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We compute the two-loop renormalization functions, in the RI0 scheme, of local bilinear quark
operators � � , where � denotes the scalar and pseudoscalar Dirac matrices, in the lattice formulation
of QCD. We consider both the flavor nonsinglet and singlet operators; the latter, in the scalar case, leads
directly to the two-loop fermion mass renormalization, Zm. As a prerequisite for the above, we also
compute the quark field renormalization, Z , up to two loops. We use the clover action for fermions and
the Wilson action for gluons. Our results are given as a polynomial in cSW, in terms of both the
renormalized and bare coupling constants, in the renormalized Feynman gauge. We also confirm the one-
loop renormalization functions, for generic gauge. Finally, we present our results in the MS scheme, for
easier comparison with calculations in the continuum. The corresponding results, for fermions in an
arbitrary representation, are included in the Appendix.
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I. INTRODUCTION

Studies of hadronic properties using the lattice formula-
tion of QCD rely on the computation of matrix elements
and correlation functions of composite operators, made out
of quark fields. A whole variety of such operators has been
considered and studied in numerical simulations, including
local and extended bilinears, and four-fermi operators. A
proper renormalization of these operators is most often
indispensable for the extraction of physical results from
the lattice.

In this work we study the renormalization of fermion
bilinears O � � � on the lattice, where � � 1, �5. We
consider both flavor singlet and nonsinglet operators. The
cases � � ��, �5��, �5��� will be presented in a sequel
to this work. In order to obtain the renormalization func-
tions of fermion bilinears we also compute the quark field
renormalization, Z , as a prerequisite.

We employ the standard Wilson action for gluons and
clover-improved Wilson fermions. The number of quark
flavors Nf, the number of colors Nc, and the clover coef-
ficient cSW are kept as free parameters.

Our two-loop calculations have been performed in the
bare and in the renormalized Feynman gauge. For one-loop
quantities, the gauge parameter is allowed to take arbitrary
values.

The main results presented in this work are the following
two-loop bare Green’s functions [amputated, one-particle
irreducible (1PI)]:

(i) Fermion self-energy: �L
 �q; aL�;

(ii) 2-pt function of the scalar �  : �L
S �qaL�;

(iii) 2-pt function of the pseudoscalar � �5 : �L
P�qaL�.

(aL: lattice spacing; q: external momentum.)

In general, one can use bare Green’s functions to con-
struct ZX;YO , the renormalization function for operator O,
computed within a regularization X and renormalized in a
scheme Y.

We employ two widely used schemes to compute the
various two-loop renormalization functions:

(i) The RI0 scheme: ZL;RI
0

 , ZL;RI
0

S , ZL;RI
0

P ;

(ii) The MS scheme: ZL;MS , ZL;MSS , ZL;MSP .
The flavor singlet scalar renormalization function is

equal to the fermion mass multiplicative renormalization,
Zm, which is an essential ingredient in computing quark
masses.

For convenience, the results for ZX;YO are given in terms
of both the bare coupling constant go and the renormalized
one: gRI0 , gMS.

Finally, as one of several checks on our results, we
construct the two-loop renormalized Green’s functions in
RI0: �RI0

O �q; ����O �  ; S; P�, as well as their counterparts

in MS: �MS
O �q; ���. The values of all these functions, com-

puted on the lattice, coincide with values computed in
dimensional regularization (as can be inferred, e.g., from
[1]).

The present work is the first two-loop computation of the
renormalization of fermion bilinears on the lattice. One-
loop computations of the same quantities have existed for
quite some time now (see, e.g., [2–4] and references
therein). Several attempts have been made to estimate ZO

nonperturbatively; recent results can be found in Refs. [5–
10]. Some results have also been obtained using stochastic
perturbation theory [11]. A related computation, regarding
the fermion mass renormalization Zm with staggered fer-
mions, can be found in [12].

The paper is organized as follows: Section II provides a
formulation of the problem, along with all necessary defi-
nitions of renormalization schemes and of the quantities to
compute. Section III describes our computational methods
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and the results which are obtained. Finally, in Sec. IV we
discuss some salient features of our calculation, and com-
ment on future extensions to the present work.

Recently, there has been some interest in gauge theories
with fermions in representations other than the fundamen-
tal. Such theories are being studied in various contexts
[13–18], e.g., supersymmetry, phase transitions, and the
‘‘AdS/QCD’’ correspondence. It is relatively straightfor-
ward to generalize our results to an arbitrary representa-
tion; this is presented in the Appendix.

II. FORMULATION OF THE PROBLEM

A. Lattice action

We will make use of the Wilson formulation of the QCD
action on the lattice, with the addition of the clover (SW)
[19] term for fermions. In standard notation, it reads
 

SL � SG �
X
f

X
x

�4r�mo� � f�x� f�x�

�
1

2

X
f

X
x;�

� � f�x��r� ���Ux;x�� f�x���

� � f�x����r� ���Ux��;x f�x��

�
i
4
cSW

X
f

X
x;�;�

� f�x����F̂���x� f�x�; (1)

where

 F̂ �� �
1

8a2 �Q�� �Q��� (2)

and

 Q�� � Ux;x��Ux��;x����Ux����;x��Ux��;x

�Ux;x��Ux��;x����Ux����;x��Ux��;x

�Ux;x��Ux��;x����Ux����;x��Ux��;x

�Ux;x��Ux��;x����Ux����;x��Ux��;x: (3)

SG is the standard pure gluon action, made out of 1	 1
plaquettes. The clover coefficient cSW is treated here as a
free parameter; r is the Wilson parameter (set to r � 1
henceforth); f is a flavor index; ��� � �i=2����; ���.
Powers of the lattice spacing aL have been omitted and
may be directly reinserted by dimensional counting.

The ‘‘Lagrangian mass’’ mo is a free parameter here.
However, since we will be using mass independent renor-
malization schemes, all renormalization functions which
we will be calculating must be evaluated at vanishing
renormalized mass, that is, when mo is set equal to the
critical value mcr: mo ! mcr � 0�O�g2

o�.

B. Definition of renormalized quantities

As a prerequisite to our programme, we will need the
renormalization functions for the gluon, ghost, and fermion

fields (Aa�, ca,  ), and for the coupling constant g and
gauge parameter �, defined as follows:

 Aa�o �
������
ZA

p
Aa�; cao �

������
Zc

p
ca;  o �

������
Z 

q
 

go � ��Zgg; �o � Z�1
a ZA�:

(4)

The value of each ZO depends both on the regularization
X and on the renormalization scheme Y employed, and
thus should properly be denoted as ZX;YO . The scale� enters
the relation between go and g only in dimensional regu-
larization (D � 4� 2� dimensions).

We will need ZA, Zc, Z�, and Zg to one loop and Z to
two loops. Our one-loop results, performed in a generic
gauge, are in agreement with results found in the literature
(see, e.g., Refs. [4,20]).

C. Definition of the RI0 scheme

This renormalization scheme [21–23] is more immedi-
ate for a lattice regularized theory. It is defined by imposing
a set of normalization conditions on matrix elements at a
scale ��, where (just as in the MS scheme) [24]

 �� � ��4�=e�E�1=2 (5)

(�E is the Euler constant).
In Euclidean space, the fermion self-energy �L

 �q; aL� �

iq6 �mo �O�g2
o� is renormalized through

 lim
aL!0
�ZL;RI

0

 �aL ��� tr��L
 �q; aL�q6 �=�4iq2��q2� ��2 � 1: (6)

The trace here is over Dirac indices; a Kronecker delta in
color and in flavor indices has been factored out of the
definition of �L

 .
Similarly, for the ghost self-energy �L

c �q; aL� � q2 �
O�g2

o�,

 lim
aL!0

�
ZL;RI

0

c �aL ���
�L
c �q; aL�

q2

�
q2� ��2

� 1: (7)

ZA and Z� are extracted from the gluon propagator
GL
���q; aL� with radiative corrections1:

 GL
���q; aL� �

1

q2

���� � q�q�=q2

�T�aLq�
� �o

q�q�=q
2

�L�aLq�

�
(8)

where �T;L�aLq� � 1�O�g2
o�. The normalization condi-

tions are

 lim
aL!0

�
ZL;RI

0

A �aL ���
1

�T�aLq�

�
q2� ��2

� 1; (9)

1One should carefully distinguish among the following stan-
dard symbols: aL: lattice spacing; �o, �RI0 , �MS: bare and
renormalized gauge parameters.
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 lim
aL!0

�
ZL;RI

0

� �aL ���
1

�L�aLq�

�
q2� ��2

� 1: (10)

We have checked explicitly that ZL;RI
0

� � 1 up to one loop,
in agreement with the continuum.

For consistency with the Slavnov-Taylor identities, Zg in
the RI0 scheme is defined as in the MS scheme. In dimen-
sional regularization (DR) this is achieved by requiring that
the gluon-fermion-antifermion 1PI vertex function GA �  

renormalizes as follows [1]:

 lim
�!0
�ZDR;RI0

 �ZDR;RI0
A �1=2ZDR;RI0

g GA �  �q��q2� ��2 � Gfinite
A �  

:

(11)

The value of Zg is tuned in such a way as to absorb only the
poles in � which appear in GA �  [together with matching
powers of ln�4�� � �E]; this leads to a result for Gfinite

A �  

which is finite but not unity. Before rescaling, we have first
dividedGA �  by the bare coupling constant, as in Ref. [25],
in order to have unity as the tree-level value for Gfinite

A �  
. We

have set the fermion momentum to zero; q refers to the
gluon/antifermion momentum. Alternatively, a similar pro-
cedure can be performed on the gluon-ghost-antighost
vertex:

 lim
�!0
�ZDR;RI0

c �ZDR;RI0
A �1=2ZDR;RI0

g GA �cc�q��q2� ��2 � Gfinite
A �cc :

(12)

Equation (12) leads to exactly the same value for Zg.
The corresponding renormalization conditions on the

lattice read

 lim
aL!0
�ZL;RI

0

 �ZL;RI
0

A �1=2ZL;RI
0

g GL
A �  
�q; aL��q2� ��2 � Gfinite

A �  

(13)

or, equivalently,

 lim
aL!0
�ZL;RI

0

c �ZL;RI
0

A �1=2ZL;RI
0

g GL
A �cc�q; aL��q2� ��2 � Gfinite

A �cc

(14)

where the expressions Gfinite
A �  

and Gfinite
A �cc are required to be

the same as those stemming from the continuum [Eqs. (11)
and (12)]. We have calculated ZL;RI

0

g , using either one of
Eqs. (13) and (14), and have verified that the same result is
obtained.

D. Conversion to the MS scheme

For easier comparison with calculations coming from
the continuum, we need to express our results in the MS
scheme. Each renormalization function on the lattice,
ZL;RI

0

O , may be expressed as a power series in the renor-
malized coupling constant gRI0 . For the purposes of our
work the conversion of aRI0 to MS is trivial since

 gRI0 � gMS �O

�
g9
MS

�
: (15)

As already mentioned, our one-loop calculations for ZA,
Zc, Z�, and Zg are performed in a generic gauge, �RI0 . The
conversion to the MS scheme is given by [26]

 �RI0 �
ZL;MSA

ZL;RI
0

A

�MS � �MS=CA�gMS; �MS�: (16)

Since the ratio of Z’s appearing in Eq. (16) must be
regularization independent, it may be calculated more
easily in dimensional regularization [1]; to one loop, the
conversion factor CA equals
 

CA�g; �� �
ZDR;RI0
A

ZDR;MS
A

� 1�
g2

36�16�2�
��9�2 � 18�� 97�Nc � 40Nf�:

(17)

(Here, and throughout the rest of this work, both g and �
are in the MS scheme, unless specified otherwise.)

Once we have computed the renormalization functions
in the RI0 scheme, we can construct their MS counterparts
using conversion factors which, up to the required pertur-
bative order, are given by

 Cc�g; �� �
ZL;RI

0

c

ZL;MSc

�
ZDR;RI0
c

ZDR;MS
c

� 1�
g2

16�2 Nc; (18)

 

C �g;�� �
ZL;RI

0

 

ZL;MS 

�
ZDR;RI0
 

ZDR;MS
 

� 1�
g2

16�2 cF��
g4

8�16�2�2

	 cF��8�2� 5�cF� 14Nf

��9�2� 24	�3��� 52�� 24	�3�� 82�Nc�;

(19)

where cF � �N2
c � 1�=�2Nc� is the quadratic Casimir op-

erator in the fundamental representation of the color group;
	�x� is Riemann’s zeta function. (We employ a standard
normalization for the generators of the algebra, Ta; see the
Appendix.)

E. Renormalization of fermion bilinears

The lattice operators O� � � � must, in general, be
renormalized in order to have finite matrix elements. We
define renormalized operators by

 O RI0
� � ZL;RI

0

� �aL ���O�o: (20)
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The flavor singlet scalar operator receives also an addi-
tive renormalization, which must be taken into account; we
discuss this issue in the following subsection. For the scalar
(S) and pseudoscalar (P) operators, the renormalization
functions ZL;RI

0

� can be obtained through the corresponding
bare 2-point functions �L

��qaL� (amputated, 1PI) on the
lattice, in the following way:

 lim
aL!0
�ZL;RI

0

 ZL;RI
0

S �L
S �qaL��q2� ��2 � 1; (21)

 lim
aL!0
�ZL;RI

0

 ZL;RI
0

P �L
P�qaL��q2� ��2 � �5; (22)

where

 �L
S �qaL� � 1�O�g2

o�; �L
P�qaL� � �5 �O�g2

o�:

(23)

Once the quantities ZL;RI
0

� have been calculated, one may
proceed to compute them also in the MS scheme. In the
case of the scalar operator (OSo � � o o), the renormal-

ization function, ZL;MSS , can be obtained by

 ZL;MSS � ZL;RI
0

S CS�g; �� (24)

where CS�g; �� is a regularization independent conversion
factor and has been calculated in dimensional regulariza-
tion [1]:
 

CS�g;���
ZL;RI

0

S

ZL;MSS

�
ZDR;RI0
S

ZDR;MS
S

� 1�
g2

16�2cF���4��
g4

24�16�2�2
cF

	��24�2�96��288	�3��57�cF�166Nf

��18�2�84��432	�3��1285�Nc�: (25)

The treatment of the pseudoscalar operator �OPo �
� o�5 o� in the MS scheme requires special attention,

due to the nonunique generalization of �5 toD dimensions.
A practical definition of �5 for multiloop calculations,
which is most commonly employed in dimensional regu-
larization and does not suffer from inconsistencies, is [27]

 �5 � i
1

4!
��1�2�3�4

��1
��2

��3
��4

; �i � 0; 1; 2; 3:

(26)

Of course, �5 as defined in Eq. (26) does not anticom-
mute with the D-dimensional ��; an ultimate consequence
of this fact is that Ward identities involving the axial and
pseudoscalar operators, renormalized in this way, are
violated.

To obtain the correctly renormalized pseudoscalar op-
erator, one must introduce an extra finite factor, Z5, in

addition to the usual renormalization function ZDR;MS
P

which only contains poles in �. We set

 O P � Z5�g�Z
DR;MS
P OPo: (27)

Z5 is defined by the requirement that the scalar and pseu-
doscalar renormalized Green’s functions coincide:

 Z5 �
GMS
S �5

GMS
P

: (28)

The value of Z5, calculated in Ref. [28], is gauge indepen-
dent; it equals
 

Z5�g� � 1�
g2

16�2 �8cF� �
g4

�16�2�2

�
2

9
cFNc �

4

9
cFNf

�

�O�g6�: (29)

ZL;MSP can now be obtained by

 ZL;MSP � ZL;RI
0

P =�CSZ5�: (30)

Similarly, one can convert the RI0 renormalized Green’s
functions, GRI0

� , to their MS counterparts, through

 

GRI0
S

GMS
S

� C CS;
GRI0
P

GMS
P

� C CSZ5: (31)

[In Eqs. (30) and (31) it is understood that powers of gRI0 ,
�RI0 , implicit in RI0 quantities, must also be converted to
gMS, �MS, respectively, using Eqs. (15) and (16).]

F. Fermion mass renormalization

As a by-product of this work, one can evaluate the
fermion multiplicative mass renormalization, Zm, which
is directly related to the scalar flavor singlet operator. This
operator differs from the ones considered thus far, in that it
also receives an additive renormalization, since it has a
nonzero perturbative vacuum expectation value; thus, it
mixes with the identity at the quantum level. Once its
vacuum expectation value is subtracted, the resulting op-
erator is multiplicative renormalizable. The renormaliza-
tion is then simply given by only connected diagrams of the
original operator (Figs. 3–5); all disconnected diagrams
are easily shown to cancel out.

The perturbative vacuum expectation value2 is of course
a power divergent quantity, and it cannot be expected to
approach well the value of the corresponding disconnected
matrix elements in numerical simulations. Fortunately, this
quantity is not needed for multiplicative renormalization,
as mentioned above. However, as regards simulations, one
should bear in mind that disconnected parts must be eval-
uated and subtracted from matrix elements, before the
latter can be renormalized.

2For a tree-level computation of this quantity, see Ref. [29].

A. SKOUROUPATHIS AND H. PANAGOPOULOS PHYSICAL REVIEW D 76, 094514 (2007)

094514-4



Let us express the fermion self-energy in the following
way:
 

�L;RI0
 � iq6 �odd�qaL; moaL; go�

� 1 

1

aL
�even�qaL; moaL; go�; (32)

where �odd � 1�O�g2
o� and �even � moaL �O�g2

o�.
Terms like

P
�q

3
���=q2, though a priori allowed by hyper-

cubic symmetry, are eventually seen to cancel, as expected
by Lorentz invariance.

For generic values ofmo, the even part of �L;RI0
 is power

divergent; in order to achieve a finite renormalized
mass, mr, the values of the Lagrangian mass mo must be
near a critical value, mcr, at which �even vanishes:
�even�qaL; mcraL; go� � 0�O�q2a2

L�. That is, mcr is re-
quired to satisfy

 �even�0; mcraL; go� � 0: (33)

This is a recursive equation which can be solved for mcr

order by order in perturbation theory. Its value is known to
two loops for Wilson fermions: [30] (confirmed indepen-
dently in [31]), and for clover fermions: [32] (with Wilson
gluons), [33] (with Symanzik gluons). Only the one-loop
value of mcr enters the present calculation.

We can perform a Taylor expansion with respect to the
bare mass,3 mB � mo �mcr, for both �odd and �even:

 �odd�qaL; moaL; go� � ��odd�qaL; moaL; go��mo�mcr

�O�mBaL�; (34)
 

1

aL
�even�qaL; moaL; go�

�
1

aL
��even�qaL; moaL; go��mo�mcr

�mB

�
@

@�moaL�
�even�qaL; moaL; go�

�
mo�mcr

�O�aL�: (35)

Note that, when mo � mcr, the first term on the right-hand
side of Eq. (35) vanishes in the limit aL ! 0, by virtue of
Eq. (33).

Having in mind that, in calculating �L;RI0
 , one is inter-

ested in the limit aL ! 0, the fermion self-energy takes the
form
 

�L;RI0
 � iq6 ��odd�qaL; moaL; go��mo�mcr

� 1 
mB

�
@

@�moaL�
�even�qaL; moaL; go�

�
mo�mcr

:

(36)

The renormalized fermion mass is now defined by

 mr � �Z
L;RI0
m ��1mB: (37)

The renormalization condition for ZL;RI
0

 [Eq. (6)] for non-
zero mr reads

 lim
aL!0
�ZL;RI

0

 �L;RI0
 � �iq6 �mr��q2� ��2 � 0: (38)

By combining Eqs. (37) and (38) we find the renormal-
ization condition for ZL;RI

0

m :
 

lim
aL!0

�
ZL;RI

0

 ZL;RI
0

m

	

�
@

@�moaL�
�even�qaL; moaL; go�

�
mo�mcr

�
q2� ��2

� 1:

(39)

We stress again that, even though the Lagrangian mass mo

may take arbitrary values, the renormalization condition
involves only mo ! mcr.

In order to establish a relation between ZL;RI
0

m and
ZL;RI

0

S;singlet, note that Eq. (39) coincides with Eq. (21) if

@=@�moaL��even � �L;RI0

S;singlet. Indeed, the equality between

@=@�moaL��even and �L;RI0

S;singlet holds diagram by diagram in
perturbation theory, noting that

(i) The tree-level value equals 1, in both cases,
(ii) The effect of inserting the scalar operator on a given

fermion propagator of any self-energy Feynman
diagram is equivalent to taking the negative partial
derivative �@=@�moaL� of that propagator,

(iii) Combinatorial factors agree,
(iv) There is an extra minus sign in the geometric series

summation of 1PI diagrams leading to the fermion
self-energy,

Once all of the above statements are taken into account,
one comes to the conclusion that

 ZL;RI
0

m � ZL;RI
0

S;singlet: (40)

Given thatmcraL � O�g2
o�, all two-loop calculations can

be performed strictly with massless fermion propagators,
provided that appropriate fermion mass counterterms are
introduced on one-loop diagrams.

1 2

FIG. 1. One-loop diagrams contributing to Z . A wavy (solid)
line represents gluons (fermions).

3Note that mcr (and, consequently, mo) is power divergent in
aL since its calculation contains no other dimensional quantities;
mB, on the other hand, is at most logarithmically divergent in aL.
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27

18

11

FIG. 2. Two-loop diagrams contributing to Z . Wavy (solid, dotted) lines represent gluons (fermions, ghosts). Solid boxes denote
vertices stemming from the measure part of the action; a solid circle is a fermion mass counterterm.
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III. COMPUTATION AND RESULTS

The Feynman diagrams relevant to the fermion self-
energy �L

 �q; aL�, at one- and two-loop levels, are shown
in Figs. 1 and 2, respectively; those relevant to �L

S �qaL�,
�L
P�qaL� are shown in Figs. 3 and 4.
For flavor singlet bilinears, there are 4 extra diagrams, in

addition to those of Fig. 4, shown in Fig. 5; in these

diagrams, the operator insertion occurs inside a closed
fermion loop.

The evaluation and algebraic manipulation of Feynman
diagrams, leading to a code for numerical loop integration,
is performed automatically using our software for lattice
perturbation theory, written in MATHEMATICA.

The most laborious aspect of the procedure is the ex-
traction of the dependence on the external momentum q.
This is a delicate task at two loops; for this purpose, we cast
algebraic expressions (typically involving thousands of
summands) into terms which can be naively Taylor ex-
panded in q to the required order, plus a smaller set of
terms containing superficial divergences and/or subdiver-
gences. The latter can be evaluated by an extension of the
method of Ref. [34] to two loops; this entails analytical

FIG. 3. One-loop diagram contributing to ZS and ZP. A wavy
(solid) line represents gluons (fermions). A cross denotes the
Dirac matrices 1 (scalar) and �5 (pseudoscalar).

21 3 4 5 6

121110987

13 14 15 1716 18

2019

FIG. 4. Two-loop diagrams contributing to ZS and ZP. Wavy (solid, dotted) lines represent gluons (fermions, ghosts). A solid box
denotes a vertex from the measure part of the action; a solid circle is a mass counterterm; crosses denote the matrices 1 (scalar) and �5

(pseudoscalar).
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continuation to D> 4 dimensions, and splitting each ex-
pression into a UV-finite part (which can thus be calculated
in the continuum, using the methods of Ref. [35]), and a
part which is polynomial in q. A primitive set of divergent
lattice integrals involving gluon propagators, which can be
obtained in this manner, can be found in Ref. [36].

Some of the diagrams contributing to �L
 �q; aL�,

�L
S �qaL�, and �L

P�qaL� are infrared divergent when con-
sidered separately, and thus must be grouped together in
order to give finite results. Such groups are formed by
diagrams (7–11), (12, 13), (14–18), (19, 20), (21–23) in
Fig. 2, diagrams (3–7), (8, 9), (10, 11, 19) in Fig. 4, and
diagrams (1, 2), (3, 4) in Fig. 5.

In Figs. 1–5, ‘‘mirror’’ diagrams (those in which the
direction of the external fermion line is reversed) should
also be taken into account. In most cases, these coincide
trivially with the original diagrams; even in the remaining
cases, they can be seen to give equal contribution, by
invariance under charge conjugation.

As mentioned before, all calculations should be per-
formed at vanishing renormalized mass; this can be
achieved by working with massless fermion propagators,
provided an appropriate fermion mass counterterm is in-
troduced (diagram 23 in Fig. 2 and diagram 11 in Fig. 4).

All two-loop diagrams have been calculated in the bare
Feynman gauge (�o � 1). One-loop diagrams have been
calculated for generic values of �o; this allows us to
convert our two-loop results to the renormalized
Feynman gauge (�RI0 � 1 or �MS � 1).

Numerical loop integration was carried out by our ‘‘in-
tegrator’’ program, a metacode written in MATHEMATICA,
for converting lengthy integrands into efficient FORTRAN

code. Two-loop numerical integrals were evaluated for
lattices of size up to L � 40; the results were then extrapo-
lated to L! 1. Extrapolation is the only source of system-
atic error; this error can be estimated quite accurately (see,
e.g., Ref. [37]), given that the L dependence of results can
only span a restricted set of functional forms.

A. One-loop results

One-loop results for ZL;RI
0

 , ZL;RI
0

S , and ZL;RI
0

P are pre-
sented below in a generic gauge. The errors result from the
L! 1 extrapolation.

 

ZL;RI
0

 � 1�
g2
�

16�2 cF��ln�a
2
L ��2� � 4:792 009 570�1���o

� 16:644 413 858�5� � 2:248 868 528�3�cSW

� 1:397 267 102�5�c2
SW�; (41)

 ZL;RI
0

S � 1�
g2
�

16�2 cF�3 ln�a2
L ��2� � �o � 16:952 410 3�1�

� 7:737 915 9�3�cSW � 1:380 380 65�4�c2
SW�;

(42)

 ZL;RI
0

P � 1�
g2
�

16�2 cF�3 ln�a2
L ��2� � �o � 26:595 441 4�1�

� 2:248 868 528�3�cSW � 2:036 015 61�4�c2
SW�:

(43)

The corresponding quantities in the MS scheme are
 

ZL;MS � 1�
g2
�

16�2 cF��ln�a
2
L ��2� � 3:792 009 570�1���o

� 16:644 413 858�5� � 2:248 868 528�3�cSW

� 1:397 267 102�5�c2
SW�; (44)

 ZL;MSS � 1�
g2
�

16�2 cF�3 ln�a2
L ��2� � 12:952 410 3�1�

� 7:737 915 9�3�cSW � 1:380 380 65�4�c2
SW�;

(45)

 ZL;MSP � 1�
g2
�

16�2 cF�3 ln�a2
L ��2� � 14:595 441 4�1�

� 2:248 868 528�3�cSW � 2:036 015 61�4�c2
SW�:

(46)

Our results confirm the existing results found in the

literature [4] [note, however, a difference in ZL;MSP ; this is
entirely due to the factor Z5 in Eq. (30)].

B. Two-loop results

The evaluation of all Feynman diagrams in Figs. 1–5
leads directly to the corresponding bare Green’s functions

3 41 2

FIG. 5. Extra two-loop diagrams contributing to ZS;singlet. A cross denotes an insertion of a flavor singlet operator. Wavy (solid) lines
represent gluons (fermions).
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�L
 , �L

S , and �L
P. These, in turn, can be converted to the corresponding renormalization functions ZL;Y , ZL;YS , and ZL;YP

(Y � RI0 or MS), via Eqs. (6), (21), and (22). To this end, we need the following one-loop expression for ZL;YA (recall that
Z� � 1 to this order):
 

ZL;RI
0

A � ZL;MSA �O�g4
o�

� 1�
g2
�

16�2

�
ln�a2

L ��2�

�
2

3
Nf �

5

3
Nc

�
�Nf��2:168 501 047�1� � 0:796 945 230 8�4�cSW � 4:712 691 442 8�1�c2

SW�

� 39:478 417 604 36�1�cF � 1:940 171 300 69�1�Nc

�
�O�g4

o�: (47)

To express our results in terms of the renormalized coupling constant, we also need the one-loop expression for ZL;Yg :

 ZL;RI
0

g � ZL;MSg �O�g4
o�

� 1�
g2
�

16�2

�
ln�a2

L ��2�

�
�

1

3
Nf �

11

6
Nc

�
� Nf�0:528 694 967 7�5� � 0:398 472 615 4�2�cSW

� 2:356 345 721 40�7�c2
SW� � 19:739 208 802 18�1�cF � 3:549 583 420 46�1�Nc

�
�O�g4

o�: (48)

Equations (47) and (48) are in agreement with older references (see, e.g., Ref. [20]).
We present below ZL;RI

0

 , ZL;RI
0

S , and ZL;RI
0

P to two loops in the renormalized Feynman gauge �RI0 � 1; we also present

theMS analogues ZL;MS , ZL;MSS , and ZL;MSP in the gauge�MS � 1. For conciseness, we omit the bare Green’s functions; it is
a straightforward exercise to recover these from the corresponding Z’s.

 

ZL;RI
0

 � 1�
g2
�

16�2 cF

�
ln�a2

L ��2� � 11:852 404 288�5� � 2:248 868 528�3�cSW � 1:397 267 102�5�c2
SW

�

�
g4
�

�16�2�2
cF

�
ln2�a2

L ��2�

�
1

2
cF �

2

3
Nf �

8

3
Nc

�
� ln�a2

L ��2�

�
�6:363 174 46�8�Nf � 0:796 945 23�2�NfcSW

� 4:712 691 443�4�Nfc
2
SW � 49:830 821 85�5�cF � 2:248 868 61�7�cFcSW � 1:397 267 05�1�cFc

2
SW

� 29:030 293 98�4�Nc

�
� Nf

�
�7:838�2� � 1:153�1�cSW � 3:202�3�c2

SW � 6:2477�6�c3
SW � 4:0232�6�c4

SW

�

� cF

�
505:39�1� � 58:210�9�cSW � 20:405�5�c2

SW � 18:8431�8�c3
SW � 4:2793�2�c4

SW

�

� Nc

�
�20:59�1� � 3:190�5�cSW � 23:107�6�c2

SW � 5:7234�5�c3
SW � 0:7938�1�c4

SW

��
; (49)

 

ZL;MS � 1�
g2
�

16�2 cF

�
ln�a2

L ��2� � 12:852 404 288�5� � 2:248 868 528�3�cSW � 1:397 267 102�5�c2
SW

�

�
g4
�

�16�2�2
cF

�
ln2�a2

L ��2�

�
2

3
Nf �

1

2
cF �

8

3
Nc

�
� ln�a2

L ��2�

�
�4:585 396 68�8�Nf � 0:796 945 23�2�NfcSW

� 4:712 691 443�4�Nfc2
SW � 50:830 821 85�5�cF � 2:248 868 61�7�cFcSW � 1:397 267 05�1�cFc2

SW

� 21:919 182 87�4�Nc

�
� Nf

�
�15:970�2� � 1:950�1�cSW � 1:510�3�c2

SW � 6:2477�6�c3
SW � 4:0232�6�c4

SW

�

� cF

�
556:10�1� � 60:459�9�cSW � 19:007�5�c2

SW � 18:8431�8�c3
SW � 4:2793�2�c4

SW

�

� Nc

�
13:68�1� � 3:190�5�cSW � 23:107�6�c2

SW � 5:7234�5�c3
SW � 0:7938�1�c4

SW

��
; (50)
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ZL;RI
0

S � 1�
g2
�

16�2 cF

�
3 ln�a2

L ��2� � 17:952 410 3�1� � 7:737 915 9�3�cSW � 1:380 380 65�4�c2
SW

�

�
g4
�

�16�2�2
cF

�
ln2�a2

L ��2�

�
9

2
cF � Nf �

11

2
Nc

�
� ln�a2

L ��2�

�
�8:172 169 4�5�Nf � 2:390 835 4�3�NfcSW

� 14:138 074 33�4�Nfc2
SW � 66:078 021 8�9�cF � 23:213 749�2�cFcSW � 4:141 142 5�3�cFc2

SW

� 55:797 500 8�9�Nc

�
� Nf

�
24:003�3� � 11:878�5�cSW � 25:59�1�c2

SW � 22:078�3�c3
SW � 6:1807�8�c4

SW

�

� cF

�
�602:35�6� � 66:80�7�cSW � 75:42�5�c2

SW � 27:759�4�c3
SW � 2:688�1�c4

SW

�

� Nc

�
�38:16�4� � 120:26�5�cSW � 16:18�3�c2

SW � 12:576�3�c3
SW � 1:0175�8�c4

SW

��
; (51)

 

ZL;MSS � 1�
g2
�

16�2 cF

�
3 ln�a2

L ��2� � 12:952 410 3�1� � 7:737 915 9�3�cSW � 1:380 380 65�4�c2
SW

�

�
g4
�

�16�2�2
cF

�
ln2�a2

L ��2�

�
Nf �

9

2
cF �

11

2
Nc

�
� ln�a2

L ��2�

�
�4:838 836 1�5�Nf � 2:390 835 4�3�NfcSW

� 14:138 074 33�4�Nfc
2
SW � 81:078 021 8�9�cF � 23:213 749�2�cFcSW � 4:141 142 5�3�cFc

2
SW

� 37:464 167 4�9�Nc

�
� Nf

�
10:688�3� � 15:863�5�cSW � 2:02�1�c2

SW � 22:078�3�c3
SW � 6:1807�8�c4

SW

�

� cF

�
�462:67�6� � 28:11�7�cSW � 82:33�5�c2

SW � 27:759�4�c3
SW � 2:688�1�c4

SW

�

� Nc

�
36:93�4� � 120:26�5�cSW � 16:18�3�c2

SW � 12:576�3�c3
SW � 1:0175�8�c4

SW

��
; (52)

 

ZL;RI
0

P � 1�
g2
�

16�2 cF

�
3 ln�a2

L ��2� � 27:595 441 4�1� � 2:248 868 528�3�cSW � 2:036 015 61�4�c2
SW

�

�
g4
�

�16�2�2
cF

�
ln2�a2

L ��2�

�
9

2
cF � Nf �

11

2
Nc

�
� ln�a2

L ��2�

�
�8:172 169 4�4�Nf � 2:390 835 40�6�NfcSW

� 14:138 074 33�4�Nfc
2
SW � 37:148 929 2�7�cF � 6:746 606�1�cFcSW � 6:108 046 5�3�cFc

2
SW

� 55:797 500 8�7�Nc

�
� Nf

�
38:231�3� � 7:672�5�cSW � 55:32�1�c2

SW � 7:049�3�c3
SW � 4:7469�8�c4

SW

�

� cF

�
�876:98�4� � 85:80�2�cSW � 37:37�4�c2

SW � 19:974�3�c3
SW � 2:873�1�c4

SW

�

� Nc

�
�104:35�3� � 38:70�2�cSW � 13:93�3�c2

SW � 4:429�2�c3
SW � 1:2898�7�c4

SW

��
; (53)

 

ZL;MSP � 1�
g2
�

16�2 cF

�
3 ln�a2

L ��2� � 14:595 441 4�1� � 2:248 868 528�3�cSW � 2:036 015 61�4�c2
SW

�

�
g4
�

�16�2�2
cF

�
ln2�a2

L ��2�

�
Nf �

9

2
cF �

11

2
Nc

�
� ln�a2

L ��2�

�
0:494 497 2�4�Nf � 2:390 835 40�6�NfcSW

� 14:138 074 33�4�Nfc2
SW � 76:148 929 2�7�cF � 6:746 606�1�cFcSW � 6:108 046 5�3�cFc2

SW

� 8:130 834 1�7�Nc

�
� Nf

�
16:013�3� � 2:688�5�cSW � 5:94�1�c2

SW � 7:049�3�c3
SW � 4:7469�8�c4

SW�

� cF��586:45�4� � 115:04�2�cSW � 10:90�4�c2
SW � 19:974�3�c3

SW � 2:873�1�c4
SW

�

� Nc

�
27:31�3� � 38:70�2�cSW � 13:93�3�c2

SW � 4:429�2�c3
SW � 1:2898�7�c4

SW

��
: (54)
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All expressions reported thus far for ZS and ZP refer to
flavor nonsinglet operators. In the case of ZP, all diagrams
of Fig. 5 vanish, so that singlet and nonsinglet results
coincide, just as in dimensional regularization. For ZS,
on the other hand, these diagrams give an additional finite
contribution:

 ZL;RI
0

S;singlet � ZL;RI
0

S �
g4
�

�16�2�2
cFNf��107:76�1�

� 82:27�2�cSW � 29:727�4�c2
SW

� 3:4400�7�c3
SW � 2:2758�4�c4

SW�: (55)

The same extra finite contribution applies also to the MS
scheme.

Finally, for completeness, and as an additional check on
our results, we compute the renormalized Green’s func-
tions (for vanishing renormalized mass):

 GRI0
 � ��=q� � ZL;RI

0

 �odd; (56)

 GRI0
S � ��=q� � ZL;RI

0

 ZL;RI
0

S �L
S ; (57)

 GRI0
P � ��=q� � ZL;RI

0

 ZL;RI
0

P �L
P: (58)

Similar expressions result for MS, taking into account
Eq. (31).

Since these functions are regularization independent,
they can be calculated also using, e.g., dimensional regu-
larization. We have computed G , GS, and GP in both
ways: either starting from our Eqs. (47)–(54) or using
renormalization functions from dimensional regularization
[1]. In all cases the two ways are in complete agreement.
We obtain
 

GRI0
 � 1�

g2
RI0

16�2 cF ln� ��2=q2�

�
g4
RI0

�16�2�2
cF

�
ln2� ��2=q2�

�
1

2
cF � Nc

�

� ln� ��2=q2�

�
�

19

9
Nf �

3

2
cF �

251

18
Nc

��
; (59)

 

GMS
 � 1�

g2
MS

16�2 cF�ln� ��2=q2� � 1�

�
g4
MS

�16�2�2
cF

�
ln2� ��2=q2�

�
1

2
cF � Nc

�

� ln� ��2=q2�

�
�Nf �

1

2
cF �

21

2
Nc

�

�

�
�

7

4
Nf �

5

8
cF �

�
143

8
� 6	�3�

�
Nc

��
; (60)

 

GRI0
S � 1�

g2
RI0

16�2 cF�4 ln� ��2=q2��

�
g4
RI0

�16�2�2
cF

�
ln2� ��2=q2�

�
�Nf � 8cF �

13

2
Nc

�

� ln� ��2=q2�

�
�

58

9
Nf �

421

9
Nc

��
: (61)

Equation (61) holds also for the case of the pseudoscalar
operator: GRI0

P � GRI0
S .

 

GMS
S � 1�

g2
MS

16�2 cF�4 ln� ��2=q2� � 6�

�
g4
MS

�16�2�2
cF

�
ln2� ��2=q2�

�
�Nf � 8cF �

13

2
Nc

�

� ln� ��2=q2�

�
�

16

3
Nf � 24cF �

130

3
Nc

�

�

�
�

26

3
Nf � �22� 12	�3��cF

�

�
227

3
� 24	�3�

�
Nc

��
; (62)
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FIG. 6 (color online). (a) ZL;MS �aL ��� versus cSW (Nc � 3,
�� � 1=aL, 
o � 6:0). Results up to two loops are shown for
Nf � 0 (dashed line) and Nf � 2 (solid line); one-loop results
are plotted with a dotted line. (b) ZL;RI

0

 �aL ��� versus cSW (Nc �
3, �� � 1=aL, 
o � 6:0). Same notation as in (a).

TWO-LOOP RENORMALIZATION OF SCALAR AND . . . PHYSICAL REVIEW D 76, 094514 (2007)

094514-11



 

GMS
P � 1�

g2
MS

16�2 cF�4 ln� ��2=q2� � 14�

�
g4
MS

�16�2�2
cF

�
ln2� ��2=q2�

�
�Nf � 8cF �

13

2
Nc

�

� ln� ��2=q2�

�
�

16

3
Nf � 56cF �

130

3
Nc

�

�

�
�

82

9
Nf � �134� 12	�3��cF

�

�
679

9
� 24	�3�

�
Nc

��
: (63)

In Figs. 6(a) and 6(b), 7(a) and 7(b), 8(a) and 8(b), we

plot �ZL;MS ; ZL;RI
0

 �, �ZL;MSS ; ZL;RI
0

S �, and �ZL;MSP ; ZL;RI
0

P �, re-
spectively, as a function of cSW. In practice, of course, only
specific values of cSW are relevant, in the range 1 � cSW �
1:8, corresponding to perturbative or nonperturbative de-
terminations. For definiteness, we have set Nc � 3, �� �
1=aL, and
o � 2Nc=g2

o � 6:0. Our results up to two loops
for each Z are shown for both Nf � 0 and Nf � 2, and

compared to the corresponding one-loop results.
Furthermore, in the scalar case, we also present the two-
loop result for the flavor singlet operator.

In Fig. 9 we present, on the same plot, the values of

ZL;MS , ZL;MSS , ZL;MSP , and ZL;MSS;singlet up to two loops, versus
cSW. We have chosen Nc � 3, �� � 1=aL, Nf � 2, and

o � 5:3. The corresponding results in the RI0 scheme
are plotted in Fig. 10.

There are a number of nonperturbative estimates of
renormalization constants in the literature, in the RI0

scheme (see, e.g., [38–40]) and in the Schrödinger func-
tional scheme [41]. Our two-loop results still differ from
nonperturbative results in RI0, and this leaves open the
possibility that higher loop effects may still be important,
even though the perturbative series shows reasonable signs
of convergence. A putative reason for this difference is the
fact that the bare coupling constant g� is known not to be a
good expansion parameter. One may also express the re-
normalization functions in terms of the renormalized cou-
plings: gMS or gRI0 . The resulting expressions for ZL;YS ,
ZL;YP , and ZL;YS;singlet (Y � MS, RI0), as a function of cSW,
are shown in Figs. 11 and 12, for the same values for Nc,
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FIG. 8 (color online). (a) ZL;MSP �aL ��� versus cSW (Nc � 3,
�� � 1=aL, 
o � 6:0). Results up to two loops are shown for
Nf � 0 (dashed line) and Nf � 2 (solid line); one-loop results
are plotted with a dotted line. (b) ZL;RI

0

P �aL ��� versus cSW (Nc �
3, �� � 1=aL, 
o � 6:0). Same notation as in (a).
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FIG. 7 (color online). (a) ZL;MSS �aL ��� versus cSW (Nc � 3,
�� � 1=aL, 
o � 6:0). Results up to two loops, for the flavor

nonsinglet operator, are shown for Nf � 0 (dashed line) and
Nf � 2 (solid line); two-loop results for the flavor singlet
operator, for Nf � 2, are plotted with a dash-dotted line; one-
loop results are plotted with a dotted line. (b) ZL;RI

0

S �aL ��� versus
cSW (Nc � 3, �� � 1=aL, 
o � 6:0). Same notation as in (a).

A. SKOUROUPATHIS AND H. PANAGOPOULOS PHYSICAL REVIEW D 76, 094514 (2007)

094514-12



Nf, ��, and 
� as in Figs. 9 and 10. For values of the clover
parameter beyond its typical range, cSW  1:8, the behav-
ior of the renormalization functions shows signs of insta-
bility at the scale �� � 1=aL. There also exist several
alternative definitions of an effective coupling in the lit-
erature; one should be aware, however, that the use of
many of these definitions (coming, e.g., from boosted
perturbation theory) can only be justified for one-loop
quantities, not beyond. For this reason, we have preferred
to provide the bare results in this paper, leaving to the
reader the straightforward task of converting these results
to their favorite scheme.

IV. DISCUSSION

As can be seen from Figs. 6(a), 6(b), 7(a), 7(b), 8(a), and
8(b), all two-loop renormalization functions differ from
one-loop values in a significant way; this difference should
be taken into account in Monte Carlo simulations, in order
to reduce systematic error. At the same time, two-loop
contributions are consistently smaller than one-loop con-
tributions, indicating that the (asymptotic) perturbative
series are under control.

The dependence on the clover parameter cSW is also
quite pronounced. In the present work, cSW was left as a
free parameter; its optimal value, as dictated by O�aL�
improvement, has been estimated both nonperturbatively
[42] and perturbatively (to one loop) [19].

Our results regard both the flavor nonsinglet and singlet
operators. For the pseudoscalar operator, these cases coin-
cide, just as in dimensional regularization. The scalar
operator, on the other hand, receives an additional finite
(aL �� independent) contribution in the flavor singlet case.
ZS;singlet is seen to be equal to the fermion mass renormal-
ization Zm, which is an essential ingredient in the compu-
tation of quark masses.
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FIG. 10 (color online). ZL;RI
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 (dotted line), ZL;RI
0
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P (solid line), and ZL;RI
0

S;singlet (dash-dotted line) up to two loops,
versus cSW (Nc � 3, �� � 1=aL, Nf � 2, 
o � 5:3).
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FIG. 9 (color online). ZL;MS (dotted line), ZL;MSS (dashed line),
ZL;MSP (solid line), and ZL;MSS;singlet (dash-dotted line) up to two
loops, versus cSW (Nc � 3, �� � 1=aL, Nf � 2, 
o � 5:3).
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FIG. 11 (color online). Two-loop renormalization functions
ZL;MSS (dashed line), ZL;MSP (solid line), and ZL;MSS;singlet (dash-dotted
line) expressed in terms of the renormalized coupling constant
gMS, versus cSW (Nc � 3, �� � 1=aL, Nf � 2, 
o � 5:3).
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FIG. 12 (color online). Two-loop renormalization functions
ZL;RI

0

S (dashed line), ZL;RI
0

P (solid line), and ZL;RI
0

S;singlet (dash-dotted
line) expressed in terms of the renormalized coupling constant
gRI0 , versus cSW (Nc � 3, �� � 1=aL, Nf � 2, 
o � 5:3).
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We note also that, in dimensional regularization, both
the scalar and pseudoscalar flavor singlet operators renor-
malize in the same way as their nonsinglet counterparts, for
mass independent renormalization schemes. Consequently,
the conversion factors CS and CP, as well as Z5, stay the
same for flavor singlets.

A breakdown of our results on a per diagram basis has
not been presented here, due to lack of space; it is available
from the authors upon request.

The two-loop computation of the renormalization func-
tions for the vector, axial, and tensor bilinears is work
currently in progress.

Besides the strictly local definitions of fermion bilinears,
� � , one can consider a family of more extended opera-

tors (see, e.g., [42]), with the same classical continuum
limit, as dictated by O�aL� improvement. The renormal-
ization of these extended operators involves more
Feynman diagrams, since their vertices may also contain
gluon lines; however, the computation is actually less
cumbersome, since all additional contributions are now
free of superficial divergences. We will be reporting the
results of this computation in a future work.
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APPENDIX: FERMIONS IN AN ARBITRARY
REPRESENTATION

Our results for Z , ZS, ZP, Eqs. (49), (51), and (53), can
be easily generalized to an action with Wilson/clover
fermions in an arbitrary representation R, of dimensional-
ity dR.

In this case, the gluon part of the action remains the
same, while all link variables appearing in the fermion part
of the action assume the form

 

Ux;x�� � exp�ig0Aa��x�Ta� !

Ux;x�� � exp�ig0Aa��x�TaR�: (A1)

Using standard notation and conventions, the generators Ta

in the fundamental representation satisfy

 

�Ta; Tb� � ifabcTc;
X
a

TaTa � 1cF � 1
N2
c � 1

2Nc
;

tr�TaTb� � �abtF � �ab
1

2
: (A2)

In the representation R we have

 �TaR; T
b
R� � ifabcTcR;

X
a

TaRT
a
R � 1cR;

tr�TaRT
b
R� � �abtR;

(A3)

where tR � �dRcR�=�N2
c � 1�.

For the one-loop quantities, Eqs. (47) and (48), convert-
ing to the representation R is a straightforward substitution:

 Nf ! Nf 
 �2tR�; (A4)

and, in addition, for Eqs. (41)–(46),

 cF ! cR: (A5)

Aside from these changes, all algebraic expressions (and
the numerical coefficients resulting from loop integrations)
remain the same.

A similar reasoning applies to the two-loop quantities in
Eqs. (49), (51), and (53): For most diagrams, once their
value is expressed as a linear combination of c2

F, cFNc, and
cFNf, it suffices to apply substitutions (A4) and (A5). The
only exceptions are diagrams containing a gluon tadpole
(diagrams 7, 14 in Fig. 2; diagram 3 in Fig. 4; one-loop
diagrams, when expressed in terms of aRI0 , �RI0 by means
of Zg, ZA): In these cases, only one power of cF should be
changed to cR; a possible additional power of cF originates
from a gluon tadpole and should stay as is. This peculiarity
implies that, in order to perform the substitutions as de-
scribed above, one must start from the per diagram break-
down of two-loop results. To avoid presenting a lengthy
breakdown, we apply, instead, substitutions (A4) and (A5)
indiscriminately on Eqs. (49), (51), and (53); consequently,
we must then add a correction term, as follows:

 ZL;RI
0

 jR � ZL;RI
0

 jcF!cR;Nf!2NftR �
g4
�

�16�2�2
cR�cR � cF�


 ��4�2 ln�a2
L ��2� � 467:914 166 1�2�

� 88:781 770 9�1�cSW � 55:161 894 2�2�c2
SW�;

(A6)

 ZL;RI
0

S jR � ZL;RI
0

S jcF!cR;Nf!2NftR �
g4
�

�16�2�2
cR�cR � cF�


 ��12�2 ln�a2
L ��2� � 708:732 752�6�

� 305:480 68�1�cSW � 54:495 244�2�c2
SW�;

(A7)

 ZL;RI
0

P jR � ZL;RI
0

P jcF!cR;Nf!2NftR �
g4
�

�16�2�2
cR�cR � cF�


 ��12�2 ln�a2
L ��2� � 1089:424 358�4�

� 88:781 770 9�1�cSW � 80:378 675�2�c2
SW�:

(A8)

[Actually, the reader could arrive at these results without
knowledge of the per diagram breakdown, by virtue of the

A. SKOUROUPATHIS AND H. PANAGOPOULOS PHYSICAL REVIEW D 76, 094514 (2007)

094514-14



following fact: All ‘‘exceptional’’ powers of cF cancel out
of ZL;RI

0

 , ZL;RI
0

S , ZL;RI
0

P , if these are expressed in terms of the
renormalized coupling constant aRI0 . Thus, one may

(i) Express Eqs. (49), (51), and (53) in terms of gRI0 by
means of go � �Z

L;RI0
g �gRI0 , with ZL;RI

0

g in the funda-
mental representation, Eq. (48),

(ii) Apply substitutions (A4) and (A5) throughout,
(iii) If desired, reexpress everything in terms of go,

using �ZL;RI
0

g ��1 from Eq. (48), with Nf ! 2NftR
and cF as is.

No correction terms are necessary in this procedure.]
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[23] K. G. Chetyrkin and A. Rétey, Nucl. Phys. B583, 3 (2000).
[24] J. C. Collins, Renormalization (Cambridge University

Press, Cambridge, England, 1984).
[25] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303,

334 (1993).
[26] K. G. Chetyrkin and A. Rétey, arXiv:hep-ph/0007088.
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