therefore, when-
ever the decay is possible the widths are of the order of
500 MeV. This might be interpreted as the signal that the
model breaks down and that the assumption that 271=2 is
stable cannot be justified phenomenologically.

The situation is, however, more complicated. Since the
mass difference

 �271=2�10 �
1

I2
�O�1=Nc� (33)

as calculated from Eq. (14) is suppressed in the large Nc
limit, so is the meson momentum (4). Therefore the widths
that depend on the third power of momentum may be
suppressed in the large Nc limit despite the fact that they
are numerically large. That this is indeed the case was
shown in Ref. [37] where e.g.

 � �27!���
10
�O�1=N2

c�: (34)

On the contrary, for the transitions of 271=2 to octet which
are numerically suppressed [remember that the pertinent
coupling H27 (29) vanishes in the NR limit (22)] the Nc
scaling is different, e.g. [37]:

TABLE VII. Decay widths in MeV for the decays of 271=2 to
octet.

271=2 ! 8� 8 � [MeV] � [MeV]
� �1 �2

��N 42 55 73 42 55 73

�27 ! K � N 0.97 0.87 0.73 8.14 7.26 6.12

N27 ! �� N 0.69 0.56 0.40 5.83 4.70 3.36
N27 ! �� N 0.16 0.13 0.11 1.34 1.14 0.89
N27 ! K�� 0.04 0.03 0.02 0.32 0.24 0.14
N27 ! K�� 0.44 0.34 0.22 3.68 2.85 1.87

�27 ! �� N 1.80 1.62 1.34 15.12 13.60 11.66
�27 ! K�� 0.46 0.39 0.30 3.89 3.26 2.48

TABLE VIII. Decay widths in MeV for the decays of 271=2 to
decuplet.

271=2 ! 8� 10 � [MeV] � [MeV]
� �1 �2

��N 42 55 73 42 55 73

�27 ! K� � 21 17 12 86 69 48

N27 ! ��� 24 19 14 97 78 56
N27 ! K��� 18 11 4 75 45 16

�27 ! �� � 30 24 18 126 103 74
�27 ! ��� 43 37 31 178 155 127
�27 ! K��� 4 3 2 16 12 8
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 � �27!K�N �O�1�: (35)

Obviously numerical results presented in Sec. IV depend
on the choice of input parameters. We have studied this
sensitivity by employing another set of parameters (13)
that corresponds to more realistic g�0�A . The decay widths of
antidecuplet do not change, since we require that �� < 1
(which is equivalent to a slightly different range of the
parameter �: �1 � �1:933< �< �2 � �1:767) and this
condition fixes all remaining decay widths. For eikosihep-
taplet some differences appear. For the transitions of 273=2

to octet, the decay widths for fit 2 (13) are smaller by a
few MeV. More drastic changes appear for 271=2. The
reason is that the small change in the coupling is magnified
by a large phase-space factor. Indeed, for the decays to
octet, presented in Table VII, the decay widths for fit 2 are
larger by a factor 10–6 (first number refers to � � �1

whereas the second one to � � �2 for fit 2). Although
this enhancement seems large, the absolute values are still
small on a typical hadronic scale. Less drastic enhance-
ment occurs for the decays to decuplet presented in
Table VIII, the decay widths for fit 2 are larger by a factor
2–1:4. Finally, large decay widths to antidecuplet remain
almost the same as for the fit 1 (12). We see therefore that
despite some numerical uncertainties due to the choice of
input parameters the general pattern persists and our con-
clusions still hold.

Summarizing: there is no simple way to judge the qual-
ity of the rigid rotator approach to the eikosiheptaplet. On
the basis of phenomenology alone one would conclude that
271=2 is unstable because of the large numerical values of
the decay widths to the antidecuplet. On the other hand
precisely these decays are damped in the large Nc limit,
similarly to the decays of � resonance. Other decays, like
the decays to octet scale as O�N0

c�, have numerical values
that are small due to the coupling suppression and addi-
tional group theoretical factors. For eikosiheptaplet of
spin 3=2 all kinematically allowed decays have widths
small enough to justify the rigid rotor quantization. Not

only are the widths numerically smaller than the one of
�, but also in the large Nc limit partial nonrelativistic
cancellation takes place and the pertinent couplings are
suppressed.
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APPENDIX A: SUMMING OVER SPINS AND
ISOSPINS

We shall use the identity

 

1

2S� 1

X
S03;S3

1 S0

m0 S03

�������� S
S3

� �
1 S0

m0 S03

�������� S
S3

� �
�

1

3

mm0

(A1)

to average over the initial spin (and in the same time to sum
over the final spin). For spin 3=2 the amplitude for 103=2 !

81=2 � ’ and 273=2 ! 81=2, 101=2 � ’ is proportional to

 

1 1=2
0 �1=2

�������� 3=2
�1=2

� �
�

���
2

3

s
(A2)

hence

 

1

2S� 1

X
S3

jA�3=2! 1=2�j2 �
1

2
jA�3=2! 1=2�j2:

(A3)

For 273=2 ! 103=2 � ’ the amplitude is proportional to

 

1 3=2
0 �1=2

�������� 3=2
�1=2

� �
�

������
1

15

s
(A4)

and

 

1

2S� 1

X
S3

jA�3=2! 3=2�j2 � 5jA�3=2! 3=2j2:

(A5)

Finally, for 101=2 ! 81=2 � ’ and 271=2 ! 81=2, 101=2 � ’
the amplitude is proportional to

 

1 1=2
0 �1=2

�������� 1=2
�1=2

� �
�

���
1

3

s
(A6)

and for 271=2 ! 103=2 � ’ to

TABLE IX. Decay widths in MeV for the decays of 271=2 to
antidecuplet.

271=2 ! 8� 10 � [MeV] � [MeV]
� �1 �2

��N 42 55 73 42 55 73

�27 ! ���10 658 523 365 697 554 387
�27 ! K� N10 — — — — — —

N27 ! �� N10 — — — — — —
N27 ! �� N10 500 364 215 530 385 228
N27 ! K��10 — — — — — —
N27 ! �K��10 72 20 — 76 21 —

�27 ! �� N10 579 510 424 614 541 449
�27 ! K��10 — — — — — —
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1 3=2
0 �1=2

�������� 1=2
�1=2

� �
� �

���
1

3

s
: (A7)

Hence
 

1

2S� 1

X
S3

jA�1=2! 1=2;3=2�j2 � jA�1=2! 1=2;3=2�j2:

(A8)

Similarly we shall average over initial isospin and sum
over the final isospin using the formula

 

1

2I � 1

X
I’3;I03;I3

I’ I0

I’3 I03

�������� I
I3

� �
2
� 1: (A9)
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