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The profile functions of the SU(3) Skyrme soliton are investigated for the octet, decuplet, and
antidecuplet baryons by the mean field approach. In this approach, the profile functions are affected by
the spatial rotation, the flavor rotation, and the flavor symmetry breaking. The solitons are stable only in
the restricted areas of the parameter space for each multiplet. When the flavor symmetry breaking is large,
the area for the antidecuplet is narrow compared to those for the octet and decuplet. The parameters are
determined by the baryon mass spectrum, and the deformation of the soliton has sizable effects on the
masses.
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I. INTRODUCTION

Diakonov, Petrov, and Polyakov [1] made a detailed
prediction for the masses and the decay widths of the
antidecuplet (10) baryons in the framework of the
Skyrme soliton (Skyrmion) model [2–4]. Following their
work, an experimental discovery of the lightest state of 10,
namely ���1540�, was reported by the LEPS collabora-
tion [5]. �� has strangeness S � �1 and should contain at
least one �s quark. It is called an exotic baryon or a penta-
quark, because the minimal number of the quarks is five
from the charge and the strangeness. Although later many
experiments confirmed this finding, several experiments
did not observe ��. Lists of these published experiments
and detailed discussion of their results are presented in
Refs. [6,7].

Theoretically, there are many works based on the
Skyrme model [8], the diquark models [9], the chiral bag
model [10], the MIT bag model [11], the constituent quark
model [12], the QCD sum rules [13], and the lattice QCD
[14]. These works are reviewed in Ref. [15].

We are interested in the descriptions of the 10 baryons
by the soliton [8,16–18] in the SU(3) Skyrme model [19–
23]. Now, there are two major approaches to quantize the
soliton. First is the Callan-Klebanov approach [24], in
which baryons appear as kaon-SU(2) Skyrmion bound
states, and the isospin rotation of the soliton and the
fluctuations of the kaon field are quantized. The bound
states change according to the baryon states. In particular
the Wess-Zumino term acts as a repulsive force on the S �
�1 states; its strength is strong enough to remove all bound
states and all resonances for the standard values of the
parameters [25]. However, recently, Itzhaki et al. [16]
applied this approach to the exotic baryons and found the
kaon bound states of S � �1 by using a large kaon mass
(� 1 GeV).

Second is the rigid rotator approach (RRA) [3], in which
the shape of the soliton is common to all baryon states and

the rotation of the soliton in flavor space is quantized.
Then, the baryons emerge as the rotational states of a rigid
soliton. From early papers [21,22] on the SU(3) Skyrme
model, it was pointed out that this approach reproduces not
only the octet (8) and decuplet (10) baryons but also the
antidecuplet (10) baryons as the low lying spectrum. The
10 baryons have the spin and the parity JP � 1=2� in this
approach.

However, a limit of the applicability of RRA has been
pointed out [26–28] in the SU(2) Skyrme model. The
shape of the soliton changes because of the centrifugal
force of the rotation, and the large spin of the baryon leads
to the instability of the soliton due to the spontaneous
emission of the real pion from the soliton. In the SU(3)
Skyrme model, the low lying multiplets (8, 10, and 10)
seem free from the limit of the applicability of RRA [1] due
to their small spins. However, the situation depends on the
baryon states. The rotation emerges in the strangeness
direction simultaneously and pushes the shape of the soli-
ton out further. In addition, if the shape of the soliton is
affected by the strangeness degrees of freedom, it would
shrink because of the large meson mass. Therefore, there is
a possibility too that the flavor symmetry breaking cancels
the deformation caused by the rotation. We consider that
this possibility should be investigated particularly.

Furthermore, Itzhaki et al. [16] and Cohen [17] pointed
out that in a large number of the color (Nc) expansion, the
mass differences between the 10 and 8 baryons scale asN0

c .
This means that RRA for multiplet 10 is not consistent with
the large Nc expansion. Since the above mentioned defor-
mations of the classical soliton are formally subleading
effects in the expansion, we are interested in whether the
effects could be practically negligible in 10.

In this paper, we formulate a mean field approach to
include the effects of the rotation and the symmetry break-
ing into the shape of the soliton. In this meaning, we
modify RRA. In addition, we study numerically the soliton
solutions derived from our approach, and find the input
parameters that keep the soliton stable and reproduce the
baryon mass spectrum.*akiyama@ph.noda.tus.ac.jp
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In Sec. II, the SU(3) Skyrme model and its collective
quantization are reviewed, and the mean field approach for
the soliton is introduced. In Sec. III, the stability conditions
of the soliton solution are explained, and the numerical
solutions are displayed. In Sec. IV, the input parameters
and the resultant baryon mass spectrum are given. Finally,
in Sec. V we summarize the results.

II. SU(3) SKYRME MODEL

A. Model and the collective coordinate quantization

The effective action [29] we take here is given by

 � � �S � �SB � �WZ; (1)

 �S �
Z
d4x

�
f2
�

4
Tr@�U@
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�
1
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240�2

Z
D5

Tr�dUUy�5; (4)

where f� is the pion decay constant, e is the Skyrme
parameter, U�x� is the SU(3) unitary matrix representing
the pseudoscalar mesons ��;K; ��, m�;K;� are the masses
of ��;K; ��, �8 is the 8th component of the Gell-Mann
matrices �� (� � 1; 2; . . . ; 8), and Nc is the number of
color degrees of freedom. The Wess-Zumino term �WZ is
given as an integral over the five-dimensional disk D5, the
boundary of which is the compactified space-time S4. The
symmetry breaking mass term �SB contains only two
masses m�;K because of the quadratic sum rule: m2

��

3m2
��4m2

K�0. In this paper, we choose �e; f�;m�;mK�

as adjustable parameters.
The effective action (1) admits a classical static soliton

solution under the hedgehog ansatz embedded in the SU(2)
subgroup:

 U�x� ! U0�r� � exp
�
i
X3

i�1

�ix̂iF�r�
�
; (5)

where r � jrj, x̂i � xi=r, and F�r� is the profile function of
the soliton. The baryon number one solution is subjected to
the boundary conditions

 F�0� � �; F�1� � 0: (6)

We postulate the cranking form [3] of the time depen-
dent meson field:

 U�x� � A�t�U0�r�Ay�t�; (7)

where A�t� describes the adiabatic collective rotation of the
system in SU(3) flavor space. Using the standard method
[19–23] to quantize the motion on the SU(3) group mani-
fold, we obtain a dimensionless quantized collective
Hamiltonian ~H and a first class constraint on the 8th
generator R8 of SUR�3�:
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where C2�SUR�3�� and C2�SUR�2�� are the Casimir opera-
tors of SUR�3� and SUR�2�, respectively. In addition,

 D�8�88 �A� �
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2 Tr��8Ay�8A�; (10)

and
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3
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��
Z
d		2�1� cosF�; (14)

where 	 � ef�r, ~m�;K � m�;K=�ef��, and F0 � dF
d	 . The

Hamiltonian ~H explicitly depends only on e and ~m�;K. The
Hamiltonian, the classical soliton mass, and the symmetry
breaking with the physical unit (MeV) are given by H �
f�
e

~H, M0 �
f�
e

~M0, and � � f�
e ~�, respectively. The mo-

ments of inertia with the physical unit (1=MeV) are given
by �2 � ~�2=�e3f�� and �2 � ~�2=�e3f��.

The state function of the baryon B is labeled as

 �B � �
IY JYR
I3 J3

� �
; (15)

where �J; J3�, �I; I3�, Y, and YR are the eigenvalues of the
spin, the isospin, the hypercharge, and the right hyper-
charge, respectively. The right hypercharge is given by
YR � 1 due to constraint (9). Equation (15) is obtained
by solving the following eigenvalue equation,

 

~H�B � ~EB�B; (16)
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where ~EB is the dimensionless energy eigenvalue of the
baryon state �B. To solve this equation, we use the Yabu
and Ando method [30], in which ~EB is given by

 

~EB � ~M0 �
e4

2

�
1

~�2 �
1
~�2

�
J�J� 1� �

3e4

8 ~�2
�

e4
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(17)

Quantity ESB is the dimensionless eigenvalue of

 

�
C2�SUR�3�� �

~�2 ~�

e4 �1�D
�8�
88 �A��

�
�B � ESB�B: (18)

B. Mean field approach to the baryon states

To solve the eigenvalue Eq. (16) and obtain the baryon
states [3,4,30], one should know about the profile function
F�	� in Eqs. (11)–(14). Here, we define an equation of
motion for F�	� as

 


 ~H B


F�	�
� 0; (19)

where ~H B is a classical Hamiltonian for each baryon B. In
RRA [3], ~H B � ~M0, and F is not affected by the rotation
and the symmetry breaking at all. Therefore, F is common
to all baryons.

In this paper, we adopt the following mean field
Hamiltonian [31–33],

 

~H B � h�
�0�
B j

~Hj��0�B i; (20)

where j��0�B i is an eigenstate of ~H without the SU(3)
symmetry breaking (~� � 0), and the state is represented
by the SU(3) D function corresponding to the baryon B.

Our classical Hamiltonian ~H B includes the influence of
the flavor symmetry breaking of the first order in powers of
( ~m2

K � ~m2
�) and the influence of the rotation of order 1=Nc

in the large Nc expansion. The specific expression of ~H B
is given by
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2
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3

4
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where
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4

�
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2
3h�
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B j1�D

�8�
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�0�
B i: (24)

The quantities ~! and ~� distinguish the multiplets
�8; 10; 10�, and the values of J�J� 1� and C2�SUR�3�� �
J�J� 1� � 3

4 are given at Table I. For the states with J � I,
~! and ~� are regarded as the angular frequencies of the

rotation in ordinary space and strangeness direction, re-
spectively. The expectation value qB is a source of the
SU(3) symmetry breaking on the profile function and
characterizes each baryon state. Table II shows the values
of qB for the individual 8, 10, and 10 baryons. Therefore,
the profile functions derived from the classical
Hamiltonian (21) change the shapes according to the
baryon states. Our approach modifies RRA in this
meaning.

We obtain the equation of motion for F�	� from
Eqs. (19) and (21):
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00 � C�F0�2�	; F��F

0�2 � CF0 �	; F�F
0

� C�	; F� � 0; (25)
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TABLE I. SU(3) representation �p; q�, spin J, J�J� 1� in
Eq. (22), and C2�SUR�3�� � J�J� 1� � 3

4 in Eq. (23) for multip-
lets 8, 10, and 10.

�p; q� J J�J� 1� C2�SUR�3�� � J�J� 1� � 3
4

8 (1, 1) 1=2 3=4 3=2
10 (3, 0) 3=2 15=4 3=2
10 (0, 3) 1=2 3=4 9=2

TABLE II. Expectation value qB of Eq. (24), where B 2
8; 10; 10.

B 2 8 N � � �
qB 7=15 9=15 11=15 12=15

B 2 10 � �	 �	 	

qB 7=12 8=12 9=12 10=12
B 2 10 �� N	

10
�	

10
�	

10

qB 6=12 7=12 8=12 9=12
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and ~meff is an effective meson mass given by

 ~m 2
eff � ~m2

��1� qB� � ~m2
KqB: (30)

Coupled equations (12), (13), (22), (23), and (25) are
self-consistently solved under the boundary conditions (6).
Then, independent parameters are �e; ~meff� only. Therefore
the effect of the flavor symmetry breaking on the profile
function is expressed by ~meff . In RRA, ~meff �
meff=�ef�� � m�=�ef�� 
 1. In our approach, the effec-
tive mass can take a value � ~mK according to qB. This fact
is important. If we estimate that e � 3:87, f� �
44:5 MeV, and mK � 495 MeV [30], a large effective
mass ~meff � 2:8 is obtained. Therefore, we can expect a
qualitatively different behavior of the soliton solution in
our approach.

III. SOLITON SOLUTION IN THE MEAN FIELD
APPROACH

Our next task is to perform the self-consistent procedure
in Sec. II B. The procedure is faced with two kinds of
complexity: the instability of the soliton solution and the
dependence of the soliton solution on the multiplets. The
instability results from Eqs. (6) and (25). The dependence
on the multiplet is brought into the calculation by Eqs. (22)
and (23). Therefore, we discuss these problems separately
in the following sections.

A. Instability of the soliton solution

To investigate the instability of the soliton solution, we
treat �e4 ~!2; e4 ~�2; ~m2

eff� as input parameters in this subsec-
tion and the next one. The parameter space is designated as
M.

The stable soliton solutions of Eq. (25) are obtained only
in a restricted area of M. The restriction has two origins.
One is a behavior of the profile function F at 	�1 due to
the centrifugal force of the rotation [26–28]:

 F�
A

	2 �1��	�e
��	; (31)

 � �
��������������������������������������������
~m2

eff � e
4�23 ~!2 � 1

4~�2�
q

: (32)

Here the rotation pushes F out of the center of the soliton.
For the stable soliton solution, the following condition
should be satisfied:

 ~m 2
eff � e

4�23 ~!2 � 1
4~�2� � 0: (33)

Therefore, the rotating SU(3) Skyrmion with ~meff � 0 is
unstable. That is analogous to the result of the rotating
SU(2) Skyrmion in the chiral limit [26]. The rotating SU(3)
Skyrmion, however, can exist in a limit ( ~m� � 0, ~mK � 0),
because ~m2

eff > 0 from Eq. (30) and Table II.
Another origin of the restriction on M is a behavior of

the coefficient function of F00 in Eq. (25). We have the

second condition for the stable soliton solution satisfying
the boundary conditions (6):

 CF00 �	; F�	��> 0: (34)

For verification of this condition, we define a curve F	 in
the �	; F� plane by

 CF00 �	; F	� � 0: (35)

Function F	 should not be confused with the profile func-
tion F. We will show that F satisfying the boundary con-
ditions (6) cannot cross F	 and this requirement is equal to
condition (34).

At first, we investigate properties of F	. Since Eq. (35) is
a quadratic equation for sin2 F	

2 , it has two formal solutions
for fixed 	 and �e4 ~!2; e4 ~�2�. These formal solutions, how-
ever, do not always support two real number values ofF	 in
the range 0 � F	 � � which has one-to-one correspon-
dence with the range 0 � sin2 F	

2 � 1. If F	 is a real num-
ber solution in the range, F	 � 2n� (n: integer) also are
solutions in the other range. Practically, we can restrict the
value of F	 to the range �� � F	 � �, because the
boundary conditions (6) ensure that the value of F is in
the range. Figure 1 shows the typical forms of F	 for
e4 ~�2 < 4, e4 ~�2 � 4, and e4 ~�2 > 4. The form of F	

changes drastically at e4 ~�2 � 4. In particular, there are
the constant solutions F	 � � for e4 ~�2 � 4, and F	 for
e4 ~�2 � 4 always reaches 	 � 0. Figure 2 shows also the
dependence of F	 on e4 ~!2 in the range 0 � F	 � �. For a
larger value of e4 ~!2, F	 becomes closer to the axes 	 � 0
and F	 � 0.

FIG. 1. Typical forms of F	 within �� � F	 � �. The cases
of e4 ~�2 < 4, e4 ~�2 � 4, and e4 ~�2 > 4 are represented by the solid
lines, the dashed lines, and the dash-dotted line, respectively. For
classification of the lines, we set e4 ~!2 � 1.
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Next, we explain how to verify Eq. (34). If F crosses F	

at some radius 	 � 		, Eq. (25) becomes a quadratic
equation for F0�		�:

 C�F0�2�	
	; F	��F0�2 � CF0 �		; F	�F0 � C�		; F	� � 0:

(36)

Then we can statically calculate the value of the discrimi-
nant

 D	 � CF0 �	
	; F	�2 � 4C�F0�2�	

	; F	�C�		; F	�: (37)

Of course, D	 < 0 means that Eq. (36) has no real number
solution and F cannot cross F	 at 	 � 		 from the begin-
ning. Moreover Eq. (25) does not have the real number
solution in a neighborhood of the point, because its dis-
criminant for F0:

 CF0 �	; F�
2 � 4C�F0�2�	; F�C�	; F�

� 4C�F0�2�	; F�CF00 �	; F�F
00 (38)

approaches the value of D	�<0� near F	, and the value of
F0�	� becomes complex numbers.

For D	 � 0, the values of F0�		� are real numbers.
However it is analytically unclear whether the values are
consistent with the boundary conditions (6). From numeri-
cal calculations, we conclude also here that F and F	

cannot cross.
Figures 3 and 4 show the examples. Profile functions Fi

(i � 0, 1, 2, 3) and F	 for e4 ~�2 < 4 are plotted in Fig. 3.
Each of Fi corresponds to different values of F0�0�, namely

 0>F03�0�>F02�0�>F00�0�>F01�0�: (39)

Only F0 satisfies the boundary conditions (6). In the cases
of F1;2, there are breakdowns of Eq. (25), because the
profile function approaches the D	 < 0 part of F	. Profile
function F3 survives but does not satisfy the boundary
conditions (6) due to the scattering by the D	 > 0 part.

Figure 4 shows Fi (i � 0, 1, 2, 3) and F	 for e4 ~�2 > 4.
Also here, only F0 satisfies the boundary conditions (6),
and F1;2 break because of the same reason as that of the
case e4 ~�2 < 4. Moreover, there is a new situation that F	

divides F3 from the other profiles (e.g. F2). Therefore, F2

is in CF00 > 0 area and F3 is in CF00 < 0 area. Although the
values of F02�0� and F03�0� are close, the profile functions F2

and F3 separate with an increase in 	. It seems that there is
a repulsion between F and the D	 > 0 part of F	. Profile
function F3 survives near the D	 > 0 part at small 	 but
breaks near the D	 < 0 part at last.

From these results, we conclude that F satisfying the
boundary conditions (6) cannot cross F	. Therefore, F	

divides the �	; F� plane into two areas: CF00 > 0 area and
CF00 < 0 area. Profile function F�	� lives in only one area

FIG. 2. Typical dependence of F	 on e4 ~!2 in the range 0 �
F	 � � for e4 ~�2 < 4, e4 ~�2 � 4, and e4 ~�2 > 4. Actual values of
e4 ~�2 in the figures are 3, 4, 5, respectively.

FIG. 3. Profile functions Fi (i � 0, 1, 2, 3) and curves F	 for
e4 ~�2 < 4 (e4 ~�2 � 3, e4 ~!2 � 2, ~meff � 2). The solid lines rep-
resent Fi. The dashed lines indicate D	 < 0 parts of F	, the dash-
dotted lines D	 > 0 parts, and marks ‘‘�’’ represent the points at
which D	 � 0. Marks ‘‘�’’ represent breakdowns of Eq. (25) at
these points.
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containing the boundary point �	; F� � �1; 0� of Eq. (6).
Since CF00 �1; 0� � 1> 0 at the boundary point, we obtain
condition (34) of the stable soliton solution.

We should choose the value of F0�0� carefully so that F
is away from the D	 < 0 part of F	. Since F	 approaches
the axes 	 � 0 and F	 � 0 at the larger values of e4 ~!2 and
e4 ~�2 (Figs. 1 and 2), the choice of F0�0� becomes more
difficult. This situation improves for the larger value of
~meff , because F dumps faster according to Eq. (31). Thus,
with an increase in ~meff , the area given by Eq. (34) enlarges
with ~meff in parameter space M.

B. Profile function of the stable soliton solution

In this subsection, we discuss several constraints on the
parameter space M and the stable soliton solutions of
Eq. (25). At this stage, we have two conditions (33) and
(34) for the stable soliton solutions. Condition (33) is
explicitly parametrized by �e4 ~!2; e4 ~�2; ~m2

eff�, and condi-
tion (34) implicitly. Both the conditions define together an
area of the stable soliton in M. In Fig. 5, we show a critical
surface that separates the areas of the stable solution and
the unstable solution in M. The area of the stable soliton is
on the upper side of the surface.

Condition (33) defines the critical surface for a small
value of ~meff , and condition (34) does so for a large value of
~meff . There is a boundary curve, at which these conditions
change the roles on the critical surface. The boundary has
~meff � 1:6. We designate the lower (higher) critical surface
as SL�H�. SL is a plane, because Eq. (33) is a linear equation
for �e4 ~!2; e4 ~�2; ~m2

eff�. SH curves upward steeply.
Here, we illustrate the effects of the rotation and the

symmetry breaking with the four points R, A, B, and C
depicted in Fig. 5. Point R is placed at �e4 ~!2; e4 ~�2; ~m2

eff� �
�0; 0; 4� in M. Points A, B, and C are placed at (3.5, 0, 4),
(0, 12.7, 4), and (1.5, 9, 4), respectively, and they are
slightly above the critical surface SH. Figure 6 shows the
profile function, its derivatives, and curve F	 [Eq. (35)]
with the parameters corresponding to points R, A, B, and C
in M.

Case R corresponds to RRA, because the influence of the
rotation is ignored. In Fig. 6, there is a flat part of F00 at
	� 0:5. It is caused by the large meson mass ( ~meff � 2).
Although such a large meson mass is unfamiliar in other
studies on the profile function, it is legitimate in our
approach as noted in Sec. II B. If ~meff increases more, the
flat part dents downward. However, F00 does not cross the
zero, and F0 monotonically increases.

The profile function with small ~meff (the parameters near
SL) is given by spreading the solution of case R according
to Eq. (31). Then, the effects of the rotation and the
symmetry breaking appear in the single mass parameter
�. If ~meff decreases further, � becomes a complex number
and the soliton becomes unstable because of the emission
of the real meson.

In the cases of A, B, and C, there are further character-
istic behaviors of the profile functions. Since points A, B,
and C are close to SH in M, the corresponding profile
functions emphasize features of the rotation.

Gradients jF0�0�j in the cases of A, B, and C are small
compared with that in the case of R, because the rotation
pushes the profile function out of the center of the soliton.
Then F00 should change largely for F to maintain the
asymptotic form (31) with the large ~meff . Therefore, F00

crosses the zero, and the behavior of F0 becomes complex.
Case A represents the profile functions deformed by the

rapid spatial rotation (e4 ~�2 < 4 and large e4 ~!2). Curvature
F00 changes intensely at the intermediate 	 region. This
profile function is apparent at this stage, but it is excluded
by the self-consistent procedure as noted in the next sub-
section. Moreover, such a profile function is physically
unimportant; point A in Fig. 5 is on the e4 ~�2 � 0 plane
corresponding to the SU(2) Skyrmion and its effective

FIG. 4. Profile functions Fi (i � 0, 1, 2, 3) and curves F	 for
e4 ~�2 > 4 (e4 ~�2 � 10, e4 ~!2 � 0:5, ~meff � 1:9). Meanings of the
figure symbols are the same as those of Fig. 3. FIG. 5. Critical surface given by Eqs. (6) and (25) in parameter

space M. The sizes of the mesh on the surface are
��e4 ~!2;�e4 ~�2� � �0:5; 2:0�. The area of the stable soliton is
on the upper side of the surface. The solid line on the critical
surface indicates the boundary curve ( ~meff � 1:6) at which two
conditions (33) and (34) change the roles. Point R is placed at (0,
0, 4). Points A, B, and C are placed at (3.5, 0, 4), (0, 12.7, 4) and
(1.5, 9, 4), respectively, and are slightly above the surface.
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mass is large ( ~meff � 2), however, physically ~meff �
m�=�ef�� 
 1 in this sector.

Case B represents the profile functions affected by the
rapid flavor rotation (e4 ~�2 > 4 and small e4 ~!2). Curvature
F00 is already negative at 	� 0. Since F	 reaches 	 � 0,
Eq. (34) reduces to

 1� 2F0�0�2 �
e4 ~�2

4
> 0; (40)

according to the boundary conditions (6). If ~m2
eff decreases,

F0�0�2 becomes too small and Eq. (40) fails.
Case C represents the profile functions affected by both

the spatial and the flavor rotation (e4 ~�2 > 4 and the me-

dium value of e4 ~!2). Although F	 reaches 	 � 0 and
Eq. (40) is valid here too, the spatial rotation affects the
profile function at 	� 1 and F00 changes greatly there.
This spatial rotation has smaller angular frequency than
that of case A. Therefore, the flavor rotation enhances the
effect of the spatial rotation.

C. Self-consistent soliton solution and the dependence
of the classical soliton on the multiplets

We are ready to study the self-consistent solution of the
coupled equations (12), (13), (22), (23), and (25), and the
boundary conditions (6). The independent parameters re-
duce from �e4 ~!2; e4 ~�2; ~m2

eff� to �e; ~meff�, and the quantities

FIG. 6. Left panel: F and F	 for points R, A, B, and C depicted in Fig. 5. Right panel: F, F0, and F00 for the points.
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� ~!2; ~�2� are self-consistently determined for each multiplet
8, 10, and 10. From Table I and Eqs. (22) and (23), one can

estimate that
 

~!2j10 � 5� ~!2j8; (41a)

~�2j10 � ~�2j8 (41b)

for 8 and 10, and
 

~!2j10 � ~!2j8; (42a)

~�2j10 � 3� ~�2j8 (42b)

for 8 and 10, and
 

~!2j10 �
1
5� ~!2j10; (43a)

~�2j10 � 3� ~�2j10 (43b)

for 10 and 10.
Since the number of the independent parameters is two,

the self-consistent solutions form surfaces for each multi-
plet in the parameter space M. The surfaces are limited by
the critical surface in Fig. 5. We call the surfaces ‘‘self-
consistent surfaces’’ and show these in Fig. 7. In addition,
Fig. 8 shows the intersection lines between the critical
surface and the self-consistent surfaces on the contour
map of the critical surface. The self-consistent surface
for 10 is away from the others because of Eqs. (41).
Further the surface for 10 is closer to the e4 ~!2 � 0 plane
than the surface for 8 because of Eqs. (42).

These figures are useful for relating the profile functions
with multiplets 8, 10, and 10. For example, Fig. 7 shows
that the profile functions in case A in Fig. 6 are excluded,
because point A is on the e4 ~�2 � 0 plane in M and any
self-consistent surfaces do not pass through this plane

FIG. 8. Intersection lines between the critical surface and the
self-consistent surfaces for the multiplets 8, 10, and 10. The
dashed lines represent the intersection lines. The dash-dotted
lines represent the contour lines of the critical surface with step
� ~m2

eff � 2. The solid line indicates the boundary curve in Fig. 5.

FIG. 7. Self-consistent surfaces for the multiplets 8, 10, and 10
in parameter space M. The dashed lines represent the self-
consistent surfaces. Three panels show these surfaces one by
one in the order of 10, 8, and 10. The solid lines denote the
critical surface in Fig. 5. The dashed lines on the critical surface
represent the intersection lines between these two kinds of the
surface. The self-consistent surfaces under the critical surface
are spurious. They have been shown due to a limit of the ability
of our graphic software.
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except for the ~m2
eff axis. However the profile functions in

the cases of R, B, and C can be self-consistent solutions.
Figure 8 shows that if the self-consistent solution is

evaluated near SH, always e4 ~�2 > 4. Then the profile
functions of 8 and 10 are similar to that of case B in
Fig. 6, and the profile functions for 10 are similar to that
of case C.

Also in parameter space �e; ~meff�, there are curves that
separate the area of the stable soliton solutions and the area
of the unstable ones in each multiplet. We call the curves
‘‘critical curves’’ and show these in Fig. 9. Every curve has
an upward ledge at ~meff � 1:6. The left area of the ledge is
restricted by Eq. (33), and the right one by Eq. (34). These
curves correspond to the intersection lines between the
critical surface and the self-consistent surfaces in Fig. 7.
One can use this figure to decide whether the adjustable
parameters �e; f�;m�;mK� admit the stable soliton solu-
tion through Eq. (30).

The critical curve should reach �e; ~meff� � �0; 0� be-
cause of Eq. (33). However, it is difficult to decide whether
the solution of Eq. (25) is stable for ~meff � 0, because the
instability for ~meff � 0 appears at the large radius 	� 1.
Therefore, we show the curves only for ~meff � 0:2.

For ~meff > 1:6, the areas of the stable soliton become
narrow, because the moments of inertia �~�2; ~�2� are the
decreasing functions of ~meff in our approach, and as a result
the stability condition (34) with Eqs. (22) and (23) be-
comes severe for parameter e.

From Eqs. (33), (34), (41), and (42), it is reasonable that
the critical curve for 8 is higher than those for 10 and 10
through all values of ~meff . On the other hand, from
Eqs. (33), (34), and (43), it is not clear which critical curve
for 10 and 10 is higher. Indeed, the curves for 10 and 10
change their relative height according to ~meff . In particular,
the critical curve for 10 is lower than that for 10 in the area
~meff > 1:6. It is explained as follows. The self-consistent
solutions corresponding to the critical curves are obtained

near SH in Fig. 7, and the solutions have e4 ~�2 > 4.
Therefore, condition (34) reaches 	 � 0. For a large ef-
fective mass, condition (34) is effective at 	� 0 because
of Eq. (31) and it reduces to Eq. (40) containing only ~�2.
Since ~�2 for 10 is about 3 times larger than that for the
other multiplets in Eqs. (42b) and (43b), the area of the
stable solitons for 10 is narrower than those for 8 and 10.

The terms proportional to ~�2 in Eqs. (34) and (40)
originate from the term e4

2
~�2 ~�2 in Eq. (21). This term

e4

2
~�2 ~�2 is regarded as the coupling between the rotation

into the strangeness direction and the amplitude sin�F=2�
in ~�2. The amplitude is the zero mode fluctuation around
the hedgehog profile in the flavor symmetry limit [25], and
it represents an intrinsic motion on the soliton. If this term
becomes large compared with ~M0 in the mean field
Hamiltonian (21), the collective rotation and the intrinsic
motion cannot dynamically separate and RRA fails. That is
a limit of the applicability of RRA pointed out from a
general argument in Ref. [17]. In our approach, the influ-
ence of this coupling is dynamically included in the cal-
culation of the profile function through the mean field
Hamiltonian (21). Therefore, condition (34) represents a
more realistic limit so that the coupling does not destroy
the soliton itself.

IV. BARYON MASS

With the profile function of the stable soliton, the clas-
sical soliton mass (11), the moments of inertia (12) and
(13), and the symmetry breaking (14) are evaluated. Then
the eigenvalue equation (16) can be numerically solved by
the Yabu and Ando method, and the baryon masses are
obtained. We introduce

 �Eerr �

�������������������������������������������������X
B28;10

��EBN � �Eexp
BN�

2
s

; (44)

where �EBN is a difference in the predictive value of the
mass between the baryon B and the nucleon N, and �Eexp

BN
is its experimental value. An isospin multiplet is repre-
sented as a baryon B in this formula, because baryons in an
isospin multiplet are described by the same soliton solu-
tion. The quantity �Eerr measures an error of the predicted
baryon mass splitting for the multiplets 8 and 10.

The parameters �e; ~meff� of the stable solitons are placed
below the critical curves in Fig. 9. A parameter set
�e; ~m�; ~mK� corresponds to the 12 points in the parameter
space �e; ~meff� according to Eq. (30) and Table II. While the
Skyrme parameter e determines the vertical positions of
the points, the masses ~m�;K give the horizontal positions
and the spreads of the points. We discuss only parameters
�e; ~m�; ~mK� which admit the existence of the 8, 10, and 10
baryons. Since �e; ~m�; ~mK� are dimensionless, the energy
scale (f�=e) cannot be specified, and the stability of the
solitons is not sufficient to determine the values of all
parameters �e; f�;m�;mK�. Using the degrees of freedom,

FIG. 9. Critical curves for multiplets 8, 10, and 10 in parameter
space �e; ~meff�. These curves separate the areas in which the
soliton is stable or unstable. The horizontal axis ~meff is different
from meff=F� � meff=�2f�� of Ref. [28].
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we fit the N �� mass difference or the absolute value of
the N mass to its experimental value.

Equation (17) gives the experimental value of theN � �
mass difference and the accurate baryon mass splitting
(small �Eerr). The parameter set and the predicted baryon
masses are shown as (1) in Tables III and IV, respectively.
Here, the value of f�, 93 (MeV), is given by hand. A larger
value of f� gives a slightly smaller value of �Eerr, but it
leads to extremely larger baryon masses in proportion to
f�; for example, �Eerr � 74 �MeV� and EN �
5992 �MeV� for e � 2:8, f� � 186 �MeV�, m� �
106 �MeV�, and mK � 747 �MeV�. Table V shows the
dimensionless effective mass ( ~meff), the classical mass
(M0), the moments of inertia ��2; �2�, and the symmetry
breaking (�) for parameter set (1). In our approach, these
quantities vary according to the baryon states: ~meff char-
acterizes each baryon state, M0 is the increasing function
of ~meff , and ��2; �2; �� are the decreasing functions.

However, Eq. (17) cannot give the experimental value of
the N mass and the accurate mass splitting simultaneously
in our approach. In particular, the values of the baryon
masses are large compared with the observed ones. That is
a common phenomena in the Skyrme model [30], but the
tendency is more severe in our approach. The experimental
values of the baryon masses lead to the smaller value of f�
which is the energy scale in this model. Therefore the value
of the Skyrme parameter should be large for the rotational
energy to generate the mass splitting. However, since the
Skyrme parameter is restricted by the critical curves for 10
and 10 in Fig. 9, the magnitude of the mass splitting is not
sufficiently large.

There is a more fundamental method [34–37] for the
Skyrme model to reproduce the observed baryon masses.
In this method, the Casimir energy (< 0) due to the
existence of the soliton is added to the baryon masses. In
RRA, the Casimir energy is the quantity of order N0

c , and
the value is common to all baryon states. Therefore the
addition of this energy does not change the mass splitting,
and one can discuss the mass splitting and the values of the
masses separately. In our approach, the Casimir energy
changes its value according to the baryon states as well
as the shape of the soliton and contributes to the mass
splitting too. Thus, our self-consistent procedure should
include the effect of the Casimir energy to treat the mass
splitting and the masses themselves simultaneously.
However, that is a complicated task to be examined in

detail here, because the simple analytic form of the
Casimir energy is not known.

Instead, we adopt a subtraction method [30] to estimate
the effect. In this method, the unsubtracted mass formula
(17) is replaced by the subtracted one:

TABLE V. Dimensionless effective mass ~meff and parts of the
Hamiltonian for the parameter set (1): classical mass M0, mo-
ments of inertia ��2; �2�, and symmetry breaking �.

(MeV) (10�3=MeV) (MeV)
~meff M0 �2 �2 �

8
N 2.60 2707 6.85 2.10 1628
� 2.92 2770 6.48 1.95 1393
� 3.22 2828 6.19 1.84 1226
� 3.35 2855 6.07 1.79 1159

10
� 2.89 2742 6.89 2.08 1531
�	 3.07 2779 6.69 2.00 1406
�	 3.25 2813 6.51 1.93 1302
	 3.42 2845 6.36 1.87 1216

10
�� 2.69 2647 7.90 2.45 2087
N	

10
2.89 2681 7.63 2.34 1890

�	
10

3.07 2714 7.42 2.25 1732

�	
10

3.25 2746 7.23 2.17 1602

TABLE IV. Baryon mass differences from the nucleon mass
for parameter sets (1), (2), and (3). ‘‘Exp.’’ denotes the experi-
mental values. �Eerr is defined by Eq. (44). Only row of N gives
the absolute values of the nucleon mass. Marks ‘‘	’’ denote the
input values for the energy scales. All units are (MeV).

Set (1) (2) (3) Exp.

�Eerr 90 104 119 —
8
N (abs.) 3618 3483 939* 939
� 187 177 154 183
� 314 310 270 256
� 396 382 326 379

10
� 293* 293* 307 293
�	 445 435 442 445
�	 570 554 551 595
	 672 654 641 733

10
�� 708 483 441 601?
N	

10
888 661 613 ?

�	
10

1022 800 746 ?

�	
10

1059 865 819 ?

TABLE III. Parameter sets. ‘‘Exp.’’ denotes the experimental
values.

Set (1) (2) (3) Exp.

e 3.00 3.40 6.05 —
f� (MeV) 93 147 46 93
m� (MeV) 196 0 56 140
mK (MeV) 1042 616 551 496
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~EB � ~M0 �
e4

2

�
1

~�2 �
1
~�2

�
J�J� 1� �

3e4

8 ~�2

�
e4

2 ~�2
�ESB � E0�; (45)

where the quantity E0 is the lowest eigenvalue of Eq. (18)
corresponding to the vacuumlike state with �I; J; Y; YR� �
�0; 0; 0; 0�. Equation (45) improves the behavior of ~EB by
removing the vacuum fluctuation energy according to the
increase of the symmetry breaking and reproduce the mass
splitting accurately [30].

Table IV shows the baryon masses calculated by
Eq. (45) with parameter sets (2) and (3) given at
Table III. Set (2) fits the N �� mass difference, and
set (3) fits the N mass. Both the parameter sets give the
accurate mass splitting. In addition, Table VI gives the
values of ~meff , M0, �2, �2, and � for set (2), and
Table VII gives those for set (3).

The deformation of the soliton reproduces the mass
splitting accurately for any parameter set given at
Table III, and it has the sizable effects on the 8, 10, and
10 baryons masses as seen from Tables V, VI, and VII.
However the mass splitting is caused by the different terms
of the Hamiltonian according to the parameters. For ex-
ample, the contributions of these terms to the N �� mass
difference are estimated at the difference in
�M0;

1
2�

2!2; 1
2�

2�2; 3
4�qB� calculated to � and N. In

RRA the N �� mass difference is dominated by the
symmetry breaking term. However, in our approach, it is
distributed as follows: (147, 7, 60, 126) (MeV) for set (1),
(51, 11, 72, 254) (MeV) for set (2), and (17, 14, 98,
201) (MeV) for set (3). Therefore the effects of the rotation

and the symmetry breaking mix through the deformation of
the soliton each other, and the sizes of the effects are large.

If the baryon masses are given by parameter set (3), the
10 and 10 baryons are affected obviously by the critical
curve, because the set corresponds to the points (e � 6:17,
~meff � 1:36–1:81) just below the critical curves for 10 and
10 in Fig. 9. Then, as mentioned in Sec. III C, the profile
functions of 8 and 10 are similar to that of case B in Fig. 6,
and the profile functions of 10 are similar to that of case C.

V. SUMMARY

In this paper, we have investigated the profile function of
the SU(3) Skyrmion depending on the octet, decuplet, and
antidecuplet baryon states. The equations of motion for the
profile function are given by the variation of the mean field
Hamiltonian. The Hamiltonian is the expectation value of
the collective Hamiltonian operator for the baryon state
and depends on the profile function itself through the mo-
ments of inertia. Thus, we should solve the equations of
motion self-consistently. As the result, the profile function
is affected by not only the rotation of the Skyrmion but also
the flavor symmetry breaking.

The influence of the symmetry breaking on the profile
function is represented by an effective meson mass which
varies according to the baryon states. The effective mass in
the rigid rotator approach is the pion mass and is usually
small. In our approach, the effective mass can take a value
about the kaon mass and, the qualitatively different behav-
ior of the soliton solution emerges.

In general, the rotation pushes the profile function out of
the center of the soliton, and the symmetry breaking (the
effective meson mass) attracts the profile function. For

TABLE VII. Dimensionless effective mass and parts of the
Hamiltonian for the parameter set (3).

(MeV) (10�3=MeV) (MeV)
~meff M0 �2 �2 �

8
N 1.36 578 4.77 1.85 917
� 1.54 584 4.4 1.67 776
� 1.70 591 4.14 1.54 675
� 1.77 596 4.05 1.49 635

10
� 1.52 606 5.31 2.05 1013
�	 1.63 621 5.1 1.94 902
�	 1.72 640 4.97 1.84 808
	 1.81 660 4.88 1.76 731

10
�� 1.41 613 6.87 2.84 1586
N	

10
1.52 619 6.49 2.66 1433

�	
10

1.62 627 6.20 2.52 1307

�	
10

1.72 640 5.98 2.41 1198

TABLE VI. Dimensionless effective mass and parts of the
Hamiltonian for the parameter set (2).

(MeV) (10�3=MeV) (MeV)
~meff M0 �2 �2 �

8
N 0.84 3200 5.71 2.08 1134
� 0.95 3221 5.33 1.91 990
� 1.05 3241 5.04 1.78 886
� 1.10 3251 4.92 1.73 843

10
� 0.94 3199 5.88 2.15 1181
�	 1.00 3211 5.65 2.04 1092
�	 1.07 3222 5.46 1.96 1018
	 1.12 3234 5.30 1.89 955

10
�� 0.87 3174 7.23 2.74 1693
N	

10
0.94 3180 6.88 2.58 1550

�	
10

1.00 3187 6.59 2.46 1434

�	
10

1.07 3194 6.35 2.35 1338
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small effective mass, these effects are represented by the
single mass scale in the asymptotic form of the profile
function. Then the instability of the soliton appears as the
spontaneous emission of the real meson and restricts the
parameter space of the self-consistent solutions. That is
similar to the result of the SU(2) Skyrmion.

For large effective mass, the influence of the rotation
appears in the three cases. First, the rapid spatial rotation
leads to the large variation of the curvature (F00) of the
profile function at the intermediate radius. Second, the
rapid flavor rotation leads to the negative value of the
curvature at the small radius. Third, the flavor rotation
enhances the effect of the spatial rotation and leads to the
large variation of the curvature at the intermediate radius.
Although the first case is excluded by the self-consistent
calculation, the last two cases can be the self-consistent
solutions and restrict the parameter space.

The independent parameters of the self-consistent solu-
tion are the Skyrme parameter and the effective meson
mass. There are areas of the independent parameters al-
lowed for each multiplet. The allowed value of the Skyrme
parameter for the octet baryons is the largest for all values

of the effective mass, and those for the decuplet and anti-
decuplet baryons change the relative size according to the
effective mass. At the large effective mass, the allowed
value of the Skyrme parameter for the antidecuplet baryons
is smaller than those for the octet and decuplet baryons.

The baryon masses are evaluated by the unsubtracted
mass formula and the subtracted one, respectively. Then,
the deformation of the soliton reproduces the baryon mass
splitting accurately with both the mass formulas and has
the sizable effects on the baryon masses. Therefore the
effects of the rotation and the symmetry breaking cannot
separate clearly.

The subtracted mass formula can reproduce not only the
mass splitting but also the observed masses, though the
pion decay constant is too small. Since the formula is
inspired by the Casimir effect, the Casimir energy should
be investigated for our self-consistent procedure to solve
the problem of the small pion decay constant. It remains as
a matter to be researched further.

Other physical properties (e.g. magnetic moment,
charge radius, etc.) are affected by the deformation. The
study in this direction is in progress.
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