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Wave functions and form factors of vector mesons are investigated in the holographic dual model of
quantum chromodynamics with oscillator-like infrared cutoff. We introduce wave functions conjugate to
solutions of the 5D equation of motion and develop a formalism based on these wave functions, which are
very similar to those of a quantum-mechanical oscillator. For the lowest bound state (�-meson), we show
that, in this model, the basic elastic form factor exhibits the perfect vector meson dominance, i.e., it is
given by the �-pole contribution alone. The electric radius of the �-meson is calculated, hr2

�iC �
0:655 fm2, which is larger than in the case of the hard-wall cutoff. The squared radii of higher excited
states are found to increase logarithmically rather than linearly with the radial excitation number. We
calculate the coupling constant f� and find that the experimental value is closer to that calculated in the
hard-wall model.
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I. INTRODUCTION

Holographic duals of quantum chromodynamics (QCD)
which are based on the gauge/gravity correspondence [1]
have been applied recently to hadronic physics (see, e.g.,
[2–14]), and demonstrated their ability to incorporate such
essential properties of QCD as confinement and chiral
symmetry breaking, and have been successful in many
cases in determination of static hadronic properties, i.e.,
resonance masses, decay constants, chiral coefficients, etc.
In Refs. [2,4], the dynamic properties (form factors) have
been studied within the holographic approach of Ref. [2],
and the connection between the AdS/QCD approach of
Refs. [2,4] and the usual light-cone formalism for hadronic
form factors was proposed in [11] and discussed in [15].
The calculation of form factors of scalar and vector had-
rons within the approach of Ref. [2] was performed in
Refs. [16,17], and applied to study the universality of the
�-meson couplings to other hadrons. In our recent paper
[18], we studied form factors and wave functions of vector
mesons within the framework of the holographic QCD
model described in Refs. [6–8] (which will be referred to
as the hard-wall model).

In the hard-wall model, the confinement is modeled by
hard-wall cutting off the AdS space along the extra fifth
dimension at some finite value z � z0. The solutions of the
relevant eigenvalue equation are given by the Bessel func-
tions, and masses of bound states are given by the roots
Mn � �0;n=z0 of J0�Mz0�. As a result, the masses of higher
excitations behave like M2

n � n
2. It was argued [12,19]

that, instead, one should expect M2
n � n behavior. This

connection can be derived from semiclassical arguments
[19,20]. An explicit AdS/QCD model which gives such a
linear behavior was proposed in Ref. [12]. The hard-wall
boundary conditions in this model are substituted by an

oscillator-type potential providing a soft IR cutoff in the
action integral (for this reason, it will be referred to as the
‘‘soft-wall model’’).

The aim of the present paper is to study form factors and
wave functions of vector mesons within the framework of
the soft-wall model formulated in Ref. [12], and compare
the results with those we obtained in Ref. [18] investigating
the hard-wall model. To this end, we extend the approach
developed in Ref. [18]. We start with recalling, in Sec. II,
the basics of the soft-wall model and some results obtained
in Ref. [12], in particular, the form of the relevant action,
the eigenvalue equation for bound states, and its solution.
In Sec. III, we derive a useful integral representation for the
bulk-to-boundary propagator V �p; z� that allows one to
write V �p; z� as an explicit expansion over bound state
poles with the z-dependence of each pole contribution
given by ‘‘ wave functions’’ that are eigenfunctions of
the 5D equation of motion. Then we show that the same
representation can be obtained from the general formalism
of Green’s functions. However, as we already emphasized
in Ref. [18], the  n�z� wave functions are not direct ana-
logues of the usual quantum-mechanical wave functions.
In particular, a meson coupling constant fn is obtained
from the derivative of  n�z� at z � 0 rather than from its
value at this point. To this end, we introduce ‘‘� wave
functions’’ which look more like wave functions of oscil-
lator bound states in quantum mechanics. Their values at
z � 0 give the bound state couplings g5fn=Mn, they ex-
ponentially decrease with z2, and thus they have properties
necessary for the light-cone interpretation of AdS/QCD
results proposed in Ref. [11]. In Sec. IV, we study the
three-point function hJJJi and obtain an expression for
transition form factors that involves  wave functions
and the non-normalizable mode factor J �Q; z�. The latter
is written as a sum over all bound states in the channel of
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electromagnetic current, which gives an analogue of gen-
eralized vector meson dominance (VMD) representation
for hadronic form factors. In Sec. V, it is shown that it is
possible to rewrite form factors in terms of � functions.
Then we formulate predictions for �-meson form factors,
and analyze these predictions in the regions of small and
large Q2. In particular, our formalism allows one to calcu-
late the �-meson electric radius, and the radii of higher
excited states. It is also shown that, for the basic �-meson
form factor F �Q2� given by the overlap of the � wave
functions, the soft-wall model predicts an exact VMD
pattern, when just one lowest bound state in the
Q2-channel contributes. For another �-meson form factor
F�Q2�, which is given by the overlap of the  wave
functions, a two-resonance dominance is established,
with only two lowest bound states in the Q2-channel
contributing. In Sec. VI, we compare our results obtained
in the soft-wall model with those derived in the hard-wall
model studies performed in Ref. [18]. At the end, we
summarize the paper.

II. PRELIMINARIES

We consider the gravity background with a smooth cut-
off that was proposed in Ref. [12] instead of a hard-wall
infrared (IR) cutoff. In this case, the only background fields
are dilaton ��z� � z2�2 and metric gMN . The metric can be
written as

 gMNdx
MdxN �

1

z2 ����dx
�dx� � dz2�; (1)

where ��� � Diag�1;�1;�1;�1� and �; � � �0; 1; 2; 3�,
M;N � �0; 1; 2; 3; z�. To determine the spectrum of vector
mesons, one needs the quadratic part of the action

 SAdS � �
1

4g2
5

Z
d4x

dz
z
e���z� Tr�FMNFMN�; (2)

where FMN � @MVN � @NVM � i�VM; VN�, VM � taVaM
(ta � 	a=2, with 	a being Pauli matrices). In the axial-
like gauge Vz � 0, the vector field Va��x; z � 0� corre-
sponds to the source for the vector current Ja��x�. To obtain
the equations of motion for the transverse component of
the field, it is convenient to work with the Fourier trans-
form ~Va��p; z� of Va��x; z�, for which one has

 

�
@z

�
1

z
e�z

2
@z ~Va��p; z�

�
� p2 1

z
e�z

2 ~Va��p; z�
�
?
� 0: (3)

(Here, and in the rest of the paper, we find it convenient to
follow the convention of Ref. [12], in which the oscillator
scale � is treated as 1, i.e., we write below z2 instead of
�2z2, e�z

2
instead of e�z

2�2
, etc. Using dimensional analy-

sis, the reader can easily restore the hidden factors of � in
our expressions. In some cases, when � is not accompanied
by z, we restore � explicitly.) The eigenvalue equation for
wave functions  n�z� of the normalizable modes can be

obtained from Eq. (3) by requiring p2 � M2
n, which gives

 @z

�
1

z
e�z

2
@z n

�
�M2

n
1

z
e�z

2
 n � 0: (4)

As noted in Ref. [12], the substitution

  n�z� � ez
2=2

���
z
p

�n�z� (5)

gives a Schrödinger equation

 ��00n �
�
z2 �

3

4z2

�
�n � M2

n�n; (6)

which happens to be exactly solvable. The resulting spec-
trum is M2

n � 4�n� 1� (with n � 0; 1; . . . ), and the solu-
tions  n�z� of the original equation (4) are given by

  n�z� � z2

������������
2

n� 1

s
L1
n�z

2�; (7)

where L1
n�z2� are Laguerre polynomials. The functions

 n�z� are normalized according to

 

Z 1
0

dz
z
e�z

2
 m�z� n�z� � 
mn: (8)

Correspondingly, the �n�z� functions of the Schrödinger
equation (6) are normalized by

 

Z 1
0
dz�m�z��n�z� � 
mn; (9)

i.e., just like wave functions of bound states in quantum
mechanics. Note, however, that the functions �n�z� behave
like z3=2 for small z, while quantum-mechanical wave
functions of bound states with zero angular momentum
have finite nonzero values at the origin.

III. BULK-TO-BOUNDARY PROPAGATOR

It is convenient to represent ~Va��p; z� as the product of
the 4-dimensional boundary field ~Va��p� and the bulk-to-
boundary propagator V �p; z� which obeys the basic equa-
tion

 @z

�
1

z
e�z

2
@zV

�
� p2 1

z
e�z

2
V � 0 (10)

that follows from Eq. (3) and satisfies the boundary con-
dition

 V �p; z � 0� � 1: (11)

Its general solution is given by the confluent hypergeomet-
ric functions of the first and second kind

 V �p; z� � A1F1�a; 0; z
2� � BU�a; 0; z2�; (12)

where a � �p2=4�2, A and B are constants. Since the
function 1F1�a; 0; z

2� is singular for z � 0, we take A �
0. Then, for a > 0, the bulk-to-boundary propagator
V �p; z� can be written as
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 V �p; z� � a
Z 1

0
dxxa�1 exp

�
�

x
1� x

z2

�
: (13)

It is easy to check that this expression satisfies Eqs. (10)
and (11). Integrating by parts produces the representation

 V �p; z� � z2
Z 1

0

dx

�1� x�2
xa exp

�
�

x
1� x

z2

�
; (14)

from which it follows that, if p2 � 0 (or a � 0), then

 V �0; z� � 1 (15)

for all z. The integrand of Eq. (14) contains the generating
function

 

1

�1� x�2
exp

�
�

x
1� x

z2

�
�
X1
n�0

L1
n�z2�xn (16)

for the Laguerre polynomials L1
n�z2�, which gives the

representation

 V �p; z� � z2
X1
n�0

L1
n�z2�

a� n� 1
(17)

that can be analytically continued into the timelike a < 0
region. One can see that V �p; z� has poles there at ex-
pected locations p2 � 4�n� 1��2.

The same representation for V �p; z� can be obtained
from the Green’s function,

 G�p; z; z0� �
X1
n�0

 n�z� n�z0�

p2 �M2
n
; (18)

corresponding to Eq. (10), namely,

 V �p; z0� � �
�

1

z
e�z

2
@zG�p; z; z0�

�
z��!0

� �
X1
n�0

������������������
8�n� 1�

p
 n�z0�

p2 �M2
n

� �4
X1
n�0

z02L1
n�z02�

p2 �M2
n
;

(19)

which coincides with Eq. (17).
The two-point density function can also be obtained

from the Green’s function,
 

��p2� �
1

g2
5

�
1

z0
e�z

02
@z0
�

1

z
e�z

2
@zG�p; z; z0�

��
z;z0��!0

�
X1
n�0

f2
n

p2 �M2
n
; (20)

where the coupling constants fn � �2
������������������
8�n� 1�

p
=g5 ob-

tained in [12] are determined by

 fn �
1

g5z
e�z

2
@z n�z�

��������z��!0
: (21)

The propagator V �p; z) can be represented now as

 V �p; z� � g5

X1
n�0

fn n�z�

M2
n � p

2 ; (22)

where  n�z� are the original wave functions (7) corre-
sponding to the solutions of the eigenvalue equation (4).

Given the structure of Eq. (21), it is natural to introduce
the conjugate wave functions,

 �n�z� 	
1

Mnz
e�z

2
@z n�z�

�
2

Mn
e�z

2
�L1

n�z
2� � z2L2

n�1�z
2��; (23)

whose nonzero values at the origin fng5=Mn are propor-
tional to the coupling constant fn (in this particular case,
fng5=Mn �

���
2
p
�). The inverse relation between the  and

� wave functions

  n�z� � �
1

Mn
zez

2
@z�n�z� (24)

can be obtained from Eq. (4). The �-functions are normal-
ized by

 

Z 1
0
dzzez

2
�m�z��n�z� � 
mn: (25)

In particular, for the lowest states, we have

 �0�z� �
���
2
p
e�z

2
; �1�z� �

���
2
p
e�z

2
�1� z2�: (26)

Just like zero angular momentum oscillator wave functions
in quantum mechanics, these functions have finite values at
z � 0. They also have a Gaussian falloff e�z

2
for large z.

To make a more close analogy with the oscillator wave
functions, it makes sense to absorb the weight ez

2
in

Eq. (25) into the wave functions, i.e., to introduce ‘‘�’’
wave functions

 �n�z� 	 ez
2=2�n�z� �

1

Mnz
e�z

2=2@z n�z�; (27)

which are nonzero at z � 0, decrease like e�z
2=2 for large z,

and are normalized according to

 

Z 1
0
dzz�m�z��n�z� � 
mn: (28)

The presence of the z weight in this condition (which
cannot be absorbed into wave functions without spoiling
their behavior at z � 0) suggests that pursuing the analogy
with quantum mechanics one should treat z as the radial
variable of a 2-dimensional quantum-mechanical system.

IV. 3-POINT FUNCTION

The variation of the trilinear (in V) term of the action

 S�3�AdS � �
�abc
2g2

5

Z
d4x

Z 1
�

dz
z
e�z

2
�@�V

a
��V

�;bV�;c (29)
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calculated on the solutions of the basic equation (10) gives
the following result for the 3-point correlator:

 hJ�a �p1�J

b ��p2�J

�
c �q�i � �abc�2��

4 2i

g2
5


�4��p1 � p2 � q�


 T���p1; p2; q�W�p1; p2; q�;

(30)

with the dynamical part given by

 W�p1; p2; q� 	
Z 1
�

dz
z
e�z

2
V �p1; z�V �p2; z�V �q; z�;

(31)

and the kinematical factor having the structure of a non-
Abelian three-field vertex:

 T���p1; p2; q� � ����q� p1�
 � ���p2 � q��

� ���p1 � p2�
�: (32)

Incorporating the representation equation (22) for the bulk-
to-boundary propagators gives the expression

 T�p2
1; p

2
2; Q

2� �
X1
n;k�1

fnfkFnk�Q2�

�p2
1 �M

2
n��p2

2 �M
2
k�

(33)

for T�p2
1; p

2
2; Q

2� 	 W�p1; p2; q�=g
2
5 as a sum over the

poles of the bound states in the initial and final states. In
the z-integral of Eq. (31), the contribution of each bound
state is accompanied by its wave function  n�z�, while the
q-channel is represented by J �Q; z� � V �iQ; z�. This
gives the Q2-dependent coefficients

 Fnk�Q
2� �

Z 1
0

dz
z
e�z

2
J �Q; z� n�z� k�z�; (34)

which have the meaning of transition form factors. Note
that since J �0; z� � 1, the orthonormality relation (8)
assures that Fnn�Q

2 � 0� � 1 for diagonal transitions
and Fnk�Q2 � 0� � 0 if n � k.

The factor J �Q; z� can be written as a sum of monopole
contributions from the infinite tower of vector mesons:

 J �Q; z� � g5

X1
m�1

fm m�z�

Q2 �M2
m
: (35)

This decomposition, discussed in Refs. [16,18], directly
follows from Eq. (22). As a result, the form factors Fnk�Q2�
can be written in the form of a generalized VMD repre-
sentation:

 Fnk�Q
2� �

X1
m�1

Fm;nk
1�Q2=M2

m
; (36)

where the coefficients Fm;nk are given by the overlap
integrals

 Fm;nk �
g5fm
M2
m

Z 1
0

dz
z
e�z

2
 m�z� n�z� k�z�: (37)

V. FORM FACTORS

In terms of the � wave functions of the Schrödinger
equation (6), the form factors are given by

 Fnk�Q
2� �

Z 1
0
dzJ �Q; z��n�z��k�z�; (38)

which looks like an expression for form factors in quantum
mechanics. However, as we discussed above, the � wave
functions are not direct analogues of quantum-mechanical
wave functions. For such an analogy, the � wave functions
(27) are much more suitable objects. So, let us introduce
form factors involving � wave functions,

 F nk�Q2� 	
Z 1

0
dzzJ �Q; z��n�z��k�z�: (39)

Again, since J �Q � 0; z� � 1 for all z, the normalization
condition (28) for the �n�z�wave functions guarantees that
the diagonal form factors F nn�Q2� are normalized to 1 for
Q2 � 0, while the nondiagonal ones vanish when Q2 � 0.
To establish connection with Fnk�Q2� form factors, we use
Eq. (27) to substitute � functions by derivatives of  wave
functions, which gives

 MnMkF nk�Q2� �
Z 1

0

dz
z
e�z

2
J �Q; z� 0n�z� 0k�z�: (40)

Integrating  0k by parts, taking into account that  k�0� � 0
and incorporating the eigenvalue equation (4) for  n gives

 MnMkF nk�Q2� � M2
nFnk�Q2�

�
Z 1

0

dz
z
e�z

2
 0n�z� k�z�@zJ �Q; z�:

(41)

Similarly, integrating  0n by parts we obtain

 MnMkF nk�Q
2� � M2

kFnk�Q
2�

�
Z 1

0

dz
z
e�z

2
 n�z� 

0
k�z�@zJ �Q; z�:

(42)

Adding these two expressions, integrating � n k�0 by parts,
and using the basic Eq. (10) for J �Q; z� gives

 Fnk�Q
2� �

2MnMk

Q2 �M2
n �M2

k

F nk�Q
2�: (43)

For the case of diagonal n! n transitions this gives

 Fnn�Q2� �
F nn�Q

2�

1�Q2=2M2
n
; (44)

an expression similar to that derived in Ref. [18].
Thus, we can obtain Fnk�Q2� form factors from the basic

form factors F nk�Q2�. Note that these form factors also
have a generalized VMD representation,
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 F nk�Q2� �
X1
m�1

Fm;nk

1�Q2=M2
m
; (45)

with the coefficients Fm;nk given by the overlap integrals

 F m;nk �
g5fm
M2
m

Z 1
0
dzz m�z��n�z��k�z�: (46)

For the lowest diagonal transition (i.e., for n � k � 0)
we have

 F 00�Q2� � 2
Z 1

0
dzze�z

2
J �Q; z�: (47)

Incorporating the representation (14) for J �Q; z� and using
a � Q2=4�2, we obtain

 F 00�Q
2� �

1

1� a
�

1

1�Q2=M2
0

: (48)

Here, we took into account that the mass of the lowest
bound state (i.e., �-meson) is M0 � M� � 2�.

Notice, that we obtained exact vector meson dominance
for F 00�Q

2�: this form factor is completely determined by
the lowest bound state in the q-channel. The higher states
do not contribute because the overlap integral Fm;00 cor-
responding to the contribution of the mth q-channel bound
state vanishes for m> 0:

 F m;00 � 2
Z 1

0
dzz3e�z

2
L1
m�z2� � 
m0: (49)

In the case of the F00�Q2� form factor, we have

 F00�Q2� �
1

�1� a��1� a=2�

�
2

1�Q2=M2
0

�
1

1�Q2=M2
1

: (50)

Thus, the F00�Q2� form factor is given by contributions
from the lowest two q-channel bound states. Since
F00�Q

2� � 1=Q4 for large Q2, exact VMD is impossible
for this form factor: other resonances are needed to ‘‘con-
spire’’ to cancel their leading 1=Q2 terms at largeQ2. In the
soft-wall model, this cancellation is provided by just the
first excited state.

For small Q2, the form factor FS
00�Q

2� has the following
expansion:

 F00�Q
2� �

�
1�

3

2

Q2

M2
0

�
7

4

Q4

M4
0

�O�Q6�

�
: (51)

The Lorentz structure of the 3-point function in the soft-
wall model is the same as in the hard-wall model consid-
ered in Ref. [18], where it was shown that electric GC,
magnetic GM, and quadrupole GQ form factors (for defi-
nitions, see, e.g., [18,21]) of the nth bound state are all
expressed through the Fnn�Q2� form factor:

 G�n�Q �Q
2� � �Fnn�Q

2�; G�n�M �Q
2� � 2Fnn�Q

2�;

G�n�C �Q
2� �

�
1�

Q2

6M2

�
Fnn�Q

2�:
(52)

The same relations hold for the soft-wall model. As a
result, small-Q2 expansion of the electric form factor of
the lowest bound state in the soft-wall model is given by

 G00�Q
2� �

�
1�

Q2

6M2
0

�
F00�Q

2�

�

�
1�

5

3

Q2

M2
0

� 2
Q4

M4
0

�O�Q6�

�
; (53)

and the electric radius for the �-meson in the soft-wall
model is

 hr2
�i

S � 0:655 fm2: (54)

This radius is larger than the value hr2
�i

H � 0:53 fm2 that
we obtained in Ref. [18] in the case of the hard-wall cutoff.

The radius of the nth excited state can be found from the
slope of Fnn�Q

2�. The latter can be calculated using
Eqs. (7) and (34). Defining the slope coefficient Sn by

 

d

dQ2 Fnn�Q
2�

��������Q2�0
	 �

Sn
M2

0

(55)

and using the explicit form of Laguerre polynomials, we
find

 Sn �
Xn
m;l�0

Cm�1
n�1C

l�1
n�1��1�l�m

�m� l� 1�!

�n� 1�m!l!

Xm�l�2

p�1

1

p

(56)

(C� are binomial coefficients). A faster algorithm for
numerical calculations is provided by the formula

 Sn �
Xn
m�0

Cmn Cnm�n�1

Xn�m
k�0

Ckn�m��2�k
X2m�k�2

p�1

1

p
: (57)

For n � 0, these expressions give the result S0 � 3=2
corresponding to Eq. (51). For higher states, we have S1 �
23=12, S2 � 11=5, S3 � 2:415, S10 � 3:245, S20 � 3:816,
S50 � 4:633, S100 � 5:281, S150 � 5:667, S200 � 5:943.
For n � 2, these values are well approximated by a simple
empirical formula,

 Sn � ln�n� 1� �
2

3
�

5

4�n� 1�
: (58)

Thus, the squared sizes of excited states increase with
the excitation number n. However, contrary to expectations
of Ref. [12], the raise is only logarithmic, hr2

ni
S � ln n

rather than linear. Such an outcome is not unnatural since
Eq. (56) differs from the identity
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Xn
m;l�0

Cm�1
n�1C

l�1
n�1��1�l�m

�m� l� 1�!

�n� 1�m!l!
� 1 (59)

[that follows from the normalization condition (9)] by the
sum

 

Xm�l�2

p�1

1

p

��������m�l!1
� ln�m� l� 2� (60)

which has a logarithmic behavior for large m� l, and for
large n it may be approximated by ln n for the bulk of m, l
values. However, it would be interesting to derive a formal
proof.

It should be noted, that in the hard-wall model, the slope
of Fnn�Q2� at Q2 � 0 decreases with n. For the lowest
state, the value SH1 � 1:192 was found in Ref. [18]. For
higher radial excitations, we have SH2 � 0:877, SH3 �
0:833, SH10 � 0:806, SH20 � 0:804, SH100 � 0:803, i.e.,
hr2
ni
H tends to a constant value as n! 1.

VI. COMPARISON WITH HARD-WALL MODEL

Note that in the hard-wall model considered in Ref. [18],
all the q-channel states give nonzero contributions to
F 00�Q2�. In fact, it is strongly dominated by two lowest
q-channel states. The role of the first excitation in the hard-
wall model is especially important for large Q2: it gives
asymptotically 2:061M2

�=Q
2 while the lowest state con-

tributes only 0:619M2
�=Q2.

It should also be mentioned that in both models F 00�Q2�
has �1=Q2 behavior for large Q2. However, the normal-
ization of the asymptotic behavior in the hard-wall model
is much larger than in the soft-wall model: FH

00�Q
2� !

2:566M2
�=Q2, while F S

00�Q
2� ! M2

�=Q2 (see Fig. 1).
As discussed in Refs. [15,18], to calculate the large-Q2

behavior of FH
00�Q

2�, one should take the large-Q2 limit of
J H�Q; z�, which is given by zQK1�zQ� 	K�Qz�, the
free-field version of the non-normalizable mode.
Asymptotically, it behaves like e�Qz, so only small values
of z are important in the relevant integral. As a result,
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i.e., the large-Q2 behavior of F H
00�Q

2� is determined by the
value of the � wave function at the origin, which is given
by

 �H
0 �0� �

���
2
p
M�
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� 1:133M�: (62)

The non-normalizable mode J S�Q; z� of the soft-wall
model should also convert into K�Qz� when Q2 is large.
To see this directly, we compare the integral representation
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for K�Qz� and the representation
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for J S�Q; z� following from Eq. (14). For large Q2, both
integrals are dominated by the region where 1� x�
2z�2=Q. Then both �1� x�=x and ln�1=x�may be approxi-
mated by �1� x�. Thus, large-Q2 behavior of J S�Q; z�
coincides with that of K�Qz�, and Eq. (61) is applicable
in the soft-wall model as well, with the normalization of
the asymptotically leading term determined by the value of
�S

0�z� at the origin, which is

 �S
0�0� � M�=

���
2
p
� 0:707M�: (65)

Hence, it is the difference in the values of � wave func-
tions at the origin that explains the difference in the
asymptotic normalization of F 00�Q2� in these two models.

The difference in the values of ��0� leads also to the
difference in the values of coupling constants fn related to
�n�0� by

 fn � �n�0�Mn=g5: (66)

The constant g5 is determined by matching the asymptotic
behavior

 �AdS�p2� ! �
p2

2g2
5

ln�p2� (67)

of the two-point function �AdS�p2� given by Eq. (20) with
the QCD result for the correlator of the vector currents
J� � �d��u having quantum numbers of the �� meson.
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FIG. 1 (color online). Q2-multiplied �-meson form factor
F 00�Q

2� (displayed in GeV2) as a function of Q2 (given in
GeV2) in hard-wall (upper line, red online) and soft-wall (lower
line, blue online) models.
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Since

 �QCD�p2� ! �
Nc

12�2 p
2 ln�p2�; (68)

we have

 g5 �
���
2
p
� (69)

for Nc � 3. This gives

 fS
� �

M2
�

2�
� �309 MeV�2 (70)

for the � coupling constant in the soft-wall model, and

 fH
� �

M2
�

��0;1J1��0;1�
� �392 MeV�2 (71)

in the hard-wall model [22]. The experimental value [23]

 fexp
� � �401 4 MeV�2 (72)

is very close to the hard-wall model result, and in this
respect the hard-wall model is more successful. It may be
also noted that, unlike the value hr2

�i
S � 0:655 fm2 in

Eq. (54), the hard-wall model result hr2
�i

H � 0:53 fm2 for
the �-meson charge radius obtained in our paper [18]
practically coincides both with the Dyson-Schwinger
model result of Ref. [24] and lattice gauge calculation
reported in Ref. [25].

It is also instructive to consider the modified coupling
g� 	 f�=M� that has the dimension of mass, and deter-
mines the asymptotical behavior of the form factor. Its
value in the soft-wall model

 gS
� �

M�

2�
� 123 MeV (73)

is close to the experimental value of the pion decay con-
stant f� � 131 MeV. Moreover, the pure �-pole result
(48) is close to the experimental data on the pion form
factor. So, it is tempting to take for the pion the same wave
functions that were obtained in the �-meson case and use
Eq. (48) as a model for the pion form factor. This was done
in the paper [26] (that appeared after we submitted the
original version [27] of the present paper to the archive).
Taking � � 375 MeV (which is slightly smaller than
m�=2), the authors obtained good agreement of the 1=�1�
Q2=4�2� curve with the pion form factor data (though the
value of f2

� is then about 30% below the experimental one).
However, within the model of Refs. [6,8,12], which we
follow here, the analysis of the axial-vector current channel
requires the inclusion of chiral symmetry breaking effects
absent in the vector current channel. As a result, wave
function equations for the pion are completely different
from those for the �-meson. We discuss the pion form
factor in a separate publication [28].

VII. SUMMARY

In the present paper, we studied wave functions and form
factors of vector mesons within the framework of the soft-
wall model [12] which produces a more realistic spectrum
for higher excited mesons [19] than the hard-wall model of
Refs. [6–8]. Our analysis uses the approach similar to what
we developed in Ref. [18] in application to the hard-wall
model.

An essential element of our study of the soft-wall model
is the integral representation, which we found for the bulk-
to-boundary propagator V �p; z�. It allows one to write
V �p; z� as an explicit expansion over bound state poles.
In this sense, it plays the same role as the Kneser-
Sommerfeld expansion that we used in our study [18] of
the hard-wall model.

The pole expansion of V �p; z� involves ‘‘ wave func-
tions’’ that describe z-dependence of a particular pole
contribution and are eigenfunctions of the 5D equation of
motion. However, since  n�z�wave functions are not direct
analogues of the usual quantum-mechanical wave func-
tions, we introduced ‘‘� wave functions’’ resembling wave
functions of oscillator states in quantum mechanics. In
particular, the values of these functions at the origin give
the couplings g5fn=Mn of the bound states, and these
functions exponentially decrease with z2.

Analyzing the three-point function, we obtained expres-
sions for transition form factors both in terms of the  wave
functions and the ‘‘more physical’’ � wave functions. We
demonstrated that, just like in the hard-wall model, the
form factors can be written in the form of generalized
vector meson dominance representation, i.e., as a sum
over all bound states in the channel of electromagnetic
current (this result confirms the claim [16] that generalized
VMD is a common feature of AdS/QCD models).

We derived an explicit expression for �-meson form
factors, and analyzed their behavior in the regions of small
and large Q2. In particular, we calculated the �-meson
electric radius in the soft-wall model, and found that it is
larger than in the hard-wall model (the latter agrees with
calculations in the Dyson-Schwinger model [24] and lat-
tice QCD [25]). Our calculation also demonstrated that the
squared radii of higher excited states increase with n, the
number of the radially excited level. However, contrary to
expectations of Ref. [12], the increase is only logarithmic
rather than linear. Another result is that, in the soft-wall
model, the �-meson form factor F ��Q2� (corresponding to
the overlap of the � wave functions) exhibits an exact
VMD pattern, i.e., it is given by a single monopole term
due to the lowest bound state in theQ2-channel. In the case
of the �-meson form factor F��Q2� (that is given by the
overlap of the  -wave functions), we found a two-
resonance dominance pattern, when just two lowest bound
states in the Q2-channel contribute.

Analyzing the large-Q2 behavior of the F ��Q
2� form

factor (given by exact �-pole VMD), we established that its
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asymptotic normalization in the soft-wall model is much
lower (by factor 2.566) than that of the hard-wall model.
This difference is explained by the essentially lower value
of the soft-wall model � wave function at the origin.

Finally, we calculated the �-meson coupling constant f�
both in the soft-wall and the hard-wall models, and found
that the experimental value is closer to the hard-wall model
result.
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