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We provide a comprehensive, up-to-date analysis of possible new physics contributions to the mass
difference �MD in D0- �D0 mixing. We consider the most general low-energy effective Hamiltonian and
include leading-order QCD running of effective operators. We then explore an extensive list of possible
new physics models that can generate these operators, which we organize as including extra fermions,
extra gauge bosons, extra scalars, extra space dimensions and extra symmetries. For each model we place
restrictions on the allowed parameter space using the recent evidence for observation of D meson mixing.
In many scenarios, we find strong constraints that surpass those from other search techniques and provide
an important test of flavor-changing neutral currents in the up-quark sector. We also review the recent
BABAR and Belle findings, and describe the current status of the standard model predictions of D0- �D0

mixing.
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I. INTRODUCTION

Meson-antimeson mixing has traditionally been of im-
portance because it is sensitive to heavy degrees of free-
dom that propagate in the underlying mixing amplitudes.
Estimates of the charm-quark and top-quark mass scales
were inferred from the observation of mixing in the K0 and
Bd systems, respectively, before these particles were dis-
covered directly.

This success has motivated attempts to indirectly detect
new physics (NP) signals by comparing the observed me-
son mixing with predictions of the standard model (SM).
Mixing in the Kaon sector has historically placed stringent
constraints on the parameter space of theories beyond the
SM and provides an essential hurdle that must be passed in
the construction of models with NP. However, anticipated
breakthroughs from the B factories and the Tevatron col-
lider have not been borne out—the large mixing signal in
the Bd and Bs systems is successfully described in terms of
the SM alone (although the parameter spaces of various NP
models have become increasingly constrained). Short of
awaiting the Large Hadron Collider beauty experiment
(LHCb) and the construction of a super-B facility, there
is one remaining example for possibly observing indirect
signs of NP in meson mixing, the D0 flavor oscillations. In
this case, the SM mixing rate is sufficiently small that the
NP component might be able to compete [1]. There has
been a flurry of recent experimental activity regarding the
detection of D0- �D0 mixing [2–5], which marks the first
time flavor-changing neutral currents (FCNC) have been
observed in the charged �2=3 quark sector. With the
potential window to discern large NP effects in the charm
sector [6,7] and the anticipated improved accuracy for
future mixing measurements, the motivation for a compre-
hensive up-to-date theoretical analysis of new physics
contributions to D meson mixing is compelling.

A. Observation of charm mixing

The heightened interest in D0- �D0 mixing started with
the almost simultaneous observations by the BABAR [2]
and Belle [3] Collaborations of nonzero mixing signals at
about the percent level,1

 y0D � �0:97� 0:44� 0:31� � 10�2 �BABAR�; (1)

 y�CP�D � �1:31� 0:32� 0:25� � 10�2 �Belle�: (2)

This was soon followed by the announcement by the Belle
Collaboration of mixing measurements from the Dalitz
plot analyses of D0 ! KS�

��� [4],

 xD � �0:80� 0:29� 0:17� � 10�2;

yD � �0:33� 0:24� 0:15� � 10�2:
(3)

A preliminary fit to the current database2 by the Heavy
Flavor Averaging Group (HFAG) gives [8]

 xD � 8:7�3:0
�3:4 � 10�3; yD � �6:6� 2:1� � 10�3: (4)

Since this paper addresses the issue of the mass splitting
induced by mixing, our primary concern is with the signal
for xD, seen here to be a 2.4 sigma effect. This is below the
generally accepted threshold for ‘‘evidence’’ and is more in
the nature of a ‘‘hint.’’ However, we note that a 2.4 sigma
effect will automatically have a nonzero lower bound at
95% confidence level. For the sake of reference, we cite the
one-sigma window for the HFAG value of xD,

1Our definitions of the mixing parameters xD, yD, y0D, and y�CP�D
are standard and are given in Eqs. (11) and (12).

2An updated fit [8] gives the values xD � 8:4�3:2
�3:4 � 10�3,

yD � �6:9� 2:1� � 10�3. These are essentially unchanged
from the HFAG preliminary results given above and used in
our analysis; the difference will not affect our numerical results.
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5:4� 10�3 < xD < 11:7� 10�3 �one-sigma window�;

(5)

or equivalently for �MD itself,

 8:7� 10�15 GeV<�MD < 1:9� 10�14 GeV

�one-sigma window�:
(6)

Let us briefly describe our strategy for dealing with the
above HFAG values in light of both SM and NP contribu-
tions. We shall argue in Sec. III that the SM predictions,
although indeed compatible with the observed range of
values for the D mixing parameters, contain significant
hadronic uncertainties. Moreover, we do not know the
relative phase between the SM contribution and that
from any NP model, so that xD will lie between the extreme
limiting cases of constructive and destructive interference.
In addition, since the observation of D mixing is new, the
measurements will fluctuate with future refinements in the
analyses and as more data is collected. To best deal with
these realities, we will present our results by displaying a
given NP prediction as a pure NP signal (i.e. as if there
were no SM component) and for comparison, display
curves of constant xD for the five values
 

xD � 15:0� 10�3; 11:7� 10�3; 8:0� 10�3;

5:0� 10�3; 3:0� 10�3: (7)

This (approximately HFAG 2�) range reveals the sensitiv-
ity of xD to variations in the underlying NP parameter
space. We will then show the present constraints placed
on the NP model parameter space, by assuming that the NP
contribution cannot exceed the 1� upper bound on xD. This
procedure mirrors that which is traditionally employed in
obtaining bounds on NP from K0 � �K0 mixing.

B. New physics possibilities

D0- �D0 mixing at the observed level is much larger than
the quark-level (‘‘short-distance’’) SM prediction [9] but is
in qualitative accord with hadron-level (‘‘long-distance’’)
SM expectations. However, because the latter are beset
with hadronic uncertainties, it cannot be rigorously con-
cluded that only SM physics is being detected. In this
paper, we will consider a broad menu of NP possibilities.
As the operation of the LHC looms near, the number of
potentially viable NP models has never been greater. Our
organizational approach to analyzing these is to address NP
models with:

(1) Extra fermions (Sec. IV).
(A) Fourth generation.
(B) Heavy vectorlike quarks.

(1) Q � �1=3 singlet quarks.
(2) Q � �2=3 singlet quarks.

(C) Little Higgs models.
(2) Extra gauge bosons (Sec. V).

(A) Generic Z0 models.
(B) Family symmetries.
(C) Left-right symmetric model.
(D) Alternate left-right models from E6 theories.
(E) Vector leptoquark bosons.

(3) Extra scalars (Sec. VI).
(A) Flavor-conserving two-Higgs-doublet

models.
(B) Flavor-changing neutral Higgs models.
(C) Scalar leptoquark bosons.
(D) Higgsless models.

(4) Extra space dimensions (Sec. VII).
(A) Universal extra dimensions.
(B) Split fermion models.
(C) Warped geometries.

(5) Extra symmetries (Sec. VIII).
(A) Minimal supersymmetric standard model.
(B) Quark-squark alignment models.
(C) Supersymmetry with R-parity violation.
(D) Split supersymmetry.

In the above, we have chosen to consider only supersym-
metry in Sec. VIII due to its extensive literature and to
cover other extended symmetries elsewhere in the paper.

Any NP degree of freedom will generally be associated
with a generic heavy mass scale M, at which the NP
interaction will be most naturally described. At the scale
mc of the charm mass, this description will have been
modified by the effects of QCD. These should not be
neglected, so we perform our NP analyses at one-loop level
for the strong interactions. The theoretical background for
this is presented in Sec. II.

Finally, in order to place the NP discussion within its
proper context, it makes sense to first review SM charm
mixing. This is done in Sec. III. The remainder of the paper
then amounts to considering charm mixing with lots of
‘‘extras.’’ The paper concludes in Sec. IX with a summary
of our findings.

C. Basic formalism

Let us first review some formal aspects of charm mixing.
The mixing arises from j�Cj � 2 interactions that gener-
ate off-diagonal terms in the mass matrix for D0 and �D0

mesons. The expansion of the off-diagonal terms in the
neutral D mass matrix to second order in the weak inter-
action is

 

�
M�

i
2

�
�

21
�

1

2MD
h �D0jHj�Cj�2

w jD0i

�
1

2MD

X
n

h �D0jHj�Cj�1
w jnihnjHj�Cj�1

w jD0i

MD�En� i�
;

(8)

where Hj�Cj�2
w and Hj�Cj�1

w are the effective j�Cj � 2 and
j�Cj � 1 Hamiltonians.
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The off-diagonal mass-matrix terms induce mass eigen-
states D1 and D2 that are superpositions of the flavor
eigenstates D0 and �D0,

 D1
2
� pD0 � q �D0; (9)

where jpj2 � jqj2 � 1. The key quantities in D0 mixing
are the mass and width differences,

 �MD � M1 �M2 and ��D � �1 � �2; (10)

or equivalently their dimensionless equivalents,

 xD �
�MD

�D
; and yD �

��D

2�D
; (11)

where �D is the average width of the two neutral D meson
mass eigenstates. Two quantities, y�CP�D and y0D, which are
actually measured in most experimental determinations of
��D, are defined as
 

y�CP�D � ��� � ���=��� � ���

� yD cos�� xD sin�
�
Am
2
� Aprod

�
;

y0D � yD cos�K� � xD sin�K�;

(12)

where the transition rates �� pertain to decay into final
states of definite CP, Aprod � �ND0 � N �D0�=�ND0 � N �D0�

is the so-called production asymmetry of D0 and �D0 (giv-
ing the relative weight of D0 and �D0 in the sample) and
�K� is the strong phase difference between the Cabibbo
favored and double Cabibbo suppressed amplitudes [10].
The quantities Am and � account for the presence of CP
violation in D0- �D0 mixing, with Am being related to the
q; p parameters of Eq. (9) as Am � jq=pj2 � 1 and � a
CP-violating phase of M21 (if one neglects direct CP
violation) [11]. In practice, yCP is measured by comparing
decays of D0 into a state of definite CP, such as K�K�, to
decays of D0 into a final state which is not a CP eigenstate
(such as K�) whereas y0 is extracted from a time-
dependent analysis of the D! K� transition [11].

The states D1
2

allow for effects of CP violation. How-
ever, CP violation in D0 mixing is negligible in the stan-
dard model and there is no evidence for it experimentally
[2,12,13]. Many new physics scenarios contain new phases
which can induce sizable CP violation in the D meson
sector. Nonetheless, a thorough investigation of such ef-
fects is beyond the scope of the present paper. Therefore,
we shall work in the limit of CP invariance (so that p � q)
for the remainder of this paper. Throughout, our phase
convention will be

 C PD0 � � �D0: (13)

Then D1
2

become the CP eigenstates D� with CPD� �

�D�.
Keeping in mind the neglect of CP violation and also the

phase convention of Eq. (13), we relate the mixing quan-

tities xD and yD to the mixing matrix as
 

xD �
1

2MD�D
Re
�

2h �D0jHj�Cj�2jD0i

� h �D0ji
Z

d4xTfH j�Cj�1
w �x�H j�Cj�1

w �0�gjD0i

�
;

yD �
1

2MD�D
Imh �D0ji

Z
d4xTfH j�Cj�1

w �x�

�H j�Cj�1
w �0�gjD0i; (14)

where H j�Cj�1
w �x� is the weak Hamiltonian density for

j�Cj � 1 transitions and T denotes the time-ordered prod-
uct. There is no contribution to yD from the local j�Cj � 2
term, as it has no absorptive part. New physics contribu-
tions to yD have already been addressed in Ref. [14], so the
primary thrust of this paper will be to focus on xD.

The next step, in Sec. II, is to expand the time-ordered
product of Eq. (14) in local operators of increasing dimen-
sion (higher dimension operators being suppressed by
powers of �QCD=mc).

II. GENERIC OPERATOR ANALYSIS OF D0- �D0

MIXING

Though the particles present in models with new physics
may not be produced in charm-quark decays, their effects
can nonetheless be seen in the form of effective operators
generated by the exchanges of these new particles. Even
without specifying the form of these new interactions, we
know that their effect is to introduce several j�Cj � 2
effective operators built out of the SM degrees of freedom.

A. Operator product expansion and renormalization
group

By integrating out new degrees of freedom associated
with new interactions at a scale M, we are left with an
effective Hamiltonian written in the form of a series of
operators of increasing dimension. Operator power count-
ing then tells us the most important contributions are given
by the operators of the lowest possible dimension, d � 6 in
this case. This means that they must contain only quark
degrees of freedom. Realizing this, we can write the com-
plete basis of these effective operators, which can be done
most conveniently in terms of chiral quark fields,

 hfjH NPjii � G
X
i�1

Ci���hfjQijii���; (15)

where the prefactor G has the dimension of inverse-
squared mass, the Ci are dimensionless Wilson coeffi-
cients,3 and the Qi are the effective operators:

3Throughout this paper, we shall denote Wilson coefficients
for j�Cj � 1 operators as fcig and those for j�Cj � 2 operators
as fCig.
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Q1 � � �uL��cL�� �uL�
�cL�; Q2 � � �uL��cL�� �uR�

�cR�;

Q3 � � �uLcR�� �uRcL�; Q4 � � �uRcL�� �uRcL�;

Q5 � � �uR���cL�� �uR���cL�;

Q6 � � �uR��cR�� �uR��cR�; Q7 � � �uLcR�� �uLcR�;

Q8 � � �uL���cR�� �uL���cR�: (16)

In total, there are eight possible operator structures that
exhaust the list of possible independent contributions to
j�Cj � 2 transitions. Since these operators are generated
at the scale M where the new physics is integrated out, a
nontrivial operator mixing can occur when we take into
account renormalization group running of these operators
between the scales M and �, with � being the scale where
the hadronic matrix elements are computed. We shall work
at the renormalization scale � � mc ’ 1:3 GeV. This evo-
lution is determined by solving the renormalization group
(RG) equations obeyed by the Wilson coefficients,

 

d
d log�

~C��� � �̂T ~C���; (17)

where �̂ represents the matrix of anomalous dimensions

of the operators in Eq. (16) (note the transposition).
Equation (17) can be solved by transforming to the basis
where the transpose of the anomalous dimension matrix is
diagonal, integrating, and then transferring back to the
original basis ~Ci. At leading order, we have

 

~C��� � Û��;M� ~C�M�; (18)

where U��;M� is the evolution matrix, obtained from
Eq. (17) by

 Û��1; �2� � V̂	r��1; �2�
~��0�=2	0
DV̂

�1: (19)

In the above, ~��0� is the vector containing the diagonal
elements of the diagonalized transposed matrix of the
anomalous dimensions �̂T , V̂ is the matrix that diagonal-
izes �̂T , and

 r��1; �2� �

s��1�


s��2�
: (20)

For completeness, we display the matrix of anomalous
dimensions at leading order (LO) in QCD [15],

 �̂ �

6� 6
Nc

0 0 0 0 0 0 0

0 6
Nc

12 0 0 0 0 0

0 0 �6Nc �
6
Nc

0 0 0 0 0

0 0 0 6� 6Nc �
6
Nc

1
2�

1
Nc

0 0 0

0 0 0 �24� 48
Nc

6� 2Nc �
2
Nc

0 0 0

0 0 0 0 0 6� 6
Nc

0 0

0 0 0 0 0 0 6� 6Nc �
6
Nc

1
2�

1
Nc

0 0 0 0 0 0 �24� 48
Nc

6� 2Nc �
2
Nc

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

We note that Ref. [15] also includes the next-to-leading-
order (NLO) expressions for the elements in the anomalous
dimensions matrix. However, we perform our calculations
at LO here since the NLO corrections to the matching
conditions in the various models of new physics have
generally not been computed.

Because of the relatively simple structure of �̂, one can
easily write the evolution of each Wilson coefficient in
Eq. (15) from the new physics scale M down to the
hadronic scale �, taking into account quark thresholds.
Corresponding to each of the eight operators fQig (i �
1; . . . ; 8) is an RG factor ri��;M�. The first of these,
r1��;M�, is given explicitly by

 r1��;M� �
�

s�M�

s�mt�

�
2=7
�

s�mt�


s�mb�

�
6=23

�

s�mb�


s���

�
6=25

;

(21)

and the rest can be expressed in terms of r1��;M� as

 

r2��;M� � 	r1��;M�
1=2;

r3��;M� � 	r1��;M�
�4;

r4��;M� � 	r1��;M�

�1�

������
241
p

�=6;

r5��;M� � 	r1��;M�
�1�
������
241
p

�=6;

r6��;M� � r1��;M�;

r7��;M� � r4��;M�;

r8��;M� � r5��;M�:

(22)

The RG factors are generally only weakly dependent on the
NP scale M since it is taken to be larger than the top quark
mass,mt, and the evolution of 
s is slow at these high mass
scales. In Table I, we display numerical values for the
ri��;M� with M � 1, 2 TeV, and � � mc ’ 1:3 GeV.
Here, we compute 
s using the one-loop evolution and
matching expressions for perturbative consistency with the
RG evolution of the effective Hamiltonian.
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B. Operator matrix elements

We will need to evaluate the D0-to- �D0 matrix elements
of the eight dimension-six basis operators. In general, this
implies eight nonperturbative parameters that would have
to be evaluated by means of QCD sum rules or on the
lattice. We choose those parameters (denoted by fBig) as
follows,

 hQ1i �
2

3
f2

DM
2
DB1; hQ2i � �

5

6
f2

DM
2
DB2;

hQ3i �
7

12
f2

DM
2
DB3; hQ4i � �

5

12
f2

DM
2
DB4;

hQ5i � f2
DM

2
DB5; hQ6i �

2

3
f2

DM
2
DB6;

hQ7i � �
5

12
f2

DM
2
DB7; hQ8i � f2

DM
2
DB8;

(23)

where hQii � h �D0jQijD
0i, and fD represents the D meson

decay constant. By and large, the compensatory B factors
fBig are unknown, except in vacuum saturation and in the
heavy quark limit; there, one has Bi ! 1.

Since most of the matrix elements in Eq. (23) are not
known, we will need something more manageable in
order to obtain numerical results. The usual approach to
computing matrix elements is to employ the vacuum satu-
ration approximation. However, because some of the
B parameters are known, we would like to introduce a
‘‘modified vacuum saturation’’ (MVS), where all matrix
elements in Eq. (23) are written in terms of (known) matrix
elements of �V � A� � �V � A� and �S� P� � �S� P�
matrix elements BD and B�S�D ,

 hQ1i �
2

3
f2

DM
2
DBD;

hQ2i � �
1

2
f2

DM
2
DBD �

1

Nc
f2

DM
2
D

�B�S�D ;

hQ3i �
1

4Nc
f2

DM
2
DBD �

1

2
f2

DM
2
D

�B�S�D ;

hQ4i � �
2Nc � 1

4Nc
f2

DM
2
D

�B�S�D ; hQ5i �
3

Nc
f2

DM
2
D

�B�S�D ;

hQ6i � hQ1i; hQ7i � hQ4i; hQ8i � hQ5i;

(24)

where we denote Nc � 3 as the number of colors and, as in
Ref. [9], define

 

�B �S�D � B�S�D �
M2

D

�mc �mu�
2 (25)

as well as

 � �
�B�S�D

BD
: (26)

In our numerical work, we take B�S�D � BD � 0:82,
which is the most recent result from the quenched lattice
calculation [16], and use the CLEO-c determination fD �
222:6� 16:7�2:3

�2:4 MeV [17]. We urge the lattice commun-
ity to perform an evaluation of the fBig parameters defined
in Eq. (23) for the full operator set relevant to D meson
mixing.

III. STANDARD MODEL ANALYSIS

Theoretical predictions of xD and yD within the standard
model span several orders of magnitude. Roughly, there are
two approaches, neither of which give very reliable results
because mc is in some sense intermediate between the
heavy-quark and light-quark limits. Consider, for example,
��D as given in Eq. (14)

 ��D �
1

MD
Imh �D0ji

Z
d4xTfH j�Cj�1

w �x�H j�Cj�1
w �0�gjD0i:

To utilize this relation, one inserts intermediate states
between the j�Cj � 1 weak Hamiltonian densities
H j�Cj�1

w . This can be done using either quark or hadron
degrees of freedom. Let us consider each of these possi-
bilities in turn.

A. Quark-level analysis

The ‘‘inclusive’’ (or quark-level) approach is based on
the operator product expansion (OPE). In the mc � �
limit, where � is a scale characteristic of the strong inter-
actions, �M and �� can be expanded in terms of matrix
elements of local operators [1,18] of increasing dimensions
suppressed by powers of inverse charm-quark mass. An
instructive example concerns a recent analysis of the lead-
ing dimension D � 6 case [9] in which the width differ-
ence yD is calculated in terms of quarks (cf. Fig. 1) and the
mass difference xD is then found from dispersion relations.
The calculation is carried out as an expansion in QCD,
including leading-order O�
0

s� and next-to-leading-order
O�
1

s� contributions with

FIG. 1 (color online). Loop diagram for D0 ! �D0.

TABLE I. Dependence of the RG factors on the heavy mass
scale M.

M (TeV) r1�mc;M� r2�mc;M� r3�mc;M� r4�mc;M� r5�mc;M�

1 0.72 0.85 3.7 0.41 2.2
2 0.71 0.84 4.0 0.39 2.3
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 xD � x�LO�
D � x�NLO�

D and yD � y�LO�
D � y�NLO�

D : (27)

Here, LO and NLO denote only the corrections at that
order and not the full quantity computed to that order.
Because mb >MD, ��D experiences no b-quark contribu-
tion.4 This leaves only s�s, d �d, and s �d� d �s intermediate
states contributing to the mixing diagram of Fig. 1. Taking
md � 0, the mixing loop functions will depend on z �
m2
s=m

2
c ’ 0:006. Table II examines in detail the

loop functions for ��D and shows the results of carrying
out an expansion in powers of z. We see that the contribu-
tions of the individual intermediate states in the mixing
diagram are not intrinsically small—in fact, they begin to
contribute at O�z0�. However, flavor cancellations remove
all contributions through O�z2� for ��D, so the net result is
O�z3�. Charm mixing clearly experiences a remarkable
Glashow-Iliopoulos-Maiani (GIM) suppression. The cor-
responding result for �MD turns out to be O�z2�.
Summarizing, the leading dependences in z for the
dimension-six contributions are

 

y�LO�
D 
 z3 x�LO�

D 
 z2

y�NLO�
D 
 z2 x�NLO�

D 
 z2:
(28)

The source of this z dependence is understood as follows.
The mixing amplitude is known to vanish in the md �
ms � 0 limit, so the breaking of chiral symmetry and of
SU�3� flavor symmetry play crucial roles. Thus, a factor of
m2
s comes from an SU�3� violating mass insertion on each

internal quark line and another from an additional mass
insertion on each line to compensate the chirality flip from
the first insertion. This mechanism of chiral suppression
accounts for the z2 dependence of x�LO�

D , y�NLO�
D , and x�NLO�

D .
The case of y�LO�

D requires yet another factor ofm2
s to lift the

helicity suppression for the decay of a pseudoscalar meson
into a massless fermion pair.

Let us next display the LO expressions for yD and xD (to
leading order also in z) [9],

 

y�LO�	z3

D �

G2
Fm

2
cf2

DMD

3��D
�2
sz

3�c2
2 � 2c1c2 � 3c2

1�

�

�
BD �

5

2
�B�S�D

�
;

x�LO�	z2

D �

G2
Fm

2
cf

2
DMD

3�2�D
�2
sz2

�
c2

2BD �
5

4
�c2

2 � 2c1c2

� 3c2
1�

�B�S�D

�
;

(29)

where �s � VusV�cs, and c1;2 are the relevant Wilson coef-
ficients. For our numerical computations, we adopt the
values used in Ref. [9],
 

mc � 1:3 GeV; c1 � �0:411;

c2 � 1:208; 
s � 0:406:
(30)

Numerical results for the LO and NLO contributions,
where a discussion of the NLO effects can be found in
Ref. [9], (cf. Table III) reveal that yD is given by yNLO to a
reasonable approximation (due to the z dependence dis-
cussed above) whereas xD is greatly affected by destructive
interference between xLO and xNLO. The net effect is to
render yD and xD of similar small magnitudes, at least
through this order of analysis.

The quark-level prediction of xD and yD just described is
a result of expanding in terms of three ‘‘small’’ quantities,
z, �=mc, and 
s. As a consequence, the use of an OPE to
describe charm mixing is not entirely straightforward be-
cause terms suppressed by higher powers of mc could
nevertheless be important if they contained relatively fewer
powers of ms. However, at the next orders in the OPE one
encounters O�z3=2� corrections multiplied by about a dozen
matrix elements of dimension-nine operators and O�z�
corrections with more than 20 matrix elements of
dimension-twelve operators. This introduces a multitude
of unknown parameters for matrix elements that cannot be
computed at this time. Simple dimensional analysis [19]
suggests the magnitudes xD 
 yD 
 10�3, although order-
of-magnitude cancellations or enhancements are possible.5

TABLE II. Flavor cancellations in ��D.

Int. State O�z0� O�z1� O�z2�

s �s 1=2 �3z 3z2

d �d 1=2 0 0
s �d� d�s �1 3z �3z2

Total 0 0 0

TABLE III. Results at dimension six in the OPE.

LO NLO
LO� NLO

(central values)

yD ��5:7! 9:5� � 10�8 �3:9! 9:1� � 10�7 ’ 6� 10�7

xD ��1:4! 2:4� � 10�6 �1:7! 3:0� � 10�6 ’ 6� 10�7

4We ignore here the b-quark contribution to �MD; its numeri-
cal contribution is subleading (jVudVcdj ’ jVusVcsj ’ 0:22
whereas jVubVcbj ’ 1:8� 10�4).

5Any effect of higher orders in 1=mc or 
s�mc� which could
produce a zn contribution in the lowest possible power n � 1
could yield a dominant contribution to the prediction of xD and
yD [20,21]. Although the BABAR and Belle observations of y

10�2 could be ascribed to a breakdown of the OPE or of duality,
it is clear that such a large value of yD is by no means a generic
prediction of OPE analyses.
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B. Hadron-level analysis

The D meson mass is not very large, so one might
question whether the OPE approach discussed in the pre-
vious subsection can successfully describe D0- �D0 mixing.
This is especially so since the leading contribution in the
SU�3�-breaking parameter ms enters only as a �4=m4

c
suppressed contribution in the 1=mc expansion, which
implies that one has to deal with a large number of un-
known operator matrix elements.

As an alternative, one might consider saturating the
correlation functions of Eq. (14) with exclusive hadronic
states, switching to a purely hadronic description. This
approach should be valid as the mass of the D meson lies
in the middle of a region populated by excited light-quark
states. In principle, this ‘‘exclusive’’ (or hadronic) ap-
proach should sum over all possible intermediate hadronic
multiplets. Since one has to deal with off-shell hadronic
states in the calculation of xD, some modeling is neces-
sarily involved. By contrast, a calculation of yD in this
approach is less model dependent. The usual approach to
computing xD is to first calculate yD and then use a disper-
sion relation to obtain xD. This is appropriate, as the
contribution due to b-flavored intermediate states (which
appears in xD but not yD) is negligibly small.

One possible approach would be to select a set of, say,
two-body intermediate states,6 and write their contribution
to mixing in terms of charged pseudoscalar (P�P�)
branching fractions [23,24],

 y�P
�P��

D � B	D0!K�K�
 �B	D0!����


� 2 cos�K�	B	D0!K���
B	D0!K���


1=2; (31)

where �K� is as in Eq. (12). One can use available experi-
mental data on two-body branching ratios to estimate their
contribution to yD. A dispersion relation then relates yD to
xD. However, the example above explicitly shows the
cancellations between states that are present within a given
SU�3� multiplet. Such cancellations make this procedure
very sensitive to experimental uncertainties. One would
need to know the contribution of each decay mode with
extremely high precision, and that is simply not feasible at
this time. Another possibility is to model j�Cj � 1 decays
theoretically [25]. In this reference, ��D was determined
in this manner and the result yD ’ 10�3 was found. This
result is, however, smaller than the recent BABAR and
Belle observations.

Clearly, D0 is not sufficiently light for its decays to be
dominated by just two-body final states. Multiparticle in-
termediate states must also be taken into account in D0- �D0

mixing calculations. In doing so, it is convenient to calcu-

late the contribution of each SU�3� multiplet separately, as
SU�3� symmetry produces substantial cancellations among
members of the same multiplet as we saw above. This can
be thought of as a long-distance version of the GIM
mechanism. The surviving contribution is expected to be
of second order in the SU�3�-breaking parameter ms [20].
Denoting by yFR a value that y would take if elements of
the final state F belonging to SU�3� representation R, or
FR, were the only channels open forD decay, one can write
yD as a sum over all possible FR’s weighted by theD-decay
rate to each representation,

 yD �
1

�D

X
FR

yFR

� X
n2FR

��D! n�
�
: (32)

It is possible to show that yFR can be computed as [20]

 yFR �

P
n2FR

h �D0jH wjnihnjH wjD0iP
n2FR

hD0jH wjnihnjH wjD0i
: (33)

It should be noted that in the limit of CP conservation and
retaining phase space differences as the only source of
SU�3� breaking [i.e. neglecting SU�3� breaking in the
matrix elements], yFR can be computed without any had-
ronic parameters. This is an appropriate approximation, as
the main contribution comes from the multiparticle (four-
particle) intermediate state multiplets. For those states,
there are multikaon modes which are kinematically forbid-
den. In such cases, phase space effects alone can provide
enough SU�3� violation to induce yD 
 10�2 [20]. In other
words, such large effects in yD appear for decays near theD
threshold, where an analytic expansion in SU�3� violation
is no longer possible. It is interesting that such effects from
multiparticle states are not reproduced in the OPE calcu-
lation, as the resulting contribution does not come from
short distances.

The use of a dispersion relation for xD then suggests it
would receive contributions of a similar order of magni-
tude as those for yD [26]. An important difference between
the resulting values of xD and yD is that even retaining
phase space differences as the sole contributor to SU�3�
breaking does not insure cancellation of the hadronic ma-
trix elements. However, with some reasonable model-
dependent assumptions, one arrives at the conclusion that
xD 
 yD 
 1% [26]. It is thus reasonable to believe that the
observed D0- �D0 mixing is reflecting standard model
contributions.

C. Comments

The above discussions show that, contrary to the B
system, standard model estimates of xD and yD for the
charm system contain significant intrinsic uncertainties.
On the other hand, SM values near those found by
BABAR and Belle cannot be ruled out. Therefore, it will
be difficult to attribute a clear indication of new physics to

6The simplest intermediate state is a single-particle resonance
contribution. Preliminary estimates of resonance contributions to
D0- �D0 mixing appear to be small [22], although much remains to
be learned about the resonance spectrum in the vicinity of the D0

mass.
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D0- �D0 mixing measurements alone. This means that the
only robust signal of new physics in the charm system
would be the observation of large CP violation, which
we will not consider here. Nonetheless, a thorough analysis
of indirect new physics contributions is of value, and we
find that large regions of parameter space can be excluded
in many models, placing additional restrictions on model
building. This will be useful in conjunction with corre-
sponding direct searches for new physics at the LHC.

In what follows, we will take the approach that the new
physics contributions cannot exceed the 1� experimental
upper bound for xD. Keeping in mind that this upper limit is
likely to change as data samples increase and analyses
mature, we also display the effects of xD < �15:0; 8:0;
5:0; 3:0� � 10�3 on the parameter space of new physics
scenarios. These values are to be used as a guide for how
our resulting constraints may change in the future. In
addition, we will neglect the errors on the determinations
of theDmeson decay constant and B factors; this will have
a small effect on our results given the present large uncer-
tainty in the experimental determination of D0- �D0 mixing.
In all cases, we will neglect the possibility of interference
between the SM and new physics contributions. We now
turn to the examination of various scenarios for physics
beyond the SM.

IV. EXTRA FERMIONS

The quark sector of the standard model can be modified
in several ways, and new fermions are predicted to exist in
many extensions of the SM. They can be classified accord-
ing to their electroweak quantum number assignments;
here we consider the possibilities of a sequential fourth
generation quark doublet (Sec. IVA), heavy-quark isosing-
lets (Sec. IV B) and non-SM quarks associated with little
Higgs models (Sec. IV C). The contributions of such heavy
quarks can remove the efficient GIM cancellation inherent
in the short-distance SM computation and can give rise to
D0- �D0 mixing at the level of the current experimental
limit.

A. Fourth generation quark doublet

A simple extension to the standard model is the addition
of a fourth family of fermions. Precision electroweak data
severely constrains this possibility. The Particle Data
Group [13] quotes a restriction on the number of families
to be NF � 2:81� 0:24 from the oblique S parameter [27]
alone. We note, however, that the LEP Electroweak
Working Group [28] allows for a more generous range of
the S parameter from their electroweak fit. In either case,
this restriction can be relaxed by allowing the T parameter
to vary as well, or by adding other sources of new physics
which would participate in the electroweak fit such as an
extended Higgs sector [29]. The requirement of anomaly
cancellation implies the existence of a fourth lepton family
as well (almost degenerate to satisfy the �
 constraint with

m�4
>MZ=2) or an extra right-handed quark doublet.

Direct collider searches by the CDF and D0 Col-
laborations at the Tevatron currently place a bound [13]
on the mass of a charged �1=3 fourth generation quark b0

of mb0 > 128, 190, 199 GeV if the b0-quark decays, re-
spectively, via charged current interactions into leptons�
jets, via FCNC with b0 ! bZ, or is quasistable. We recall
that perturbative unitarity considerations [30] in FF ! FF
scattering restricts the mass of sequential heavy flavors to
be mF & 500 GeV.

Here, we review the contribution of a fourth generation
of quarks to D mixing, keeping in mind that some other
new physics may also be present in order to evade the
precision electroweak constraints and that it also may or
may not contribute to the mixing. The primary motivation
for this discussion is to set up the formalism that will be
used in the following sections.

TheQ � �1=3 fourth generation quark contributes toD
mixing via a box diagram which also contains the SM W�

bosons. Note that since the b0 quark is not kinematically
accessible in charm-quark decay, it will not contribute to
the dispersive amplitude for xD in Eq. (14). The j�Cj � 2
Hamiltonian at the b0 mass scale in the fourth generation
model is [31]

 H 4th �
G2
FM

2
W

4�2

X
i;j

�i�jS�xi; xj�Q1; (34)

where S�xi; xj� are the well-known Inami-Lim functions
[32] (given in the appendix), xi � �mqi=MW�

2, �i �
V�ciVui, and the sum runs over the internal quark flavors.
As discussed in the previous section, there is a strong GIM
cancellation in D meson mixing, which leaves a sizable
contribution only from the heavy b0 quark and sets i � j �
b0 in the above sum. Performing the RG evolution, we
obtain at the scale mc

 H 4th �
G2
FM

2
W

4�2 �2
b0S�xb0 ; xb0 �r1�mc;MW�Q1; (35)

which in turn gives

 x�4th�
D �

G2
FM

2
Wf

2
DMD

6�2�D
BD�2

b0r1�mc;MW�S�xb0 ; xb0 �: (36)

It should be noted that for r1�mc;MW�, only contributions
below MW are required.

The value of x�4th�
D as a function of the Cabibbo-

Kobayashi-Maskawa (CKM) mixing elements is displayed
in Fig. 2 for various values of the b0-quark mass. We see
that the 1� experimental limit of xD < 11:7� 10�3 places
sizable constraints in the b0-quark mixing-mass parameter
space. We also show the exclusion contours for possible
future experimental bounds of xD < �15:0; 8:0; 5:0; 3:0� �
10�3 (corresponding to the blue (dark gray) dashed, red
(gray) dashed, cyan (lightest gray) dotted, and green (light
gray) dot-dashed curves, respectively) as discussed in the
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Introduction. We note that the present constraints on the
CKM mixing parameters jVub0V�cb0 j & 0:002 are an order
of magnitude stronger than those obtained from unitarity
considerations [13] of the CKM matrix.

B. Heavy vectorlike quarks

The next possibility of interest is the presence of heavy
quarks which are SU�2�L singlets (so-called vectorlike
quarks) [33]. We will consider both charge assignments
Q � �2=3 and Q � �1=3 for the heavy quarks. Both
choices are well motivated, as such fermions appear ex-
plicitly in several models of physics beyond the standard
model. For example, weak isosinglets with Q � �1=3
appear in E6 grand unified theories (GUTs) [34,35], with
one for each of the three generations (D, S, and B). Weak
isosinglets with Q � �2=3 occur in little Higgs theories
[36,37] in which the standard model Higgs boson is a
pseudo-Goldstone boson, and the heavy isosinglet T quark
cancels the quadratic divergences generated by the
top quark in the mass of the Higgs boson.

1. Q � �1=3 singlet quarks

We first consider the class of models with Q � �1=3
down-type singlet quarks. For this case, the down-quark
mass matrix is a 4� 4 array if there is just one heavy
singlet (or 6� 6 for three heavy singlets as in E6 models).
As a consequence, the standard 3� 3 CKM matrix is no
longer unitary. Moreover, the weak charged current will
now contain terms that couple up-quarks to the heavy
singlet quarks. For three heavy singlets, we have

 L �ch�
int �

g���
2
p Vi
W� �ui;L��D
; (37)

where ui;L � �u; c; t�L and D
 � �D; S; B� refer to the
standard up-quark and heavy isosinglet down-quark sec-
tors. The fVi
g are elements of a 3� 6 matrix, which is the
product of the 3� 3 and 6� 6 unitary matrices that di-
agonalize the Q � �2=3 and Q � �1=3 quark sectors,
respectively. The resulting box diagram contribution to
�MD from these new quarks is displayed in Fig. 3.
Assuming that the contribution of one of the heavy quarks
(say the S quark) dominates, one can write an expression
[similar to that in Eq. (36)] for xD [31],

 x��1=3�
D ’

G2
FM

2
Wf

2
DMD

6�2�D
BD�V�cSVuS�

2r1�mc;MW�f�xS�;

(38)

where xS � �mS=MW�
2 and f�xS� ! xS�1� 6 ln�xS�� for

large xS. The light-heavy mixing angles jV�cSVuSj
2 should

go as 1=mS for large mS to keep the contribution under
control. The current bound on jV�cSVuSj

2 from unitarity of
the CKM matrix is not very stringent, jV�cSVuSj

2 < 4�
10�4 [13]. An S-quark mass in the range 0.2 to 1 TeV gives
rise to a mixing contribution that can exceed the current
experimental limit in Eq. (4). Hence a singlet heavy quark

uc

u c

W

W

DD

FIG. 3. Box contribution from heavy weak-isosinglet quarks.

FIG. 2 (color online). Left: xD in the four generation model as a function of the CKM mixing factor jV�cb0Vub0 j for b0-quark masses of
200, 300, 400, and 500 GeV from bottom to top. The 1� experimental bounds are as indicated, with the yellow shaded area depicting
the region that is excluded. Right: The present 1� excluded region in the mass-mixing parameter plane, as well as possible future
contours taking xD < �15:0; 8:0; 5:0; 3:0� � 10�3, corresponding to the blue (dark gray) dashed, red (gray) dashed, cyan (lightest gray)
dotted, and green (light gray) dot-dashed curves, respectively.

IMPLICATIONS OF D0- �D0 MIXING FOR NEW . . . PHYSICAL REVIEW D 76, 095009 (2007)

095009-9



of charge �1=3 can give rise to xD near the current
experimental limit.

In the E6-based model proposed by Bjorken et al. [38],
the 6� 6 mass matrix has an especially simple form. The
resulting 6� 6 mass matrix has a pseudo-orthogonality
property which implies that the 3� 3 CKM matrix,
although not unitary, satisfies

 

X3

i�1

�VCKM�
�
bi�VCKM�is � 0: (39)

The analog of this condition in the up-quark sector does not
hold, and as a result, there are no new FCNC effects in the
down-quark sector. For D0- �D0 mixing, the prediction is
now that (recall capital lettering is used to denote the heavy
quark)

 jV�cSVuSj
2 � s2

2jV
�
csVusj2 ’ s2

2�
2; (40)

where jV�csVusj ’ � ’ 0:22 and s2 is the (small) mixing
parameter describing the mixing between the light s quark
and the heavy S quark. Using the experimental values in
Eq. (4), we can place bounds on s2 for a given massmS, e.g.
s2 ’ 0:0009 for mS ’ 0:5 TeV. We present the constraints
on s2 vs mS in Fig. 4.

2. Q � �2=3 singlet quarks

Next, consider the possibility of weak isosinglet quarks
having charge Q � �2=3. These are present in some
theories beyond the SM, including, for example, little
Higgs models which will be discussed in more detail in
the following section. Here, we present the general formal-
ism for this scenario.

The presence of such quarks violate the Glashow-
Weinberg-Paschos naturalness conditions for neutral cur-
rents [39]. Since their electroweak quantum number as-
signments are different than those for the SM fermions,
flavor-changing neutral current interactions are generated
in the left-handed up-quark sector. Thus, in addition to the
charged current interaction

 L �ch�
int �

g���
2
p V
i �u
;L��di;LW�; (41)

there are also FCNC couplings with the Z0 boson [33],

 L �ntl�
int �

g

2
���
2
p

cos�w
�ij �ui;L��uj;LZ0�: (42)

Here, V
i is a 4� 3 mixing matrix with 
 running over
1! 4, i � 1! 3, and with the CKM matrix comprising
the first 3� 3 block. In this case, a tree-level contribution
to �MD is generated from Z0 exchange as shown in Fig. 5.
This is represented by an effective Hamiltonian of the form

 H 2=3 �
g2

8cos2�wM
2
Z

��uc�
2 �uL��cL �uL�

�cL; (43)

where unitarity demands

 �uc � ��V
�
udVcd � V

�
usVcs � V

�
ubVcb�: (44)

Taking the 1� ranges for the experimentally determined
values of the CKM elements [13] yields the constraint
�uc < 0:02. This Hamiltonian is just a particular case of
a more general relation [Eq. (49)] appearing in the follow-
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FIG. 4 (color online). Left: xD in the singlet Q � �1=3 quark model as a function of the singlet quark mass for various values of the
mixing angle s2 � 0:0001, 0.0002, 0.0003 corresponding to the solid, dotted, and dashed curves, respectively. The 1� experimental
bounds are as indicated, with the yellow shaded area depicting the region that is excluded. Right: The present 1� excluded region
(short-dashed curve) in the mass mS and mixing angle s2 parameter plane for the singlet Q � �1=3 quark in the model of Bjorken
et al. [38] described in the text. Possible future contours are also shown, taking xD < �15:0; 8:0; 5:0; 3:0� � 10�3 from top to bottom,
corresponding to the solid, medium-dashed, long-dashed, and longer-dashed curves, respectively.

GOLOWICH, HEWETT, PAKVASA, AND PETROV PHYSICAL REVIEW D 76, 095009 (2007)

095009-10



ing section.7 The QCD running from � � MZ to � � mc
for this effective Hamiltonian is trivial, leading to

 H 2=3 �
g2

8cos2�wM2
Z

��uc�
2r1�mc;MZ�Q1; (45)

where it should be noted that for r1�mc;MZ�, only contri-
butions below MZ are required. This Hamiltonian leads to

 x�2=3�
D �

2GFf
2
DMD

3
���
2
p

�D
BD��uc�2r1�mc;MZ�: (46)

We present this contribution to xD from models with a
singlet Q � 2=3 quark in Fig. 6. Note that the bound on
the mixing �uc from D0- �D0 mixing is roughly 2 orders of
magnitude better than that from unitarity constraints of the
CKM matrix.

C. Little Higgs models

Little Higgs models [36,37,40] feature the Higgs as a
pseudo Nambu-Goldstone boson of an approximate global
symmetry that is broken by a vacuum expectation value
(vev hereafter) at a scale of a few TeV. This approximate
symmetry protects the Higgs vev through one-loop order
relative to the ultraviolet (uv) cutoff of the theory which
appears at a higher scale. The breaking of this symmetry is
realized in such a way that the Higgs mass only receives
quantum corrections at two loops. In these models the one-
loop quadratic divergent contributions to the Higgs mass in
the SM are canceled by a new particle of the same spin.
These models thus predict the existence of new charged
Q � �2=3 vectorlike quarks, gauge bosons, and scalars at
the TeV scale.

The most economical model of this type, in that it
introduces the minimal number of new fields, is known
as the littlest Higgs [36,37]. It is based on a nonlinear
sigma model with SU�5� global symmetry that is broken
to the subgroup SO�5� by a vev f. f is generated by
strongly coupled physics at the uv scale �
 4�f 

10 TeV. The 14 Goldstone bosons remaining after this
symmetry breaking yield a physical doublet and complex

triplet under SU�2�, which remain massless at this stage.
The SU�5� contains a gauged subgroup 	SU�2� �U�1�
2

which is also broken by f to the SM electroweak gauge
group. The remaining four Goldstone bosons are then eaten
by a Higgs-like mechanism and give mass, of order f

1 TeV, to the gauge fields of the broken subgroups. Masses
for the complex triplet are generated at the TeV scale by
one-loop gauge interactions. The neutral component of the
complex doublet plays the role of the SM Higgs, which
receives its mass at two-loops from a Coleman-Weinberg
potential, giving �2 
 f2=16�2. Thus the natural scale for
f is around a TeV; if f is much higher, the Higgs mass must
again be finely tuned and this model no longer addresses
the hierarchy problem.

The minimum physical spectrum of this model below a
TeV is thus that of the SM with a single light Higgs. At the
TeV scale, there are four new gauge bosons (an electro-
weak triplet and singlet), the scalar triplet, and a single
Q � �2=3 vectorlike quark T. Other variants of little
Higgs models may expand this particle content at the
TeV scale.

In general, the new vectorlike T quark can contribute to
D0- �D0 mixing. Since it has different electroweak quantum
numbers from the Q � �2=3 quarks in the SM, FCNC
interactions will be induced in the left-handed up-quark
sector. This generates a tree-level Z boson exchange con-
tribution to D mixing as depicted in Fig. 5. This was
considered in Ref. [41], where a specific ansatz for the 4�
4 up-quark mass matrix was employed, leading to a quite
small contribution to �MD. In general, however, one ex-
pects the quark mixing to be of order v=f and the contri-
bution of the flavor-changing Z interaction induced by the
existence of the T quark can be sizable, as discussed in the
previous section. Current data can be used to constrain the
mass and mixing of the T quark, and the results in Fig. 6 are
applicable in this case. Tree-level contributions to D mix-
ing with the exchange of the new heavy neutral gauge
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FIG. 6 (color online). Value of xD as a function of the mixing
parameter �uc in units of 10�2 in the Q � �2=3 quark singlet
model. The 1� experimental bounds are as indicated, with the
yellow shaded area depicting the region that is excluded.

FIG. 5. Tree-level contribution from Z0 exchange.

7The specific correspondence is CR � 0, C2
L � C2

2=3 �
g2�2

uc=�4cos2�w�, and MZ0 � MZ.
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bosons will likewise be generated, as the fermionic cou-
pling for these fields is also proportional to the fermion’s
third component of weak isospin. The operator structure is
exactly the same as that given in the previous section, but
the magnitude of these contributions will be suppressed
relative to the SM Z boson exchange by the heavy mass of
the new neutral gauge bosons. In addition, there could also
be new contributions to rare D meson decays, as discussed
recently in the work of Chen et al. [42].

It has been shown [43] that a global fit to the precision
electroweak data set places a significant limit, which is
roughly parameter independent, on the vev f in the littlest
Higgs model of f * 4 TeV. Variants of this model, em-
ploying different global symmetries, can reduce this con-
straint somewhat [44]. In addition, a discrete symmetry,
called T parity, can be introduced [45] to alleviate the
electroweak bounds. This symmetry is analogous to
R parity in supersymmetry and has the consequence that
T parity is conserved in interactions and that the lightest T-
odd particle is stable. This provides a natural dark matter
candidate in these models. Recent work by Hill and Hill
[46] has shown that anomalies in topological interactions
can break this discrete symmetry and thus T parity is no
longer an exact symmetry; the resulting phenomenology
has yet to be worked out. However, the uv completion of
the theory may or may not allow for the terms which break
T parity, and thus a general statement on the presence of
this discrete symmetry in the low-energy theory cannot be
made.

In addition to the tree-level contribution discussed
above, little Higgs models with T parity can give rise to
a loop contribution to D0- �D0 mixing involving the ex-
change of the heavy gauge bosons and new mirror fermi-
ons, which are present in this form of the model. In fact,
three vectorlike doublets of mirror fermions are introduced
in little Higgs models with T parity in order to evade
compositeness constraints [45]. The effective Hamil-
tonian relevant to D0- �D0 mixing for this contribution is
[47]

 H LH �
G2
FM

2
W

16�2

v2

f2

X
i;j

��D�i ��D�j FLH�zi; zj�Q1: (47)

Here, ��D� corresponds to the relevant elements of the weak
mixing matrix in the mirror fermion sector which parame-
trizes the flavor interactions between the SM and mirror
fermions. The quantity FH (given in the appendix) is the
loop function computed in Ref. [47]; it depends on zi �
m2
Mi=M

2
WH

, where mMi is the mass of the ith mirror quark
doublet and WH represents the heavy charged gauge boson
mass. The Q1 operator appears since the heavy gauge
bosons WH have purely left-handed interactions. The
RG running of this Hamiltonian is trivial and leads to a
factor of r1�mc;M�. The resulting contribution to the mass
difference is

 x�LH�
D �

G2
FM

2
Wf

2
DMD

24�2�D
BD

v2

f2

X
i;j

��D�i ��D�j FH�zi; zj�r1�mc;M�:

(48)

This has recently been computed in Ref. [48] in light of the
recent experimental measurement of D0- �D0 mixing, where
it is found that this contribution can saturate the experi-
mental bounds.

In little Higgs models with T parity, there is an addi-
tional tree-level contribution arising from the interaction
vertex ZH �qT��� where ZH represents either of the heavy
neutral gauge fields and T��� is the odd T-parity quark. T���

couples to the weak eigenstate of the T-parity even quark
T���, which receives its mass from the same Q � �2=3
Yukawa term that is responsible for the up-quark masses.
This induces mixing between the quarks in the up-quark
sector, resulting in FCNC interactions of the SM quarks
with the exchange of the new heavy neutral gauge fields.
The generic formalism for this contribution will be dis-
cussed in the next section, however this particular contri-
bution is thought to be small [47].

V. EXTRA GAUGE BOSONS

Many theories with physics beyond the SM have ex-
tended electroweak gauge symmetries, whose hallmark are
the existence of new heavy neutral and charged gauge
bosons. We note that scenarios with extended gauge sym-
metries also generally contain new fermions which are
required for anomaly cancellation, as well as an extended
Higgs sector to facilitate the extended symmetry breaking.
The additional heavy gauge bosons are produced directly
at hadron colliders via the Drell-Yan mechanism, and the
search limit on the masses of newW0, Z0 gauge bosons with
SM couplings is approaching 1 TeV from Run II data at the
Tevatron. The lower bound on the mass of a SM-coupled
Z0�W0� is 923(965) GeV from CDF(D0) [49]. The LHC
will be able to search for these particles with masses up to
5 TeV [50]. There are many such models that yield large
FCNC effects in the up-quark sector.

A. Generic Z0 models

It is possible that a new heavy Z0 boson has flavor-
changing couplings in the up-quark sector. Here, we exam-
ine a generic tree-level FCNC interaction that mediates D
mixing via Z0 exchange, analogous to the transition de-
picted in Fig. 5. While the discussion presented here is
quite general, many string-inspired models have extraU�1�
gauge symmetries that lead to extra Z0 bosons with pos-
sible flavor-changing couplings [35,51,52].

The effective four-fermion Hamiltonian just below the
Z0 scale is

 H Z0 �
1

2M2
Z0
	CL

2Q1 � 2CLCRQ2 � CR
2Q6
; (49)
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where the dimensionless flavor-changing couplings CL;R

are the model-dependent inputs to the calculation. This is
the most general effective Hamiltonian and assumes flavor-
changing interactions occur in both the left- and right-
handed sectors. We first perform a general analysis and
will then consider some particular occurrences of a Z0 in
the Sections below.

We introduce the Wilson coefficients C1;2;6�MZ0 � by
matching at the Z0 mass scale,

 C 1�MZ0 � � CL
2; C2�MZ0 � � 2CLCR;

C6�MZ0 � � CR
2;

(50)

with all other Wilson coefficients being zero at this scale.
Assuming that MZ0 >mt and performing the RG running
of Eq. (49), we obtain the effective Hamiltonian at the scale
� � mc,
 

H Z0 �
1

2M2
Z0
	C1�mc�Q1 � C2�mc�Q2 � C3�mc�Q3

� C6�mc�Q6
; (51)

with
 

C1�mc� � r1�mc;MZ0 �C1�MZ0 �;

C2�mc� � r2�mc;MZ0 �C2�MZ0 �;

C3�mc� �
2

3
	r2�mc;MZ0 � � r3�mc;MZ0 �
C2�MZ0 �;

C6�mc� � r6�mc;MZ0 �C6�MZ0 �:

(52)

The presence ofQ3 in Eq. (51) is due to operator mixing in
the RG running. Finally, as a check note that for the case of
no evolution (ri ! 1) we obtain the expected behavior
Ci��� ! Ci�MZ0 �.

Upon evaluating the D0-to- �D0 matrix elements, we ob-
tain the Z0 tree contribution to xD,
 

x�Z
0�

D �
f2
DMD

2M2
Z0�D

BD

�
2

3
�C1�mc� � C6�mc��

� C2�mc�

�
1

2
�
�
3

�
� C3�mc�

�
1

12
�
�
2

��
; (53)

where we have made use of Eqs. (24) and (26).
Equation (53) can be used to relate the input parameters

of Z0 models (CL and CR) to some value of xD. Taking
xD < 11:7� 10�3, particularly simple expressions are ob-
tained for the limiting cases:

(1) CR � 0 (the case with CL replaced by CR yields
identical limits):
 

MZ0

CL
�

�
f2
DMDBDr1�mc;MZ0 �

3xD�D

�
1=2
> 8:9� 105 GeV;

(54)

(2) CL � CR � C:

 

MZ0

C
�

�
f2
DMDBD�
2xD�D

�
1=2
> 3:4� 106 GeV; (55)

where � � j4r1�mc;MZ0 �=3� 8r2�mc;MZ0 �=9�
�1� 6��r3�mc;MZ0 �=9j.

In the above, we have fixed the slowly varying r1�mc;MZ0 �
and ��mc;MZ0 � at the middle of their ranges. The results in
Eqs. (53)–(55) which constrain combinations of the flavor-
changing couplings and the Z0 mass (see Fig. 7), can be
applied to fit the needs of the NP model builder. For
example, in Eq. (54) the choice CL � 1, CR � 0 implies
MZ0 > 8:9� 102 TeV or alternatively taking MZ0 �
1 TeV yields the bound CL < 1:1� 10�3.

B. Family symmetries

One class of new physics possibilities to be explored in
the TeV range is family (horizontal) symmetries. The
gauge sector of the standard model Lagrangian,

 L SM � LQCD �LSU�2��U�1� �LH; (56)

actually exhibits a very large global symmetry viz.
SU�3�L � SU�3�R �U�1� �U�3�L �U�3�R. The hope is
then that some subgroupG of this large symmetry is shared
by the Higgs sector LH and the gauge symmetry of the full
Lagrangian becomes SU�3�C � SU�3�L �U�1�. The
group G acts on the families horizontally [53], and, of
course, eventually G has to be broken, preferably
spontaneously.

The symmetry G can be implemented locally, so there
will be flavor-changing interactions mediated by new
gauge bosons. The symmetry is broken spontaneously,
making the gauge boson massive with new scalar fields
being introduced in addition to the standard Higgs field.

As a prototype, let us consider a very simple model [54].
We consider the group SU�2�G acting only on the first two

2 3 4 5 6
( MZ' / C) × 10 3 TeV

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

x
D

(Z
' )

1−sigma Excluded

FIG. 7 (color online). xD in a generic Z0 model as a function of
the Z0 boson mass (normalized by the flavor-changing coupling
constant) for the case CL � CR � C. The 1� experimental
bounds are as indicated, with the yellow shaded area depicting
the region that is excluded.
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left-handed families [it may be regarded as a subgroup of
an SU�3�G, which is broken]. Spontaneous breaking of
SU�2�G makes the gauge bosons Gi massive. The LH
doublets

 

u0

d0

 !
L and

c0

s0

� �
L
; (57)

transform as IG � 1=2 under SU�2�G, as do the lepton
doublets

 

�0
e

e0

 !
L and

�0
�

�0

 !
L

; (58)

and the right-handed fermions are singlets under SU�2�G.
The superscript refers to the fact that these are weak
eigenstates and not mass eigenstates. The couplings of
fermions to the family gauge bosons G is given by

 L � f	 � d0L�� ~� � ~G� d0L � � u0L�� ~� � ~G� u0L

� � ‘0L�� ~� � ~G� ‘0L
; (59)

where f denotes the coupling strength and ~� are the gen-
erators of SU�2�G. We define the mass basis by

 

d

s

 !
L � Ud

d0

s0

� �
L
;

u
c

� �
L
� Uu

u0

c0

� �
L
;

e
�

� �
L
� U‘

e0

�0

� �
L
:

(60)

In the limit of CP conservation each of the three 2� 2
matrices Ud, Uu, and U‘ is characterized by one angle: �d,
�u, and �‘ (where the Cabibbo angle is �c � �u � �d).
One then finds for the couplings in the fermion mass basis:

 

L � f	G1�fsin2�d� �dL��dL � �sL��sL� � sin2�u� �uL��uL � �cL��cL� � sin2�l� �eL��eL � ��L���L�

� cos2�d� �dL��sL � �sL��dL� � cos2�u� �uL��cL � �cL��uL� � cos2�l� �eL���L � ��L��eL�g

� iG2�f��sL��dL � �dL��sL� � � �cL��uL � �uL��cL� � � ��L��eL � �eL���L�g �G3�fcos2�d� �dL��dL � �sL��sL�

� cos2�u� �uL��uL � �cL��cL� � cos2�l� �eL��eL � ��L���L� � sin2�d� �dL��sL � �sL��dL�

� sin2�u� �uL��cL � �cL��uL� � sin2�l� �eL���L � ��L��eL�g
: (61)

For simplicity we assume that after symmetry breaking the
gauge boson mass matrix is diagonal to a good approxi-
mation in which case Gi� are physical eigenstates and any
mixing between them is neglected. This Lagrangian clearly
introduces tree-level FCNC interactions and gives a con-
tribution to D0- �D0 mixing of

 H FS�mi� � f2

�
cos22�u
m2

1

�
sin22�u
m2

3

�
1

m2
2

�
�uL��cL �uL��cL: (62)

A simple symmetry-breaking pattern (see, e.g., [54]) leads
to m1 � m3 � m2. Since the effective Hamiltonian only
involves the operator Q1, the RG running is simple and
leads to the following structure at the mc scale,

 H FS�mc� � f2r1�mc;M�
m2

2 �m
2
1

m2
1m

2
2

�uL��cL �uL�
�cL;

(63)

where M is the smaller of the new gauge boson masses m1

and m2. This leads to a value for x�FS�
D of

 x�FS�
D �

2f2
DMDBD
3�D

f2

m2
1

�
1�

m2
1

m2
2

�
r1�mc;M�: (64)

Using the available experimental data on D0- �D0 mixing
parameters, yields constraints on the masses of the family

symmetry-mediating gauge bosons. They are presented in
Fig. 8 for mi=f.

C. Left-right symmetric model

A puzzling feature of the SM is the left-handed nature of
the electroweak interactions. A long-standing possible
remedy, known as the left-right symmetric model (LRM)
[55], seeks to restore parity at high energies by enlarging
the gauge symmetry to SU�2�L � SU�2�R �U�1�B�L. This
model can be embedded into an SO�10� (or E6) GUT
structure which then provides a natural mechanism (see-
saw) for generating light neutrino masses. A supersymmet-
ric version of a left-right symmetric SO�10� GUT model
yields the correct prediction [56] for xw � sin2�w�MZ� and

s�MZ�, while allowing for the masses of the new gauge
bosons (ZR andW�R ) associated with the SU�2�R symmetry
to be of order a few TeV or less. Light masses for the new
gauge bosons can also be obtained in models with a
horizontal symmetry [57]. Manifest left-right symmetry
dictates that the right-handed gauge coupling take on the
same value as the left-handed SM coupling gL and that the
elements of the right-handed CKM matrix be equal to their
left-handed counterparts. In this case, the direct search for
new gauge bosons at the Tevatron places the bound [49] of
MR > 788 GeV on the mass of the charged right-handed
gauge boson.

The ZR has flavor-conserving couplings in this model,
and thus does not mediate D0- �D0 mixing. The charged
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right-handed gauge field, however, can participate in vir-
tual exchange in a box diagram, in association with the SM
Q � �1=3 quarks, and gives a contribution to meson
mixing. In fact, the strongest bound on the mass of the
WR, which is MR * 1:6 TeV in the limit of manifest left-
right symmetry, is derived from its contribution to K0- �K0

mixing [58].
However, there is no compelling theoretical reason to

adopt manifest left-right symmetry and in more general
models the elements of the right-handed analog of the
CKM matrix can take on any values, while still respecting
unitarity. In addition the ratio of gauge couplings can vary
[59] between xw=�1� xw� � 0:55< gR=gL � � < 1–2.
In this case where manifest left-right symmetry is dropped,
the bounds from Kaon mixing are softened to MWR

*

300 GeV [60] and the direct collider searches are signifi-
cantly weakened [61].

The j�Cj � 2 Hamiltonian at the right-handed mass
scale is given by

 H LRM �
G2
FM

4
W

4�2M2
R

	�2VRubV
R�
cb V

L
ubV

L�
cb J�x

W
b ; 	�Q2

� �4�VRubV
R�
cb �

2S�xRb �Q6
; (65)

with xib � m2
b=M

2
i ,	 � M2

W=M
2
R, VL;R denote the left- and

right-handed CKM matrix, and the quantities S�x� (an
Inami-Lim function) and J�x;	� are given in the appendix.
The first term in this Hamiltonian corresponds to the
exchange of one WR and one standard model W boson in
the box diagram, while the second term represents the
contribution where only the WR participates. Here, we
ignore mixing between the left- and right-handed gauge
bosons. The identification of the matching conditions at the
high scale, C2;6�MR�, are obvious. The RG evolution to the
charm scale yields the effective Hamiltonian at � � mc

 H LRM �
1

2M2
R

	C2�mc�Q2 � C3�mc�Q3 � C6�mc�Q6
;

(66)

where operator mixing has induced the dependence on Q3

similar to the generic Z0 case discussed above, with

 C2�mc� � r2�mc;MR�C2�MR�;

C3�mc� �
2

3
	r2�mc;MR� � r3�mc;MR�
C2�MR�;

C6�mc� � r6�mc;MR�C6�mc;MR�:

(67)

Evaluating the hadronic matrix elements yields

 x�LRM�
D �

f2
DMDBD

24M2
R�D

	�10C2�mc� � 7C3�mc� � 8C6�mc�


(68)

upon employing the vacuum saturation approximation and
taking � � 1 in Eq. (26).

It is clear that in the case of manifest left-right symme-
try, the combination of the small �VLubV

L�
cb � CKM elements

and the M�2
R suppression will result in a very small value

for x�LRM�
D . However, it is possible that for nonmanifest left-

right symmetry, where the right-handed CKM elements
�VRubV

R�
cb �may take on larger values, that a significant effect

may be generated. We examine this scenario, taking
�VRubV

R�
cb � to lie in the range 0.001–0.5, where 0.5 is the

maximum value that this quantity can attain while respect-
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FIG. 8 (color online). x�FS�
D as a function of m1=f for the gauge

boson mass ratios m1=m2 � 0:01, 0.5, 0.7 corresponding to the
solid, dotted, and dashed curves, respectively. The 1� region for
xD is also shown, with the yellow shaded region depicting the
excluded region.

FIG. 9 (color online). xD in the left-right symmetric model
with nonmanifest left-right symmetry as a function of the right-
handed CKM mixing factor jVRubV

R�
cb j for MR � 300, 600, 1000,

1500 GeV from top to bottom. The 1� experimental bounds are
as indicated, with the yellow shaded area depicting the region
that is excluded.
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ing unitarity of the right-handed CKM matrix. Our results
are shown in Fig. 9 for various values of MR, taking � �
gR=gL � 1. We see, that even for the most extreme values
of the parameters, the LRM contribution to D0- �D0 mixing
never reaches the experimentally determined value. Since
both of the loop functions J�x;	� and S�x� go as m2

b, the
suppression from the small internal quark masses domi-
nates this result. The dip in the curves results from inter-
ference due to operator mixing.

This exercise shows that a generic scenario with a new
heavy charged gauge boson that participates in the box
diagram forDmixing will not induce sizable contributions
to the neutral Dmeson mass difference, unless it is accom-
panied by new heavy Q � �1=3 quarks. The recently
proposed twin-Higgs models [62], which are based on a
SU�2�R � S�2�L �U�1�B�L gauge symmetry, contain an
extended top-quark sector with heavy Q � �2=3 quarks
and would give significant contributions to K, Bd;s mixing,
but not to �MD.

D. Alternate left-right model from E6 theories

An alternative to the conventional left-right symmetric
model discussed above is possible in supersymmetric E6

grand unified theories [35]. This model is also based on the
low-energy gauge group SU�2�L � SU�2�R �U�1�, but
makes use of ambiguous fermion assignments within the
fundamental representation of E6 [63]. The additional
right-handed charged and neutral gauge fields in this model
have different properties than in the traditional scenario. A
single generation in E6 theories contains 27, 2-component
fermions [in contrast to the 16 fermions per generation in
SO�10�], and quantum number ambiguities arise that allow
the T3L�R� assignments to differ from their customary val-
ues for the �L;R, eL, and dR fields. In the quark sector, the
right-handed up-quarks then form SU�2�R doublets with
the exotic Q � �1=3 vector singlet quark, DR, that is
present in the 27 representation of E6, while the SU�2�L
doublet �u; d� remains unchanged. DL and dR are then
singlet fields under all gauge symmetries. This allows,
for example, the right-handed W boson to couple the
right-handed up-quark sector to the singlet quark DR.
Examination of the superpotential for this model shows
that the DR takes on the quantum number assignment of a
leptoquark, while the WR carries negative R parity and
nonzero lepton number, and thus cannot mix with the WL
of the SM or couple to the down-quark sector. The usual
constraints on right-handed gauge bosons from the KL �
KS mass difference and polarized � decay are thus evaded
in this scenario.

These exotic particles can induce significant contribu-
tions to D0- �D0 mixing [64] via WR and DR exchange in a
standard box diagram. Note that since the heavyDR quarks
are not kinematically accessible in charm-quark decay,
there is no dispersive amplitude in this case. The interac-
tions of the right-handed W boson take the form

 L �
gR���

2
p VRij �ui���1� �5�DjW

�
R ; (69)

where i, j are generational indices and VRij is the right-
handed analog of the CKM quark mixing matrix governing
the right-handed charged currents. The effective j�Cj � 2
Hamiltonian at the scale of the right-handed interactions is

 H ALRM �
g4
R

128�2M2
R

X
i;j

�VRuiV
R�
ci ��V

R
ujV

R�
cj �S�xi; xj�Q6;

(70)

where the sum over i, j extends over the three generations
of DR quarks, S�xi; xj� are the standard Inami-Lim func-
tions [32] (given in the appendix) and xi � m2

DR;i
=M2

R with
MR being the mass of the new right-handed gauge boson.
Note that this expression mirrors that in Eq. (34) except for
the presence of the right-handed operator Q6. Matching at
the scale MR yields

 C6�MR� �
g4
R

64�2

X
i;j

�VRuiV
R�
ci ��V

R
ujV

R�
cj �S�xi; xj�: (71)

Performing the RG evolution we obtain at the charm-quark
scale

 H LR �
1

2M2
R

C6�mc�Q6; (72)

with C6�mc� � r6�mc;MR�C6�MR�. This yields the contri-
bution to the D meson mass difference

 x�ALRM�
D �

g4
Rf

2
DBDMD

192�2�DM2
R

r6�mc;MR�
X
i;j

�VRuiV
R�
ci �

� �VRujV
R�
cj �S�xi; xj�: (73)

The magnitude of these contributions is determined by
the form of the right-handed quark mixing matrix, the
degeneracy of the 3 generations of DR quarks, as well as
the right-handed mass scale. If the quarks are fully degen-
erate, then a right-handed GIM mechanism is operative due
to the unitarity of VR and this contribution to D mixing
vanishes. If there are mass splittings between the three
generations of DR;i, then the observed value of D mixing
can place bounds on the size of these splittings. Here, we
will examine the case where VR takes on the form of the
left-handed quark mixing matrix, i.e., it displays the hier-
archal structure of the CKM matrix, and derive constraints
on this mass splitting as a function of the right-handed
mass scale. Our results are presented in Fig. 10. The value
of x�ALRM�

D as a function of MR, the mass of the right-
handed charged gauge boson is displayed for various
mass splittings, �m=mD1

, where �m � mi �mj is taken
to be constant between the first and second as well as
second and third generations. We also display the con-
straints the present 1� experimental bound of xD < 11:7�
10�3, as well as contours for future possible values of xD,
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places on the MR—mass splitting parameter plane. The
results are shown for two representative values of the first
generation D-quark mass, mD1

� 500 and 2000 TeV. We
see that the mass of the WR is restricted to beMR * 1–5 �
2:0 for large values of the quark mass splittings.

E. Vector leptoquark bosons

In most recent papers on the subject, scalar leptoquarks
(particles with both quark and lepton quantum numbers)
have usually been associated with R-parity-violating su-
persymmetry (SUSY) scalars (to be considered in
Sec. VIII C). However, vector leptoquarks (VLQs) are
also a possibility [65]. For example, they naturally arise
in grand unified theories, where quarks and leptons belong
to the same multiplet [66]. Many new physics models
where leptoquarks are introduced as fundamental vector
particles imply that they serve as gauge particles mediating

quark and lepton-number-changing interactions resulting
from GUT-model symmetry groups. Those symmetries are
usually broken at a rather high scale, of order 1015 GeV,
which implies that, barring fine-tuning, vector leptoquarks
receive masses near the GUT symmetry-breaking scale.
Yet, some models exist where leptoquarks receive masses
at a lower scale. In addition, more exotic constructions,
such as preon (composite) models, could also contain
vector leptoquarks. In those models, however, leptoquarks
are composite particles with masses that are of the order of
compositeness scale. Thus, observations of effects of
VLQs could potentially probe physics at a very high
mass scale. It is for these reasons vector leptoquarks are
searched for experimentally. Collider searches at the
Tevatron for the direct production of vector leptoquark
pairs yield the constraint mVLQ > 290 GeV [67] from
run I data for second generation leptoquarks which decay
into muons.

FIG. 10 (color online). Left: xD in the alternate left-right model as a function of the mass of the WR for various values of the singlet
quark mass splittings, �=m � 0:1, 0.2, 0.5, 1.0 from bottom to top. The 1� experimental bounds are as indicated, with the yellow
shaded area depicting the region that is excluded. Right: The present 1� excluded region in the MR—mass splitting parameter plane,
as well as possible future contours taking xD < �15:0; 8:0; 5:0; 3:0� � 10�3, corresponding to the blue (dark gray) dashed, red (gray)
dashed, cyan (lightest gray) dotted, and green (light gray) dot-dashed curves, respectively. The mass of the first generation singlet
quark D1 is taken to be 500 and 2000 GeV as labeled.

IMPLICATIONS OF D0- �D0 MIXING FOR NEW . . . PHYSICAL REVIEW D 76, 095009 (2007)

095009-17



While there are a number of phenomenological studies
of vector leptoquarks [68,69], a general problem exists
with placing constraints on VLQs from indirect measure-
ments, and, in particular, from D0- �D0 mixing. This is
because their couplings are model dependent. In
particular, loop calculations with massive composites,
i.e. nongauge leptoquarks, receive contributions that are
divergent and must be regulated by the compositeness
scale. For the case of gauge leptoquarks, and in the absence
of a GIM-like mechanism in the leptoquark box diagram,
one can choose a gauge (such as the Feynman gauge)
to unambiguously compute the effects of leptoquark inter-
actions. In that gauge, however, one also must add contri-
butions from unphysical states responsible for the
generation of the VLQ masses. In a specific model, the
interactions of the unphysical states are fixed and their
contributions are readily computable. However, this then
becomes a rather model-dependent procedure because
VLQ masses can be generated by various means, including
some version of the Higgs mechanism, or a Frogatt-Nielsen
mechanism, etc. Rather than rely on a specific model, in
what follows, for generality, we shall follow the approach
of Ref. [68] and obtain bounds on the couplings of gauge
VLQs by dropping the contributions from the unphysical
states.

In general, a VLQ could couple to both left-handed and
right-handed fermions, so we shall assume the general
form of the coupling. We note, however, that there are
stringent bounds [70] from low-energy data if leptoquarks
couple to both left- and right-handed states, and it is
generally assumed that their couplings are chiral. For a
quark of flavor q and a lepton ‘, we adopt the interaction
vertex i��	�

‘q
L PL � �

‘q
R PR
, which leads to the contribu-

tion to D meson mixing,

 x�VLQ�
D �

1

8�2m2
LQ�DMD

�
��LLhQ1i � 2�LRhQ2i

� �RRhQ6i� �
10

9

m2
c

m2
LQ

��LLhQ7i � 2�LRhQ3i

� �RRhQ4i�

�

�
f2
DMDBD

12�2m2
LQ�D

�
��LL � �RR� �

3

2
�LR

�
1�

2

3
�
��
;

(74)

where �PP0 �
P
ij��

‘ic
P �‘iuP ���

‘jc
P0 �

‘ju
P0 �, and we neglect

O�mc=mLQ� corrections in the last line. The resulting
bounds on VLQ interactions are displayed in Fig. 11.

VI. EXTRA SCALARS

No known physical principle restricts the number of
Higgs multiplets that can participate in electroweak sym-
metry breaking. In fact, several theories beyond the SM,
such as supersymmetry and those with extended gauge
sectors, require an enlarged Higgs sector in order to break
the additional symmetries. Here we examine the effect in
D0- �D0 mixing of models with multiple Higgs doublets,
with and without flavor conservation, Higgsless models
and models with scalar leptoquarks.

A. Flavor-conserving two-Higgs-doublet models

A simple extension of the SM is to enlarge the Higgs
sector by one additional SU�2� doublet. We first examine
two-Higgs-doublet models that naturally avoid tree-level
FCNC by requiring that all fermions of a given charge
receive their masses from only one Higgs doublet [39]. In
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FIG. 11 (color online). Left: xD in vector leptoquark models as a function of the vector leptoquark massMVLQ, with �PP � 0:1 (solid
line), �PP � 0:07 (short dash), and �PP � 0:05 (long dash) for P � L or R. The 1� experimental bounds are as indicated, with the
yellow shaded area depicting the region that is excluded. Right: The present 1� excluded region in the vector leptoquark mass–
coupling parameter plane, as well as possible future contours taking xD < �15:0; 8:0; 5:0; 3:0� � 10�3, corresponding to the blue (dark
gray) dashed, red (gray) dashed, cyan (lightest gray) dotted, and green (light gray) dot-dashed curves, respectively.
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one such model, known in the literature as model II, one
doublet (�2) gives mass to the up-type quarks, while the
down-type quarks and charged leptons receive their mass
from the other doublet �1. This is the scenario that is
present in supersymmetric theories and is in fact required
by supersymmetry in order to generate masses for all the
fermions. Another model, known as model I, imposes a
discrete symmetry such that one doublet (�2) generates
masses for all fermions and the second (�1) decouples
from the fermion sector. In both cases, each doublet re-
ceives a vacuum expectation value vi, subject to the con-
straint that v2

1 � v
2
2 � v2

SM. There are five physical scalars
in these models, h0, H0, A0, and H�. The charged Higgs
boson can participate in the box diagram for �MD in
exchange with the SM Q � �1=3 quarks as shown in
Fig. 12. The H� interactions with the quark sector are
governed by the Lagrangian

 

L �
g

2
���
2
p
MW

H�	VijmuiAu �ui�1� �5�dj

� VijmdjAd �ui�1� �5�dj
 � H:c:; (75)

with Au � cot	 in both models and Ad � � cot	�tan	� in
model I(II), where tan	 � v2=v1. TheH� can have a large
contribution [71] to the rare decay b! s�, and in model II
the branching fraction for this process sets the bound [72]
MH� * 295 GeV at 95% C.L. This constraint is relaxed
when other sources of new physics also contribute to b!
s�, such as in supersymmetry. In this case, the lower limit
on the charged Higgs mass is 78.6 GeV from LEP II data
[13].

It is clear that the contributions to �MD from the first
term in this Lagrangian (which are proportional to
mc;u cot	) will only be sizable for extremely small values
of tan	; this region is, however, already excluded [73]
from, e.g., b! s� and B0

d- �B0
d mixing. In addition, since

the contributions in model I go as cot	multiplied by small
mass factors, the effects in this case are also restricted to be
small. However, the term proportional to mb;s tan	 in
model II has the potential to generate a significant contri-
bution to D mixing in the large tan	 limit. We will thus
work in this limit here. Restrictions on the size of tan	 can
be obtained by requiring that the �tbH� coupling remain
perturbative. If we demand that this coupling not exceed

the value of the strong coupling constant, gs, we find that
tan	 & 100.

The effective Hamiltonian governing D meson mixing
in the large tan	 limit takes the form

 H 2HDM �
G2
FM

2
W

4�2

X
i;j

�i�jftan4	AHH�xi; xj; xH�

� tan2	AWH�xi; xj; xH�gQ1; (76)

where �i � VuiV
�
ci as usual, xi � m2

i =M
2
W , the sum extends

over i, j � s, b, the loop functions can be found in
Ref. [73] and are given in the appendix. The operator
structure is the same as in Eq. (34); here, the Q1 operator
appears due to the presence of the fermion propagator.
Note that this structure is quite different than for the case
of Bd;s mixing [74] in the large tan	 limit. This is simply
due to the helicity structure of the couplings when the
charged �1=3 quarks are internal. The QCD evolution to
the charm-quark scale is simple and results in the factor of
r1�mc;MH��. The resulting contribution to the mass differ-
ence is

 

x�2HDM�
D �

G2
FM

2
W

6�2�D
f2
DMDBDr1�mc;MH��

�
X
i;j

�i�j	tan4	AHH�xi; xj; xH�

� tan2	AWH�xi; xj; xH�
: (77)

Our results for x�2HDM�
D are displayed in Fig. 13 as a

function of tan	 for various values of the charged Higgs

u uc

u uc

c

c

d,s,b d,s,b d,s,b d,s,b

H

H

+

−

+H

W −

FIG. 12. Box diagrams with charged Higgs contributions to D
meson mixing.

FIG. 13 (color online). x�2HDM�
D in the flavor-conserving two-

Higgs-doublet model as a function of tan	 for charged Higgs
boson masses of mH� � 100, 250, and 500 GeV, corresponding
to the solid, dashed red (gray), and dashed-dot green (light gray)
curves, respectively. The 1� experimental bounds are as indi-
cated, with the yellow shaded region depicting the region that is
excluded.
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mass. We see that the effect is quite small and even at large
values of tan	 the contributions from this model are at
least an order of magnitude below the experimental
observation.

In the down-quark sector, sizable effects in Bd;s and K
meson mixing are obtained in the large tan	 limit from a
double penguin contribution with neutral Higgs exchange
[74] as depicted in Fig. 14. In this limit, an effective
Yukawa interaction is induced for the down-type quarks
which includes a contribution from the large Yukawa
coupling of the top quark. This generates sizable one-
loop FCNC couplings for the neutral Higgs in the down-
quark sector. While the same effects occurs in the up-quark
sector, the term that becomes significant at large tan	 is
now proportional to the down quark Yukawa coupling and
hence does not generate a sizable effect in D0- �D0 mixing.

B. Flavor-changing neutral Higgs models

It is well known that the existence of multiple Higgs
doublets can lead in general to tree-level FCNC transitions
[39]. In the down-quark sector, there are severe constraints
on such couplings from Kaon decays, but these do not
necessarily lead to equally strong restrictions in the up-
quark sector.

The phenomenological requirement that FCNC effects
in the down-strange sector must be very small can be met in
a variety of ways. For example, the imposition of global
symmetries can make �S � 1 FCNC vanish without af-
fecting the j�Cj � 1 sector [75]. Another example is the
Cheng-Sher ansatz [76], where the flavor-changing cou-
plings of the neutral Higgs bosons are given by �h0fifj ’

�
���
2
p
GF�

1=2 �����������mimj
p

�ij, with the mi�j� being the relevant
fermion masses and �ij representing a combination of
mixing angles.

To keep our initial discussion general, we allow for N
Higgs scalars, which have the interactions in the up-quark
sector

 L 
 �uijn �QLiuRj�n; (78)

where QL represents the left-handed quark doublet and uR
is the singlet state. IfMH is the mass of the lightest physical
Higgs with flavor-changing couplings, the most general
effective four-fermion Hamiltonian just below the MH

scale is

 H H � �
1

2MH2

	2G1Q3 �G2Q7 �G3Q4
; (79)

where the couplings G1;2;3 are model-dependent parame-
ters. As shown in Ref. [77],

 G1 �
X
nmN

�u�12n�
u
21mAnNA

�
mN;

G2 � G3 �
1

2

X
nmN

	�u21n�
u
21mAnNAmN � �

u�
12n�

u�
12mA

�
nNA

�
mN
;

(80)

at the MH scale. Here, AnN refers to the mixing matrix
which rotates the Higgs doublets �n to their N neutral
physical eigenstates. Matching at the Higgs mass scale
relates the Wilson coefficients to the three couplings
G1;2;3 via

 C3�MH� � �2G1; C7�MH� � �G2;

C4�MH� � �G3;
(81)

with all other Wilson coefficients being zero. Assuming
that MHN

> mt for all N and computing the evolution of
Eq. (79) to � � mc we obtain

 

HH �
1

2MH2

	C3�mc�Q3 � C4�mc�Q4 � C5�mc�Q5

� C7�mc�Q7 � C8�mc�Q8
; (82)

with

 

C3�mc� � r3�mc;MH�C3�MH�;

C4�mc� �

��
1

2
�

8��������
241
p

�
r4�mc;MH�

�

�
1

2
�

8��������
241
p

�
r5�mc;MH�

�
C4�MH�;

C5�mc� �
1

8
��������
241
p 	r4�mc;MH� � r5�mc;MH�
C4�MH�;

C7�mc� �

��
1

2
�

8��������
241
p

�
r7�mc;MH�

�

�
1

2
�

8��������
241
p

�
r8�mc;MH�

�
C7�MH�;

C8�mc� �
1

8
��������
241
p 	r7�mc;MH� � r8�mc;MH�
C7�MH�:

(83)

The Higgs tree-level contribution to xD is found by
evaluating the D0-to- �D0 matrix element, which gives

u
H

u

c

c
H H

h , H , A

~

~ ~

(u)H
~(u)

(u) (u)

FIG. 14. The dipenguin diagram with neutral Higgs exchange.
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x�H�D �
5f2

DMDBD
24�DM

2
H

�
1� 6�

5
C3�mc� � ��C4�mc� � C7�mc��

�
12�

5
�C5�mc� � C8�mc��

�
: (84)

where, again, we have used Eqs. (24) and (26). Together
with Eqs. (81) and (83), the above can be used to constrain
the lightest Higgs mass and associated couplings. As an
example, let us assume that jG1j � jG2j � C2 at the Higgs
mass scale in Eq. (79) andMH is the effective mass of the N
Higgs scalars. In that case, the restriction on possible
values of the effective Higgs mass are presented in Fig. 15.

We now return to the specific case of the Cheng-Sher
ansatz. Here, the neutral Higgs bosons can contribute to

�MD through tree-level exchange as well as mediating D
meson mixing by H0 and t-quark virtual exchange in a box
diagram. The restrictions placed on the parameter space of
this model from the tree-level contribution are computed as
described above, and are presented for an effective Higgs
mass MH as a function of the coupling parameter �uc in
Fig. 16. We see that the form of the couplings, being
proportional to the light quark masses, results in reduced
limits compared to those in Fig. 15 for the general case.
The box contribution with H0, t-quark exchange is de-
scribed by the effective Hamiltonian just below the MH
scale of

 H CS �
G2
Fmumcm2

t�
2
ut�

2
ct

8�2M2
H

FtH�x�	Q1 �Q6
; (85)

where x � m2
t =M

2
H, FtH�x� is given in the appendix, and

the vector operators Q1:6 are generated from the fermion
propagators. The RG evolution and evaluation of the ma-
trix elements yields

 x�CS�
D �

G2
Fmumcm

2
t�

2
ut�

2
ct

6�2M2
H�D

f2
DMDBDFtH�x�r1�mc;MH�:

(86)

The resulting constraints from this contribution are dis-
played in Fig. 16 in the effective Higgs mass–coupling
parameter plane. We see that this box contribution only
competes with those from the tree-level process for large
values of �ij.

C. Scalar leptoquark bosons

Leptoquarks are color triplet particles which couple to a
lepton-quark pair and are naturally present in many theo-

FIG. 16 (color online). Left: 1� excluded region in the effective neutral Higgs mass–coupling plane for the tree-level contribution to
D0- �D0 mixing in the Cheng-Sher ansatz. Right: 1� excluded region in the effective neutral Higgs mass–coupling plane for the box
diagram contribution to D0- �D0 mixing in the Cheng-Sher ansatz. In both figures, possible future contours taking xD <
�15:0; 8:0; 5:0; 3:0� � 10�3, corresponding to the blue (dark gray) dashed, red (gray) dashed, cyan (lightest gray) dotted, and green
(light gray) dot-dashed curves, respectively, are also displayed.
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FIG. 15 (color online). xD as a function of MH=C in models
with no natural flavor conservation in the Higgs sector. The 1�
experimental bounds are as indicated, with the yellow shaded
area depicting the region that is excluded.
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ries beyond the SM which relate leptons and quarks at a
more fundamental level. Their a priori unknown couplings
can be parametrized as �2

‘q=4� � F‘q
. Searches for the
pair production of scalar leptoquarks at the Tevatron run II
yield the bounds [78] mLQ * 225 GeV, which are inde-
pendent of the coupling strength F‘q

Scalar leptoquarks participate in D meson mixing via
virtual exchange inside a box diagram [68], together with a
charged lepton or neutrino. Their interactions are analo-
gous to those of R-parity violating supersymmetric models
with the terms in the superpotential proportional to �0. We
thus refer to Sec. VIII C for the details of the analysis for
these contributions. The resulting constraints on scalar
leptoquark are governed by the translation

 F‘uF‘c �
�0Rp�i2k��

0
Rp�i2k�

4�

with m~d � mLQ: (87)

D. Composite Higgs models

A class of composite Higgs models which has been
developed recently to generate a naturally light Higgs,
employs chiral symmetries of ‘‘theory space’’ [79] (see
also Refs. [40,80]). Such models involve the ‘‘deconstruc-
tion’’ of higher-dimensional field theories such that the
low-energy effective field theory resembles the standard
model but has nice features such as the absence of qua-
dratic divergences of the Higgs mass. Here, the Higgs can
be interpreted as a Goldstone boson of some interaction
occurring at higher energies. This approach allows for the
construction of realistic theories of electroweak symmetry
breaking in four spacetime dimensions without any higher-
dimensional interpretation.

This picture emerges from the AdS/CFT correspondence
of the 5D Higgsless model of Csaki et al. [81]. In the 5D
framework, there is no physical Higgs boson and electro-
weak symmetry breaking is generated via the boundary
conditions for the 5th dimension. The gauge symmetry in
the higher-dimensional space is SU�2�L � SU�2�R �
U�1�B�L and the right-handed gauge fields receive
Planck scale masses. The Kaluza-Klein towers of the �
and Z bosons unitarize the WW high energy scattering
amplitude [82], although there is some tension with preci-
sion electroweak data as to the precise energy scale that the
Kaluza-Klein states populate [83]. The standard model
fermion fields are localized within the 5th dimension and
also receive their masses from the boundary conditions,
with the exact value being dependent on their position in
the extra dimension [84]. The effects on D mixing from
this 5D picture are presented below in Sec. VII C. Here, we
present our results for the AdS/CFT related framework
with a composite Higgs.

The key idea in the composite Higgs picture is that the
flavor physics responsible for generation of the Yukawa
couplings can induce flavor-changing neutral currents [79].
Applied to charm physics they generically lead to the

following effective Hamiltonian,
 

HH6 �
X

C�1;Ta

�
�ccLs

c
L�

2 g
2

M2 � �uL��CcL�� �uL�
�CcL�

� 2�ccLs
c
L��c

c
Rs

c
R�
g2

M2 � �uL��CcL�� �uR�
�CcR�

� �ccRs
c
R�

2 g
2

M2 � �uR��CcR�� �uR�
�CcR�

�
; (88)

where g,M are, respectively, the gauge coupling and gauge
boson mass of new flavor gauge interactions, and the
mixing angles generate different strengths for the gauge
coupling. In the sum over the color label C, the case C � 1
corresponds to color-singlet interactions, whereas C � Ta

refers to color-octet interactions for which Ta � �a=2 are
the generators of SU�3�C. In addition, the angles �cL;R that
relate the gauge and mass eigenstates [79] appear in factors
of ccL;R � cos�cL;R, scL;R � sin�cL;R, where we take �cL;R 

�C, with �C being the Cabibbo angle.

The Hamiltonian of Eq. (88) can be easily transformed
to contain the operators from the general basis of Eq. (16),

 H H6 � �ccLs
c
L�

2 g
2

M2 �C
H6
1 Q1 � C

H6
2 Q2 � C

H6
3 Q3 � C

H6
6 Q6�;

(89)

where CH61 � �3Nc � 1�=�2Nc�, CH62 � rLR�2Nc �
1�=�2Nc�, CH63 � �rLR, CH66 � r2

LRC
H6
1 , and rLR �

�ccRs
c
R�=�c

c
Ls

c
L�. Performing the RG running, we obtain the

effective Hamiltonian at the scale mc with the Wilson
coefficients
 

C1�mc� � r1�mc;M�C1�M�;

C2�mc� � r2�mc;M�C2�M�;

C3�mc� �
2

3
	r2�mc;M� � r3�mc;M�
C2�M�

� r3�mc;M�C3�M�;

C6�mc� � r6�mc;M�C6�M�:

(90)

This, in turn, implies for the mixing amplitude,

 x�H6 �D �
f2
DMDBD

�D
�ccLs

c
L�

2 g
2

M2

�
2

3
�C1�mc� � C6�mc��

� �C2�mc�

�
1

2
�
�
3

�
�

1

12
C3�mc��1� 6��

�
;

(91)

where � is as in Eq. (26). The available experimental data
can be used to constrain the mass of the gauge bosonM for
different values of the coupling constant g, as shown in
Fig. 17. It is clear that unless g is very small, it is unlikely
that any of the gauge bosons of the new flavor interactions
of Higgsless models will be directly seen at the LHC.
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VII. EXTRA SPACE DIMENSIONS

Recent speculation that the geometry of spacetime could
resolve the hierarchy problem have led to theories with
extra spatial dimensions that have verifiable consequences
at the TeV scale. There are several such models [85] and
the size and geometry of the additional spatial dimensions,
as well as the field content that is allowed to propagate
within them, varies between the different scenarios. When
the extra dimensions are compactified, the fields that reside
in the higher-dimensional space (known as the bulk) ex-
pand into Kaluza-Klein (KK) towers of states. The masses
of these KK states correspond to the extra dimensional
components of the bulk field momentum and are related to
the bulk geometry. The observation, either directly or by
indirect effects, of these KK states signals the existence of
extra dimensions. The properties of the KK states reveal
the underlying geometry of the higher-dimensional
spacetime.

The extra dimensional theories which yield contribu-
tions to �F � 2 processes are those in which the SM
fermion fields reside in the bulk. Here, we consider three
such scenarios: (i) universal extra dimensions,
(ii) localized fermions in a flat extra dimension, and
(iii) warped extra dimensions.

A. Universal extra dimensions

The possibility of TeV�1-sized extra dimensions natu-
rally arises in braneworld theories [86]. By themselves,
they do not allow for a reformulation of the hierarchy
problem, but they may be incorporated into a larger struc-
ture in which this problem is solved. The scenario which
places all standard model fields in the bulk is known as
universal extra dimensions [87]. The simplest model of this
type contains a single extra dimension compactified on an
S1=Z2 orbifold. Since branes are not present in this case,

translational invariance in the higher-dimensional space
would be preserved without the presence of the orbifold-
ing. This leads to the tree-level conservation of the extra
dimensional momentum of the bulk fields, which in turn
implies that KK number is conserved at tree-level while
KK parity, ��1�n where n denotes the KK level, is con-
served to all orders in interactions involving the KK states.
Two immediate consequences of KK number and parity
conservation are that the KK states must be produced in
pairs, and the lightest KK particle is stable and is a dark
matter candidate [88]. The former results in a substantial
reduction of the sensitivity to such states in precision
electroweak and collider data. The present bound from
run I at the Tevatron on the mass of the first KK excitation
is of order 250 GeV [89].

Since all SM fields reside in the bulk in this model, every
SM field expands into a KK tower of states. The KK
reduction of the 5D fermion fields leaves a chiral zero-
mode and a vectorlike tower of KK states for each flavor.
There is one KK tower for each SM gauge boson, as well as
the Higgs, and additional towers of KK scalars, a0

�n� and
a��n�, which correspond to the physical eigenstates of the
mixing between the KK towers associated with the SM
Goldstone fields and the W5, Z5 remnants from the elec-
troweak gauge KK reduction. This mixing also generates
scalar KK towers which behave as Goldstone fields, which
are eaten by the gauge boson KK towers and provide
masses for the gauge KK states. The additional physical
scalar KK towers a0;�

�n� do not have zero modes. The masses
of the KK states are roughly degenerate and are given at
tree level by

 mn � �m
2
0 � n

2=R2
c�

1=2; (92)

where Rc represents the compactification radius of the
extra dimension and m0 is the zero-mode mass. The KK
states clearly become more degenerate with increasing KK
level (increasing n). These masses are modified [90] by
loop-induced localized kinetic terms and nonlocal radia-
tive corrections. Given that the effect of these mass cor-
rections occurs at two-loop order in D meson mixing, one
would expect them to have a small effect. We thus neglect
them in our initial analysis, but will return to this issue at
the end of this section.

The contributions to D mixing in this model are box
diagrams with the W� boson KK tower, its associated KK
Goldstone modes G�

�n�, and the a�
�n�, all in exchange with

the KK towers associated with the d, s, and b quarks; the
zero-mode analogues of these diagrams are shown in
Fig. 12. Note that the conservation of KK parity restricts
the KK levels of the KK quark and boson being exchanged.
In addition, only the quark KK towers that are even under
the Z2 symmetry (and thus have a zero mode) couple to the
external zero-mode quarks in the box diagram. The rele-
vant Hamiltonian at the compactification scale is then
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FIG. 17 (color online). xD as a function of the new gauge
boson mass M in composite Higgs models for g � 0:1 (solid
line), g � 0:3 (dash-dotted line), and g � 0:5 (dashed line). The
1� experimental bounds are as indicated, with the yellow shaded
area depicting the region that is excluded.
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 H UED �
G2
FM

2
W

4�2

X1
~n�1

X
i;j

�i�jS�x
�n�
i ; x

�n�
j �Q1; (93)

which has the same structure as that occurring in Eq. (34).
Here, i, j run over d, s, b. Note that at all KK levels, the
CKM structure is the same as that in the SM. Using
unitarity of the CKM matrix, the function S�x�n�i ; x

�n�
j �

becomes

 S�x�n�i ; x
�n�
j � �

X
XY

�FXY�x
�n�
i ; x

�n�
j � � FXY�x

�n�
d ; x

�n�
d �

� FXY�x
�n�
i ; x

�n�
d � � FXY�x

�n�
j ; x

�n�
d ��; (94)

with x�n�i � �m
i
n�

2=�mW
n �

2 where now i, j � s, b, and the
sum extends over the bosons X, Y � W��n�, G

�
�n�, a

�
�n�. The

functions FXY�x
�n�
i ; x

�n�
j � are given in the appendix of

Ref. [91], with the appropriate substitutions of quark fla-
vors relevant for D mixing. After the RG evolution of the
Hamiltonian to the charm-quark scale, this leads to

 x�UED�
D �

G2
FM

2
W

6�2�D
f2
DMDBDr1�mc;m1�

�
X1
~n�1

X
i;j

�i�jS�x
�n�
i ; x

�n�
j �: (95)

Looking at the expression in Eq. (92) for the KK masses,
we see that the d- and s-quark KK towers are degenerate
and the mass splittings between the b- and d-, s-quark
towers are nonzero, yet small, for the first couple of KK
levels and then effectively vanish for higher KK excita-
tions. The GIM cancellation is thus exact in the case of the
s-quark KK tower contributions, level by level in the KK
tower, and leaves a tiny contribution from the first few
b-quark KK states. However, factoring in that �b 

O�10�4�, we see that the contributions to D mixing from
the b-quark KK states are numerically negligible. Hence,
this model is not probed by D0- �D0 mixing.

We now return to the case where mass splittings are
generated for the KK states via localized boundary terms or
loop-induced gauge interactions. Since the above one-loop
contributions to D mixing essentially vanish due to the
degeneracy of the KK towers, perhaps a non-negligible
effect is obtained once the KK degeneracy is lifted.
Examining the latter effect first, we see from Ref. [90]
that the nonlocal radiative corrections yield two classes of
mass splittings for the fermion fields: (i) a term which is
dependent on the gauge couplings and is flavor indepen-
dent, and (ii) a term which depends on the fermion’s
Yukawa couplings. The latter term takes the form

 �mf
n � mf

n

��3h2
f

16�2X
ln

�2

�2

�
; (96)

where X � �2; 4� for fermion (singlets, doublets), respec-
tively, hf is the fermion Yukawa coupling, � represents a

cutoff scale which absorbs the logarithmic divergences and
� is the renormalization scale. If 1=Rc is of order a
few hundred GeV, the third generation quark doublet and
top-quark singlet thus receives a correction from the
Yukawa term of order 10–20 GeV for the first KK state,
while the b-quark singlet KK excitation remains essen-
tially unaffected. Given the small CKM factor for the
b-quark KK contributions to D meson mixing, and the
effectiveness of the GIM mechanism, we find that this
mass splitting is not enough to generate a sizable contri-
bution to xD. The second possibility of including the lo-
calized boundary terms holds the promise of inducing large
mass splittings between the KK states associated with the
various quark flavors. However, these boundary terms may
take on essentially any value with no predictivity, leaving a
virtual continuum of possible contributions to D0- �D0

mixing.

B. Split fermion models

In this scenario, the standard model fermions are local-
ized at specific points, yi, where 0 � yi � Rc, in extra
TeV�1-sized flat dimensions. The fermions have narrow
Gaussian-like wave functions in the extra dimensions with
the width of their wave function being much smaller than
the compactification radius Rc of the additional dimen-
sions. The placement of the different fermions at distinct
locations in the additional dimensions, along with the
narrowness of their wave functions, can then naturally
suppress [92] operators mediating dangerous processes
such as proton decay and also provide a mechanism for
generating the fermion mass hierarchy [93].

This split fermion scenario is capable of generating large
flavor-changing neutral currents [94,95]. In contrast to the
fermion sector, the gauge bosons are free to propagate
throughout the extra dimensions. The gauge KK states
have cosine profiles which have different heights at the
various distinct fermion locations, generating nonuniversal
couplings to different fermion species. This leads to tree-
level FCNC as depicted in Fig. 18, with the gluon KK
states clearly giving the largest contributions.

With one extra dimension, the coupling of the nth KK
gluon to a quark localized at the scaled position yq is
determined by the overlap of wave functions in the addi-
tional dimension

FIG. 18. Tree-level gauge KK exchange that mediates neutral
meson oscillations.
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 Z 1

0
dy � �y� �y�G�n��y� 


Z 1

0
dy cos�n�y�e��y�yq�

2R2
c=�2


 cos
�n�yq
Rc

�
e�n

2�2=R2
c ; (97)

where � represents the width of the quark’s localized wave
function with�=Rc � 1, and yq has been normalized toRc
so that it lies in the range 0 � yq � 1. The interaction
Lagrangian in the quark mass eigenstate basis is then

 

L �
X1
n�1

	
���
2
p
gsG

A�n�
� � �uL��TAVuLC

�n�
L V

uy
L uL

� �uR��TAVuRC
�n�
R V

uy
R uR � �u! d�
; (98)

where the product VuyL V
d
L is the usual CKM matrix, the

diagonal matrices C�n�L;R are the wave function overlaps
given above in Eq. (97), and the factor of

���
2
p

arises from
the renormalization of the KK gauge kinetic terms to the
canonical value. ui refers to the set �ui; ci:ti�.

The effective Hamiltonian mediating D meson mixing is
given by (taking the contributions from the first two gen-
erations to be dominant)

 

H split �
2

3
g2
s

X1
~n�1

1

M2
n
�Uu�n�y

L�cu�U
u�n�
L�uc�Q1 � 2Uu�n�y

L�cu�U
u�n�
R�uc�Q2

�Uu�n�y
R�cu�U

u�n�
R�uc�Q6�; (99)

where Uu�n�
i � Vuyi C

�n�
i V

u
i with i � L, R, and Mn is the

mass of the nth gluon KK state with Mn � n=Rc. For the
case of one additional dimension, the sum over the gluon
KK tower converges, and for the scenario with numbers of
extra dimensions >1, the sum is naturally cut off from the
finite width of the fermion wave function. Performing this
sum [95] and making use of the unitarity properties of the
VqL;R, we can write the effective Hamiltonian at the com-
pactification scale as

 

H split �
2

3
g2
sR2

c�jVuL11V
u�
L12j

2F�yuL; ycL�Q1

� 2jVuL11V
u�
L12V

u
R11V

u�
R12jG�yuL; ycL ; yuR ; ycR�Q2

� jVuR11V
u�
R12j

2F�yuR; ycR�Q6�; (100)

with yui;ci being the positions of the up- and charm-quark
fields, and

 

F�x; y� �
�2

2
jx� yj;

G�x1; y1; x2; y2� �
��2

4
�jx1 � x2j � jy1 � y2j � jx1 � y2j

� jx2 � y1j�: (101)

Although some cancellations could occur between the Q1;6

andQ2 terms by finely tuning the quark positions, and thus
decreasing the KK gluon contribution to D meson mixing,
operator mixing from QCD renormalization would spoil
this possibility. The RG running of the above effective
Hamiltonian is the same as that performed for the case of
flavor-changing Z0 bosons in Sec. VA, with the appropriate
replacement of the Wilson coefficients, since the same
operator basis of Q1;2;6 is present.

In order to explore the magnitude of the KK gluon
FCNC effects we examine a single term in the above
Hamiltonian. This will reduce the number of parameters
in the computation without significantly changing the re-
sults. Choosing the term proportional to Q1 yields an
effective Hamiltonian at the charm scale of

 H split �
g2
sR2

c�2�y
3

r1�mc;M�jV
u
L11V

u�
L12j

2Q1: (102)

Here, �y � jyuL � ycL j is the separation between the lo-
calized uL and cL quarks, scaled to the compactification
radius. This leads to a contribution to xD of

 x�split�
D �

2

9�D
g2
sR

2
c�

2�yr1�mc;M�jV
u
L11V

u�
L12j

2f2
DMDB1:

(103)

Figure 19 shows the range of values for x�split�
D as a

function of the separation between the uL and cL states
for various values of the compactification scale, where
Mc � 1=Rc. In our numerical work we have used the
natural assumption that �VL�ij � �VCKM�ij. We see that

x�split�
D vanishes as the separation of the 2 fermions tends

to zero as expected. However, for most of the range of �y,
we find that compactification scales of order 100–500 TeV
are excluded by the observation of D0- �D0 mixing and
hence D mixing provides severe constraints on the local-
ization of the up-type fermions within this model. Note that
these constraints are dependent on the choice of values for
the elements of the quark diagonalization matrices VL;R,
which are a priori unknown, and could be reduced if quark
mixing is tiny in the up-quark sector. The worst case
scenario would be if the VuL;R are diagonal and all quark
mixing occurs in the down-quark sector.8 In this case,
strong bounds on the compactification scale, similar to
those presented here, would be obtained from K meson
mixing [94,95].

C. Warped geometries

In the simplest scenario with warped extra dimensions
[96], known as the Randall-Sundrum (RS) model, the

8This is frequently the case in models of quark mass matrices
where the up-quark mass matrix is taken to be diagonal and all
mixing is assigned to the down-quark sector. A rationale for this
is given, for example, in Ref. [38].
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hierarchy between the electroweak and Planck scales is
generated geometrically via a large curvature of a single
extra dimension. The geometry is that of a 5D anti–
de Sitter space (AdS5), where the extent of the 5th dimen-
sion is y � �rc (rc is the compactification radius), and
every slice of the additional dimension corresponds to a 4D
Minkowski metric. Two 3-branes reside at the boundaries
of the AdS5 slice, with the 3-brane located at the fixed
point y � �rc being known as the TeV brane, while the
opposite brane at the other boundary y � 0 is referred to
as the Planck brane. Within this framework, gravity is
localized about the Planck brane, and electroweak
symmetry breaking can take place either with the Higgs
field being localized on or near the TeV brane, or via
boundary conditions imposed at the fixed points as in the
Higgsless models discussed above. The FCNC effects
considered here are independent of this choice.

FCNC effects are induced [97,98] when the SM fermi-
ons and gauge bosons are localized in the warped 5th
dimension [99–101]. As in the case of flat TeV�1-sized
extra dimensions with split fermions discussed above, the
observed fermion masses and mixings are automatically
explained by the geometry, with the 5D Yukawa couplings
all being of order unity. Localizing the light fermions near
the Planck brane results in small 4D Yukawa couplings for
these fields, whereas if the top-quark field is localized near
the TeV brane a large 4D top Yukawa coupling is induced.
This localization scheme also naturally suppresses higher-
dimensional flavor-changing operators that are problem-
atic when the SM is confined to the TeV brane. This flavor
breaking fermion localization leads to FCNC interactions
via nonuniversal couplings of the zero-mode fermions to
the gauge boson KK states. Since the SM gauge bosons are
localized near the TeV brane (in order to acquire their

masses) and have exponentially decaying wave functions
towards the Planck brane, we expect FCNC in the light-
quark sector to be suppressed.

The action for fermion fields in the RS bulk is given by
[100]

 S �
Z
d4xdy

����
G
p �

i
2

���MDM�� sgn�y�Mf
���� H:c:

�
;

(104)

where G represents the determinant of the 5D metric, DM
is the covariant derivative in curved space, and �M �
VM� �

� with VM� being the inverse vierbein. The parameter
of importance to us here is Mf which is the 5D bulk mass
for the fermion f. It is given by Mf � kcf, where k is the
parameter describing the curvature of the AdS5 space and
is of order of the 5D Planck scale. The constants cf indicate
the position of the fermion’s localized wave function in the
bulk, with cf > 1=2 (cf < 1=2) corresponding to the fer-
mion being localized near the Planck (TeV) brane. These
constants determine the flavor structure of the theory.

The KK decomposition of the bulk fermion fields yields
the normalized zero-mode wave function (a discrete sym-
metry ensures that the zero-mode fields are chiral),

 f�0� �

��������������������������������
krc�1� 2cf�

e�krc�1�2cf� � 1

s
e�cfky �

�������
krc

p
Yfe

�cfky: (105)

The asymptotic behavior of the Yf on the localization
parameters cf are listed in Table IV. We see that these
factors become exponentially small when the fermions are
localized near the Planck brane. In the basis where the 5D
bulk masses, Mf, are diagonal the fermion Higgs interac-
tions yield the 4D Yukawa couplings,

FIG. 19 (color online). Left: xD in the split fermion model as a function of the separation between the left-handed u and c quark
states in the extra dimension for various values of the compactification scale. The 1� experimental bounds are as indicated, with the
yellow shaded region depicting the region that is excluded. Right: 1� excluded region in the uL � cL separation and compactification
scale parameter plane, as well as possible future contours taking xD < �15:0; 8:0; 5:0; 3:0� � 10�3, corresponding to the blue (dark
gray) dashed, red (gray) dashed, cyan (lightest gray) dotted, and green (light gray) dot-dashed curves, respectively.
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 �f4�ij� � �f5�ij�YfLiYfRje
�krc�1�cfLi�cfRj �; (106)

for the zero-mode fermions in terms of the 5D Yukawa
couplings �f5 . We take the elements of �f5 to be complex
and of order unity. Note that krc � 11:3 in order to resolve
the gauge hierarchy problem. The elements of the matrices
that diagonalize the up and down quark fields to their 4D
mass eigenstates have magnitude

 jVu;dL jij ’
YfLi
YfLj
’ jVCKMjij �i < j�; (107)

with L! R for the matrices that diagonalize the right-
handed fields. For the elements with j � i one should
interchange i$ j.

The wave functions for the gauge KK states are given by
the first order Bessel functions J1, Y1, and the mass of the
nth gauge KK mode isMn � xnke��krc where xn is related
to the roots of Bessel functions [99]. The first few values of
xn are 2.45, 5.57, 8.70, and 11.84. Precision electroweak
data places severe bounds on the masses of the gauge KK
states [99,102]. However these bounds can be reduced to
M1 * 3 TeV if the gauge symmetry in the bulk is ex-
panded to SU�2�L � SU�2�R �U�1�B�L, which restores
custodial symmetry [103]. The couplings of these states
to the zero-mode fermions, fC�n�f g, are determined by the
overlap of their wave functions in the additional dimen-
sion. They are given (as a ratio to the SM coupling) by

 C�n�f �
g�n�

gSM
�

�������������
2�krc

p
Y2
fI
�n�
f ; (108)

where I�n�f is an integral over J1 Bessel functions, and are
given explicitly in Ref. [101] and in the appendix. As
displayed in Fig. 20, this coupling weakens substantially
as the gauge KK level, n, increases for cf < 1=2, while for
cf > 1=2 the couplings tend to a small fixed value for all
KK levels. The interaction Lagrangian for the gluon KK
states in the quark mass eigenstate basis is as given in
Eq. (98) with the substitution of the prefactor

���
2
p
!�������������

2�krc
p

, which arises from the renormalization of the
KK gauge kinetic terms to the canonical value.
D0- �D0 mixing is then mediated via tree-level flavor-

changing interactions of the KK gauge boson states as
depicted in Fig. 18. In analogy to the previous section,
the effective Hamiltonian for this process is given by (for

the exchange of gluon KK states which yield the largest
contribution)

 H RS �
2�krc

3
g2
s

X1
~n�1

1

M2
n
�Uu�n�y

L�cu�U
u�n�
L�uc�Q1

� 2Uu�n�y
L�cu�U

u�n�
R�uc�Q2 �U

u�n�y
R�cu�U

u�n�
R�uc�Q6�; (109)

where Uu�n�
L;R � VuyL;RC

�n�
f V

u
L;R. Writing this explicitly for

Uu�n�
L yields,

 Uu�n�
L�uc� � VuyL�uj�C

�n�
jk V

u
L�kc��jk � VuyL�uj�Y

2
fj
VuL�jc�I

�n�fj ;

(110)

since the C�n�f are diagonal, and where the index j sums
over the generations. Looking at the asymptotic values of
Yf in Table IV, we see that Uu�n�

L�uc� is only sizable when the
fermion is localized towards the TeV brane. Unitarity of
the VuL;R results in

 H RS �
2�krc
3M2

1

g2
s�C1�Mn�Q1 � C2�Mn�Q2

� C6�Mn�Q6�; (111)

where M1 is the mass of the first gluon KK excitation, and
with the Wilson coefficients being given by

TABLE IV. The asymptotic behavior of the square of the
parameter Yf for various localization points fcfg of the fermion’s
wave function.

Y2
f Range of cf

1
2� cf cf <

1
2� �

1
2�krc

cf !
1
2

�cf �
1
2�e

�krc�1�2cf� cf >
1
2� �

FIG. 20 (color online). The coupling strength, scaled to the
SM strong coupling constant, of the zero-mode fermions to the
first five gluon KK excitations (as labeled) as a function of the
fermion bulk mass parameter cf.
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(112)

with M2
1=M

2
n � x2

1=x
2
n where xn are the Bessel function

roots described above.
The RG evolution proceeds as in Sec. II A and results in

the effective Hamiltonian at the charm-quark scale

 

H RS �
g2
s

3M2
1

�C1�mc�Q1 � C2�mc�Q2 � C3�mc�Q3

� C6�mc�Q6�; (113)

where additional operators have been generated due to
mixing in the RG evolution. The evolved Wilson coeffi-
cients at the charm scale are as given in Eq. (52) with the
appropriate substitution ofMZ0 ! M1. Upon evaluating the
matrix elements we obtain the contribution to xD from
warped extra dimensions

 

x�RS�
D �

g2
s

3M2
1

f2
DBDMD

�D

�
2

3
	C1�mc� � C6�mc�


�
5

6
C2�mc� �

7

12
C3�mc�

�
(114)

in the modified vacuum saturation approximation. Here,
we have taken the factor � of Eq. (26) to be unity.

To obtain numerical results, we need to specify the
fermion locations in the warped dimension. We examine
three popular scenarios in the literature that correctly gen-
erate the 4D Yukawa hierarchy for the SM fermions. As
mentioned above, localizing the fields near the uv (ultra-
violet or Planck) brane generates an exponentially small
4D Yukawa coupling. In all three models, all of the light
quarks are localized such that their bulk mass parameters
take on values with cf > 1=2. Special attention must be

paid to the localization of the third generation quarks; in
order to generate a large top-quark mass, the corresponding
SU�2� singlet field is usually taken to reside close to the
TeV brane. The third generation SU�2� doublet fields and
b-quark SU�2� singlet field are located as close to the IR
(infrared, or TeV) brane while maintaining consistency
with the experimentally determined Zb �b coupling. The
three scenarios that we follow are fairly uniform in their
treatment of the third generation, differing only slightly in
the location of the SU�2� top-quark singlet. The scenarios
are: (I) a study of flavor physics in the Randall-Sundrum
model [104], (II) a scenario that has been constructed in
order to generate fermion masses within the 5D picture of
Higgsless models [84], (III) the up-quark singlet field is
taken to lie even closer to the uv brane [105] in order to
solve the strong CP problem with warped geometries. The
numerical values of the bulk mass parameters are summa-
rized in Table V for the three cases.

Our results for xRS
D for these three models are presented

in Fig. 21, where as above, we assume the quark diagonal-
ization matrices take on CKM-like values. In the figure, the

TABLE V. The values of the bulk mass parameters for the
three models described in the text.

Model I Model II Model III

cuL >1=2 0.6 0.5
cuR >1=2 0.6 1.4
ccL >1=2 0.52 0.5
ccR >1=2 0.52 0.53
ctL 0.45 0.4 0.46
ctR 0 0.3 On the IR brane

FIG. 21 (color online). The contribution to xD from a warped
extra dimension with the SM fields in the bulk as a function of
the mass for the first gluon KK excitation. The 1� experimental
bounds are as indicated, with the yellow shaded region depicting
the region that is excluded. The curves correspond to model I
[dash-dotted, green (light gray)], model II [dashed, red (gray)],
and model III (solid) as described in the text.
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dot-dashed green (light gray), dashed red (gray), and solid
black curves correspond to the bulk mass parameters of
model I, II, and III, respectively. We see from Fig. 20 that
fermions localized towards the Planck brane have very
small couplings to the KK gluon states and thus do not
substantially contribute to xRS

D . This simplifies the expres-
sions in Eq. (112) in this case, as only the tL;R terms have
sizable contributions. Looking at the figure we see the mass
of the first gluon KK excitation is constrained to lie
* 1–2 TeV, which is essentially the same value as the
bound obtained from the precision electroweak data in
warped models with bulk custodial symmetry [103].
Last, we recall from discussion in the previous section,
that these constraints can be evaded if the matrix which
diagonalizes the up-quark sector is essentially diagonal.

VIII. EXTRA SYMMETRIES

In this section, we focus on supersymmetry. Weak-scale
supersymmetry is a possible solution to the gauge hier-
archy problem, leads to the unification of the gauge cou-
plings at high energies, and provides a natural dark matter
candidate. It is thus a very well motivated theory of physics
beyond the SM. Supersymmetry is an extension of the
Poincaré symmetry, relating fermions and bosons at a
fundamental level. All SM particles have supersymmetric
partners (‘‘sparticles’’) with the same mass and gauge
interactions, but with spin differing by one-half unit.
Since the supersymmetric particles have yet to be discov-
ered, we know that supersymmetry is broken; in this sec-
tion, we will be agnostic as to which supersymmetry
breaking mechanism nature may have chosen. We note
that in nonbroken supersymmetry the rates for all loop-
induced processes would vanish due to an exact cancella-
tion between the SM and supersymmetric contributions. It
is thus due to the breaking of supersymmetry that contri-
butions to FCNC are generated in these theories.

Here, we examine the contributions to D0- �D0 mixing in
four supersymmetric scenarios: the minimal supersymmet-
ric standard model (MSSM), models with alignment in the
quark-squark mass matrices, models with R-parity violat-
ing couplings, and split supersymmetry. Other scenarios
with extended nonsupersymmetric symmetries have been
considered elsewhere in this paper.

A. Minimal supersymmetric standard model

As the name implies, the MSSM is the simplest version
of supersymmetry as it contains the minimal number of
new particles. The SM fermions are placed in chiral super-
multiplets, the SM gauge bosons lie in vector supermultip-
lets, and the Higgs sector takes the form of the flavor-
conserving two-Higgs-doublet model II discussed above.
A discrete symmetry, R parity, is imposed to forbid un-
wanted terms in the superpotential that would mediate
proton decay at a dangerous level. Conservation of
R parity implies that only pairs of sparticles can be pro-

duced or exchanged in loops. Collider searches for direct
squark and gluino pair production place the bound m~q;g *

330 GeV [13] in the MSSM with gravity mediated super-
symmetry breaking.

As mentioned above, we will not assume any particular
supersymmetry breaking mechanism in our discussion, and
so we employ a model-independent parametrization of all
possible soft supersymmetry breaking terms. This soft
supersymmetry breaking sector generally includes three
gaugino masses, trilinear scalar interactions, as well as
Higgs and sfermion masses, and thus contains many po-
tential sources of flavor violation. Here, we are interested
in the flavor violating sources that arise in the up-squark
sector. In what is known as the super-CKM basis, the
squark fields are rotated by the same matrices that diago-
nalize the quark masses, giving rise to nondiagonal squark
mass matrices. The squark propagators are then expanded
such that the nondiagonal mass terms result in mass in-
sertions that change the squark flavor [106–109]. This
source of flavor violation differs from that of the SM and
many NP models discussed earlier. Here, the quark-squark-
gaugino neutral couplings are flavor conserving, while
flavor violation arises from the nondiagonality of the
squark mass propagators. The 6� 6 mass matrix for the
Q � �2=3 squarks can be divided into 3� 3 submatrices,

 

~M 2 �
~M2
LL

~M2
LR

~M2T
LR

~M2
RR

� �
; (115)

and the mass insertions can be parametrized in a model-
independent fashion as

 ��ij�MN �
�VM ~M2VyN�ij

m2
~q

: (116)

Here, i, j are flavor indices, M, N refers to the helicity
choices LL, LR, RR, and m~q represents the average squark
mass. Although this source of flavor violation is present in
general, and, in particular, in models with gravity mediated
supersymmetry breaking, it can be avoided if supersym-
metry is broken by gauge or anomaly mediation. These
mass insertions are thought to be small in the MSSM, but
can be large in nonminimal supersymmetric models.

In this scenario, the virtual exchange of squarks and
gluinos in the box diagrams depicted in Fig. 22 can have
a strong contribution to D0- �D0 mixing. Note that the

u u

c cu
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c

g g
gg~ ~
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c u
Q

c~ uQ
~ ~~
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M

P P
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N N

M
M

FIG. 22. Contributions toDmixing from mass insertions in the
squark propagator in MSSM. N, M, P, and Q label the helicity
�L; R�.
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second diagram in the figure is due to the Majorana nature
of the gluino. The effective Hamiltonian at the supersym-
metric scale is given by

 H MSSM �

2
s

2m2
~q

X8

i�1

Ci�m~q�Qi; (117)

where all eight operators in the independent basis contrib-
ute. The matching conditions at the supersymmetric mass
scale are [110]

 

C1�m
2
~q� �

1

18
��u12�

2
LL	4xf1�x�� 11f2�x�
; C2�m

2
~q� �

1

18
f��u12�LR��

u
12�RL15f2�x�� ��

u
12�LL��

u
12�RR	2xf1�x�� 10f2�x�
g;

C3�m2
~q� �

1

9
f��u12�LL��

u
12�RR	42xf1�x�� 6f2�x�
� ��u12�LR��

u
12�RL11f2�x�g; C4�m2

~q� �
1

18
��u12�

2
RL37xf1�x�;

C5�m
2
~q� �

1

24
��u12�

2
RLxf1�x�; C6�m

2
~q� �

1

18
��u12�

2
RR	4xf1�x�� 11f2�x�
;

C7�m
2
~q� �

1

18
��u12�

2
LR37xf1�x�; C8�m

2
~q� �

1

24
��u12�

2
LRxf1�x�;

(118)

where x � m2
~g=m

2
~q, withm~g being the mass of the gluino. The functions f1�x� and f2�x� are given in the appendix. Note that

these conditions are symmetric under the interchange L$ R. We also note that the NLO expressions for these matching
conditions have been computed in Ref. [111].

The RG evolution to the charm-quark scale results in

 C1�mc� � r1�mc;m~q�C1�m~q�; C2�mc� � r2�mc;m~q�C2�m~q�;

C3�mc� �
2

3
	r2�mc;m~q� � r3�mc;m~q�
C2�m~q� � r3�mc;m~q�C3�m~q�;

C4�mc� �
8��������
241
p 	r5�mc;m~q� � r4�mc;m~q�


�
C4�m~q� �

15

4
C5�m~q�

�
�

1

2
	r4�mc;m~q� � r5�mc;m~q�
C4�m~q�;

C5�mc� �
1

8
��������
241
p 	r4�mc;m~q� � r5�mc;m~q�
	C4�m~q� � 64C5�m~q�
 �

1

2
	r4�mc;m~q� � r5�mc;m~q�
C5�m~q�;

C6�mc� � r6�mc;m~q�C6�m~q�;

C7�mc� �
8��������
241
p 	r8�mc;m~q� � r7�mc;m~q�


�
C7�m~q� �

15

4
C8�m~q�

�
�

1

2
	r7�mc;m~q� � r8�mc;m~q�
C7�m~q�;

C8�mc� �
1

8
��������
241
p 	r7�mc;m~q� � r8�mc;m~q�
	C7�m~q� � 64C8�m~q�
 �

1

2
	r7�mc;m~q� � r8�mc;m~q�
C8�m~q�;

(119)

which agrees in form with that in Ref. [112]. Here, we have
assumed that the squarks and gluinos are integrated out at
roughly the same scale. Upon evaluating the matrix ele-
ments in the modified vacuum saturation approximation
we obtain the MSSM contribution to xD,

 

x�MSSM�
D �


s
2m2

~q

f2
DBDmD

�D

�
2

3
	C1�mc� � C6�mc�


�
5

12
	C4�mc� � C7�mc�
 �

7

12
C3�mc�

�
5C2�mc�

6
� 	C5�mc� � C8�mc�


�
: (120)

Here, we have taken the factor � of Eq. (26) to be unity.
Our results for x�MSSM�

D are presented in Figs. 23–25. In
these figures, we show contours for the absolute value of

the up-charm squark mass insertions for various helicities
as a function of the ratio m~g=m~q for different average
squark masses. These contours correspond to xD �
�11:7; 15:0; 3:0� � 10�3 in the three figures. In Fig. 23,
the region above the contours represents the current 1�
excluded region. In these figures we take one or two of the
mass insertions to be nonvanishing, as indicated. Because
of the L$ R symmetry of the matching conditions, the
constraints on j�u12jLL and j�u12jRR, as well as j�u12jLR and
j�u12jRL are identical. We see that D meson mixing restricts
the up and charm squark masses to be degenerate at the (1–
10)% level for most of the parameter space. We note that
our results numerically agree with those recently computed
by Ciuchini et al. [113].

There are several other contributions toDmeson mixing
within the MSSM. These are all mediated via box diagrams
with internal sparticle exchange and we now discuss each
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one in turn. (i) The exchange of any of the 4 neutralinos �0
i

(i � 1, 4) with the up and charm squarks. This contribution
proceeds via mass insertions in the squark propagators with
flavor diagonal quark-squark-neutralino couplings as in the
case of internal squark-gluino exchange discussed above.
Since the couplings are of weak interaction strength in this
case, the magnitude of this contribution is suppressed by
the ratio g4=g4

s compared to the squark-gluino results and
is thus numerically insignificant. (ii) The exchange of one
of the neutralinos and one gluino with the up and charm
squarks. This again proceeds via the nondiagonal squark
mass insertions at a rate of g2=g2

s compared to the pure
gluino-squark contribution. Although larger than the pure
neutralino-squark contribution, it is still a subleading ef-
fect. (iii) The exchange of charginos ��i (i � 1, 2) and all
three down-type squarks inside the box diagram. Here, the
squark propagators are diagonal (mass insertions do not
contribute in this case since the internal squarks are
Q � �1=3) and the flavor violation is given by the CKM
structure of the quark-squark-chargino vertices. However,
the Q � �1=3 squarks are constrained to be highly degen-
erate from their contributions (with gluino exchange) to K,
Bd, Bs meson mixing. Thus a supersymmetric-GIM
mechanism is in effect, yielding nearly exact cancellations,
and rendering this contribution negligible. This is in con-
trast to the chargino-squark contributions to K, Bd, Bs
meson mixing, where the potentially nondegenerate stop
squark participates and can induce large contributions.
(iv) The charged Higgs contribution of the two-Higgs-
Doublet model of type II discussed in Sec. VI A. As shown
in that section, these contributions are numerically small,
even in the case of large tan	. In summary, we see that all
other supersymmetric contributions to D0- �D0 mixing are
numerically insignificant compared to the squark-gluino
exchange. It is interesting to note that stop-squarks do not
contribute to D meson mixing.

B. Quark-squark alignment models

As we saw in the previous section, in the MSSM there is
a new ‘‘flavor problem,’’ namely, how to keep the contri-
butions from the supersymmetric particles to FCNC as
small as the observations. The conventional solution is to
impose constraints, such as those derived above, of
(i) degeneracy in the squark sector (except for the special
case of stop squarks), i.e. the diagonal submatrices MLL
and MRR in Eq. (116) should be proportional to the unit
matrix, and (ii) the nondiagonal submatrices MLR should
be proportional to the corresponding quark matrix.

Nir and Seiberg [114] have proposed an alternative to
this picture where the quark and squark mass matrices are
approximately aligned with each other. Their proposal is as
follows: if for some symmetry reason the matrices corre-
sponding to the squark mass insertions, �MN , are them-
selves diagonal, then the squark contributions to FCNC
vanish, regardless of the mass spectrum of the squarks.

Corrections to this approximation are expected to remain
tolerably small and it should be possible to simultaneously
diagonalize the quark mass matrices and the squark mass-
squared matrices while essentially preserving flavor diago-
nal gluino interactions.

Within this framework, it is somewhat problematic to
satisfy the constraints from K0– �K0 mixing. Specific im-
plementations of this proposal, based on Abelian horizon-
tal symmetries, restrict the supersymmetric contributions
to Kaon mixing via a unique structure for the down-quark
mass matrix using holomorphic zeros [115]. This implies
that Cabibbo mixing between the first and second genera-
tion quarks must be induced by mixing in the up-quark
sector, which in turn leads to sizable supersymmetric con-
tributions to D0- �D0 mixing. In this case, mixing in the up-
charm squark sector gives

 ��LL�uc �
�VuL ~M2VuyL �uc

~m2 � �c
� ~m2

uc

~m2
q
; (121)

where �c is the Cabibbo angle, while the ��LR�uc mass
insertions can naturally remain small. Mirroring the above
discussion for MSSM, this leads to the effective
Hamiltonian that mediates D mixing

 H A �

2
s

2m2
~q

C1�m~q�Q1; (122)

with

 C1�m~q� �
1

18
��u12�

2
LL	4xf1�x� � 11f2�x�
; (123)

where f1;2�x� with x � m2
~g=m

2
~q are again given in the

appendix. The RG evolution is simple and yields

 x�A�D �

s

3m2
~q

f2
DBDmD

�D
r1�mc;m~q�C1�m~q�: (124)

The bounds on ��u12�LL from the current measurement of D
meson mixing are given in the upper left-hand panel of
Fig. 23. Using Eq. (121) above, this results in the constraint
on squark and gluino masses of (assuming m~q � m~g for
simplicity) m~g;~q * 2 TeV, which agrees with the results in
Refs. [12,113]. This would exclude early discovery of
supersymmetry at the LHC, but leaves a discovery window
with higher luminosities as the LHC detectors are expected
to have a search reach of m~g;~q up to 2.5–3.0 TeV with
300 fb�1 of integrated luminosity.

C. Supersymmetry with R-parity violation

The conventional gauge symmetries of supersymmetry
allow for the existence of additional terms in the super-
potential that violate baryon and lepton number. The as-
sumption of R-parity conservation in the MSSM prohibits
these terms, ensuring that baryon and lepton number are
conserved, and forbids related dangerous operators, e.g.,
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those that mediate proton decay. However, it is possible to
construct alternative discrete symmetries [116], such as
baryon-parity or lepton-parity, that allow terms which
violate either baryon or lepton number, but not both.
These symmetries also forbid unwanted operators, and
there is no strong theoretical motivation to prefer
R parity over these alternative scenarios. The R-parity
violating terms in the superpotential can be written as

 WRp �
1

2
�ijkLiLj �Ek � �0ijkLiQj

�Dk �
1

2
�00ijk �Ui

�Dj
�Dk:

(125)

i, j, k are generation indices and symmetry demands i � j
(j � k) in the terms proportional to � (�00). The quantities
L, E, Q, D, U in Eq. (125) are the chiral superfields in the
MSSM, and the SU�2�L, SU�3�C indices have been sup-
pressed. A bilinear term may also be present, but it can be
rotated away and will not be considered here. The lepton
number violating terms, � and �0, cannot exist simulta-
neously with the �B � 0 term containing �00. The �0 terms

have the same structure as the couplings for scalar lepto-
quarks, as discussed in Sec. VI C. This model still contains
the minimal superfield content, but leads to a markedly
different supersymmetric phenomenology as sparticles can
now be produced singly and can mediate FCNC at
tree level.

The superfields are in the weak basis and should be
rotated to their mass eigenstates. The �L � 0 �0 term
becomes [117]

 WRp �
~�0ijk	NiVjlDl � EiUj
 �Dk; (126)

with the definition

 

~� 0ijk � �0irsU
L
rjD

�R
sk : (127)

Here, UL and DR are the matrices which rotate the left-
handed up- and right-handed down-quark fields to their
mass basis. Written in terms of component fields, the
second term in this superpotential contains the interactions

FIG. 23 (color online). The constraints on the absolute value of the mass insertions with different helicities as a function of the mass
ratio m~g=m~q for various values of the average squark mass. The 1� excluded region, corresponding to xD < 11:7� 10�3, lies above
the curves.
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W�0 � ~�0ijkfVjl	~�
i
L

�dkRd
l
L �

~dlL �dkR�
i
L � �

~dkR�
�� ��iL�

cdlL


� ~eiL �dkRu
j
L � ~ujL �dkRe

i
L � �

~dkR�
�� �eiL�

cujLg; (128)

where the second line involving the up-quark sector is
relevant for D0- �D0 mixing.

Constraints on the size of these R-parity violating cou-
plings have been obtained in the literature. These limits are
derived from considerations of various processes [118]
such as charged current universality, semileptonic meson
decays, rare meson decays, atomic parity violation, double
nucleon decay, neutron oscillations, and Z boson decays. A
compilation of the 2� bounds on the couplings relevant for
D0- �D0 mixing are given in Table VI. In addition, the
recently improved upper bound on the branching
fraction for the process D� ! ��e�e� of B< 7:4�
10�6 from CLEO-c [119] yields the stringent restriction
[7] on the product of couplings ~�012k

~�011k < 0:003
�m~dR;k

=�100 GeV��2.

It is possible for the quark flavor rotations to generate
flavor violation in the down- or up-quark sectors, but not
both. In the case where the flavor rotations occur in the up-
quark sector only, large flavor-changing effects are ex-
pected in the D meson system and the limits on the R-
parity violating couplings shown in Table VI become
modified [118]. However, this scenario is rather
model dependent, we will adopt a more conservative,
model-independent formalism in the following.

For the lepton number violating coupling ~�0, the first and
third terms in the second line of Eq. (128) mediate D0- �D0

mixing via box diagrams where either the pair (~‘L;i � dR;k)
or (‘L;i � ~dR;k) are exchanged internally with the assign-
ment of the generational index j � 1, 2 [117]. The corre-
sponding Feyman diagrams are depicted in Fig. 26. Note
that there are no tree-level contributions as in the case of
meson mixing in the down-quark sector. This is described
at the high mass scale by the effective Hamiltonian

FIG. 24 (color online). Contours, corresponding to xD � 15:0� 10�3, for the absolute value of the mass insertions with different
helicities as a function of the mass ratiom~g=m~q for various values of the average squark mass. The region above the curves corresponds
to larger values of xD.
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 H Rp �
1

128�2 �
~�0i2k ~�0i1k�

2

�
1

m2
~‘L;i

�
1

m2
~dR;k

�
Q1; (129)

where the dependence on the operator Q1 is induced due to
the fermion propagator. This interaction will yield con-
straints on the product of couplings ~�0i2k ~�0i1k. Here, we have

assumed that only one set of the R-parity violating cou-
plings ~�0i2k ~�0i1k (i.e., only one value of i and k) is large and
dominant. This is equivalent to saying that, e.g., both
sleptons and both down-type quarks being exchanged in
the first box diagram shown in Fig. 26 are from the same
generation. In general, this need not be the case and, for
example, the coupling factor would then be the product
~�0i2k ~�0m1k

~�0m2n
~�0i1n, with, e.g., the set of ~‘L;i, dR;k, ~‘L;m, dR;n

being exchanged.
Matching at the SUSY scale yields the Wilson coeffi-

cient

 C1�m~q� �
1

64�2 �
~�0i2k ~�0i1k�

2

�
1�

m2
~dR;k

m2
~‘L;i

�
: (130)

Computing the evolution to the charm-quark scale yields

 H Rp �
1

2m2
~dR;k

C1�mc�Q1; (131)

TABLE VI. 2� constraints on the R-parity violating couplings
which participate in D mixing. Here, k � 1, 2, 3 with the
exception that k � j, where j represents the middle index, for
the �00 couplings. All numbers are scaled by the factor
(m~dR;k

=100 GeV). Details of the derivation of these restrictions
are given in Refs. [7,118].

~�011k
~�012k

~�021k
~�022k

~�031k
~�032k

5� 10�4–0:021 0.043 0.021–0.059 0.18–0.21 0.11 0.52

~�0011k
~�0021k

~�0012k
~�0022k

~�0013k
~�0023k

10�15–10�4 1.23 10�15–1:23 1.23 10�4–1:23 1.23

FIG. 25 (color online). Contours, corresponding to xD � 3:0� 10�3, for the absolute value of the mass insertions with different
helicities as a function of the mass ratiom~g=m~q for various values of the average squark mass. The region above the curves corresponds
to larger values of xD.
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with

 C1�mc� � r1�mc;m~q�C1�m~q�: (132)

Evaluating the appropriate matrix element gives the D
mixing contribution for the R-parity violating �0 terms,

 x
�Rp�
D �

f2
DBDMD

3�Dm2
~dR

C1�mc�: (133)

Takingm~‘L;i
’ m~dR;k

for simplicity, we obtain the constraint

 

�~�0i2k ~�0i1k�
2

m2
~dR;k

� x�expt�
D

96�2�D
f2
DBDMDr1�mc;m~q�

; (134)

which yields numerically

 

~� 0i2k ~�0i1k � 0:085
������������
x�expt�

D

q � m~dR;k

500 GeV

�
: (135)

We find that relaxing our assumption on the slepton mass
and taking m~‘L;i

� m~dR;k
strengthens this bound at most by

a factor of 3.7 when m~‘L;i
� 100 GeV. In computing the

renormalization group equation (RGE) evolution we used
the value m~q � 500 GeV and find little sensitivity in the
evolution on the squark mass once it is above the current
experimental limit from HERA of 
300 GeV [13]. It is
trivial to scale our result in Eq. (135) to compare to the
limits in Table VI which are based on setting m~dR;k

�

100 GeV. Taking, m~dR;k
� 500 GeV, we see that the

bounds on ~�0i2k ~�0i1k from D0- �D0 mixing are a factor of
50 (250) times stronger than those in the table for i � 2
(i � 3).

The full numerical results for xD and the constraints
obtained in the R-parity violating coupling, squark mass
parameter plane are presented in Fig. 27 in the limit m~‘L;i

’

m~dR;k
. We see that D meson mixing provides stringent

constraints on R-parity violating couplings. These bounds
can be directly translated to constraints on the couplings of
scalar leptoquarks as discussed in a previous section.

The baryon number violating �00 couplings can also
contribute to D0- �D0 mixing. We remind the reader that
they cannot exist simultaneously with the lepton number
violating terms in the superpotential. They participate in D
mixing via dR-quark and ~dR exchange in the box diagram.
The formalism is analogous to the �L � 0 case above. The

u uc

u uc

c

c

dd

d~ ~

L L

~
L

~
d

L

FIG. 26. Contributions to D0- �D0 mixing from the �0 super-
potential terms in supersymmetric models with R-parity viola-
tion.

FIG. 27 (color online). Left: xD in supersymmetry with R-parity violation as a function of the product of R-parity violating couplings
~�0i2k ~�0i1k taking m~dR;k

� m~‘L;i
, with m~dR;k

� 300, 500, 1000, and 2000 GeV corresponding to the solid, green (light gray) dashed, red

(gray) dotted, and blue (dark gray) dash-dotted curves, respectively. The 1� experimental bounds are as indicated, with the yellow
shaded region depicting the region that is excluded. Right: 1� excluded region in the R-parity violating coupling–squark mass plane,
as well as possible future contours taking xD < �15:0; 8:0; 5:0; 3:0� � 10�3, corresponding to the blue (dark gray) dashed, red (gray)
dashed, cyan (lightest gray) dotted, and green (light gray) dot-dashed curves, respectively.
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effective Hamiltonian at the SUSY mass scale is

 H Rp �
1

128�2 �
~�001jk ~�002jk�

2

�
1

m2
~dR;j

�
1

m2
~dR;k

�
Q1: (136)

Recall that symmetry dictates j � k. After completing the
RGE evolution as described above, and assuming the
charged �1=3 squarks are degenerate, we have

 x
�Rp�
D �

f2
DBDMD

96�2m2
~dR

�D
r1�mc;m~dR

��~�001jk ~�002jk�
2: (137)

This yields the constraint

 

~� 001jk ~�002jk � 0:085
������������
x�expt�

D

q � m~dR

500 GeV

�
; (138)

which mirrors that for the lepton number violating
scenario.

D. Split supersymmetry

Lastly, for completeness, we briefly discuss the case of
split supersymmetry [120]. This scenario postulates that
supersymmetry breaking occurs at a very high scale,mS �

1000 TeV. The scalar particles all acquire masses at this
high scale, except for a single neutral Higgs boson, whose
mass is either finely tuned or is preserved by some other
mechanism. Split supersymmetry proponents argue that
this tuning may, indeed, be present in nature, perhaps being
related to the cosmological constant problem (which suf-
fers an even greater degree of fine-tuning). The fermions in
this theory, including the gauginos, are assumed to be
protected by chiral symmetries and thus can have weak-
scale masses. This feature preserves the gauge coupling
unification found in supersymmetric models, and provides
a natural dark matter candidate in the lightest neutralino.
One important consequence of this scenario is that since all
the scalar fields are present at only a very high scale, they
decouple from physics at the TeV scale and their contri-
butions to FCNC in the flavor sector are negligible. Since
all contributions to D0- �D0 mixing in supersymmetry in-
volve the internal exchange of scalar quarks, we expect
these effects to essentially vanish in this scenario.

IX. CONCLUSIONS

The recent BABAR and Belle findings on D0- �D0 mixing
have brought the long-standing search for this phenomenon
to a successful conclusion, although much remains to be
done. Compared to mixing in the other flavor sectors, the

TABLE VII. Approximate constraints on np models from D0 mixing.

Model Approximate constraint

Fourth generation (Fig. 2) jVub0Vcb0 j �mb0 < 0:5 �GeV�
Q � �1=3 singlet quark (Fig. 4) s2 �mS < 0:27 �GeV�
Q � �2=3 singlet quark (Fig. 6) j�ucj< 2:4� 10�4

Little Higgs Tree: see entry for Q � �2=3 singlet quark
Box: region of parameter space can reach observed xD

Generic Z0 (Fig. 7) MZ0=C > 2:2� 103 TeV
Family symmetries (Fig. 8) m1=f > 1:2� 103 TeV (with m1=m2 � 0:5)
Left-right symmetric (Fig. 9) No constraint
Alternate left-right symmetric (Fig. 10) MR > 1:2 TeV (mD1

� 0:5 TeV)
��m=mD1

�=MR > 0:4 TeV�1

Vector leptoquark bosons (Fig. 11) MVLQ > 55��PP=0:1� TeV
Flavor conserving two-Higgs doublet (Fig. 13) No constraint
Flavor-changing neutral Higgs (Fig. 15) mH=C> 2:4� 103 TeV
FC neutral Higgs (Cheng-Sher ansatz) (Fig. 16) mH=j�ucj> 600 GeV
Scalar leptoquark bosons See entry for RPV SUSY
Composite Higgs (Fig. 17) M> 100 TeV
Universal extra dimensions No constraint
Split fermion (Fig. 19) M=j�yj> �6� 102 GeV�
Warped geometries (Fig. 21) M1 > 3:5 TeV
Minimal supersymmetric standard (Fig. 23) j��u12�LR;RLj< 3:5� 10�2 for ~m
 1 TeV

j��u12�LL;RRj< 0:25 for ~m
 1 TeV
Supersymmetric alignment ~m> 2 TeV
Supersymmetry with RPV (Fig. 27) �012k�

0
11k=m~dR;k

< 1:8� 10�3=100 GeV
Split supersymmetry No constraint
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observed value for charm [cf. Eq. (4)] is by far the smallest,

 

xK ’ 0:47; xBd
’ 0:776;

xBs
’ 26; xD ’ 0:009: (139)

In our opinion, the measured value for xD is in accord with
expectations of the standard model, with the proviso that
hadronic (rather than quark-level) effects are the dominat-
ing influence (cf. Sec. III). We have argued that the rela-
tively small magnitude of charm mixing could afford new
physics an enhanced chance to compete successfully with
the standard model. It should be kept in mind, however,
that the current experimental value of xD is relatively
imprecise and that the SM theoretical determination con-
tains hadronic uncertainties. These facts tend to frustrate
the attempt to disentangle any potentially large NP con-
tribution from that of the SM.

By design, our study of NP contributions has addressed a
rather broad spectrum of possibilities. We have avoided
playing favorites among the NP models contained in this
paper, letting the results speak for themselves. Since the
average reader is unlikely to be conversant with the details
of such a large array of NP models, our presentation
has been pedagogical in nature. We have tried to precede
any formula for x�NP�

D with a summary of the relevant
background.

A work such as this is meant to constrain the parameter
spaces of NP models. The case of D0 mixing is especially
interesting because the intermediate states which generate
the D0-to- �D0 transitions are distinct from those occurring
in K, Bd, and Bs mixing. Typically, NP parameters will
involve the masses of yet-to-be-discovered particles and
their coupling strengths to ordinary matter. In some cases
(left-right symmetric model, split supersymmetry, univer-
sal extra dimensions, flavor conserving two-Higgs dou-
blets) we have found that the NP model will not generate
a D0- �D0 signal at the observed level for any values of its
parameters. More often, however, this is not the case and
for some models (split fermions, flavor-changing neutral
Higgs) the constraints can be strong.

The main quantitative conclusions for this work appear
in the set of figures which appear throughout the paper. For
convenience, we have compiled a summary of our results
in Table VII, using the 1� value xD < 11:7� 10�3 to mark
the boundary between allowed and excluded regions. Such
a list is by nature approximate, and we refer the reader to
the body of the paper for a more precise presentation of our
results.

We recommend further experimental study of this sub-
ject on two fronts. First, of course, is the need to reduce
error bars in the measured values of yD and especially xD.
Equally important is continuing the search for evidence of
CP violation in mixing for the D0 system. CP violation
provides an interesting contrast with D0 mixing because it

provides an independent arena for competition between the
SM and NP signals. There is especially room for improve-
ment in the SM analysis of charm CP violation, and work
on this is under way.
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APPENDIX: COLLECTED FORMULAS

Here, we collect the formulas used throughout the manu-
script to compute the contributions to D0- �D0 mixing in the
various new physics models.

Inami-Lim: (from Ref. [32])
The loop functions, first calculated by Inami-Lim, apply

for several NP scenarios discussed in the text. For a con-
tribution from two internal quarks of the same flavor in the
box diagram, the loop function is

 S�x� � x
�

1

4
�

9

4�1� x�
�

3

2�1� x�2

�
�

3x3

2�1� x�3
lnx;

(A1)

and for two quarks of different flavors,

 

S�xi; xj� � xixj

�
lnxi

xi � xj

�
1

4
�

3

2�1� xi�
�

3

4�1� xi�
2

�

� �xi $ xj� �
3

4�1� xi��1� xj�

�
: (A2)

Little Higgs: (from Ref. [47])
The loop function for the case where the mirror fermions

and heavy gauge bosons are exchanged in the box diagram
is given by
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FLH�zi; zj� �
1

�1� zi��1� zj�

�
1�

7

4
zizj

�
�

z2
i logzi�

�zi � zj��1� zi�2

�
1� 2zj �

zizj
4

�
�

z2
j logzj

�zi � zj��1� zj�2

�
1� 2zi �

zizj
4

�

�
3

4

�
1

�1� zi��1� zj�
�

z2
i logzi

�zi � zj��1� zi�
2 �

z2
j logzj

�zi � zj��1� zj�
2

�

�
3

100a

�
1

�1� z0i��1� z
0
j�
�

z0izi logz0i
�z� I � zj��1� z0i�

2�
�

z0jzj logz0j
�zi � zj��1� z0j�

2

�

�
3

10

�
loga

�a� 1��1� z0i��1� z
0
j�
�

z2
i logzi

�zi � zj��1� zi��1� z
0
i�
�

z2
j logzj

�zi � zj��1� zj��1� z
0
j�

�
; (A3)

with

 zi �
m2
Mi

M2
WH

z0i �
m2
Mi

M2
AH

a �
5

tan2�w
: (A4)

Left-right symmetric model:
The loop function with one WL and one WR boson being

exchanged in the box diagram is

 J�x; 	� �
x	 ln	

�1� 	��1� 	x�2
�

x� x lnx
�1� x��1� 	x�

: (A5)

Charged Higgs: (from Ref. [73])
The loop functions with one H� and one SM W boson

and with two H� being exchanged in the box diagram are

 AHH�x; y� �
x2

4

�
x� y

�x� y�2
�

2xy

�x� y�3
ln
x
y

�
;

AWH�x; y� � 2x2

�
1

�x� y��1� x�
�

y lny

�x� y�2�1� y�

�
�x2 � y� lnx

�x� y�2�1� x�2
�

1

4

�
x

�x� y��1� x�

�
y2 lny

�1� y��x� y�2
�
x�x� xy� 2y� lnx

�x� y�2�1� x�2

��
:

(A6)

Cheng-Sher box:
The loop function in the Cheng-Sher ansatz with flavor-

changing neutral Higgs bosons for a top-quark and neutral
Higgs being exchanged in a box diagram is

 FtH�x� �
�1

1� x
�

lnx

�1� x�2
�
x2 � 4x� 3� 2 lnx

2�1� x�3
:

(A7)

Universal extra dimensions:
The expressions for the case of Universal Extra

Dimenions are given in full in Ref. [91].
Warped extra dimensions: (from Ref. [101])
The coupling of two zero-mode fermions to the nth

gauge boson KK state, A�n�, relative to the SM coupling
strength is

 Cf
�fA

oon �
g�n�

gSM

�
�������������
2�krc

p �
1� 2cf

1� e��krc�1�2cf�

�

�
Z 1

e��krc
dzz�1�2cf�

J1�xnz� � 
nY1�xnz�
jJ1�xn� � 
nY1�xn�j

; (A8)

where the roots xn for the gauge boson KK spectrum are
given by

 J1�xn� � xnJ
0
1�xn� � 
n	Y1�xn� � xnY

0
1�xn�
 � 0; (A9)

and 
n is defined by

 
n �
J1�mn=k� � �mn=k�J01�mn=k�
Y1�mn=k� � �mn=k�Y01�mn=k�

: (A10)

Supersymmetry: (from Ref. [110])
The loop functions from squark and gluino exchange in

a box diagram with squark mass insertions are given by

 f1�x� �
6�1� 3x� lnx� x3 � 9x2 � 9x� 17

6�1� x�5
;

f2�x� �
6x�1� x� lnx� x3 � 9x2 � 9x� 1

3�1� x�5
:

(A11)
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