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We compute charmonium spectral functions in 2-flavor QCD on anisotropic lattices using the
maximum entropy method. Our results suggest that the S-waves (J= and �c) survive up to temperatures
close to 2Tc, while the P-waves (�c0 and �c1) melt away below 1:2Tc.
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I. INTRODUCTION

The properties of hadrons or hadronic resonances above
the deconfinement transition is a subject at the heart of the
current experimental program at the Relativistic Heavy-Ion
Collider (RHIC). Questions of interest include the issue of
which hadrons survive as bound states in the quark-gluon
plasma, and up to which temperature; as well as the trans-
port properties of light and heavy quarks in the plasma.

Of particular interest are charmonium states, following
the suggestion [1] that J= suppression could be a probe of
deconfinement. Potential model calculations using the
heavy-quark free energy have tended to support this pic-
ture. However, previous lattice simulations in the quenched
approximation [2–5] indicate that contrary to this, J= 
may survive up to temperatures as high as 1:5–2Tc.
Recently, potential model calculations using the internal
energy of the heavy-quark pair have reached the same
conclusion, and using the most recent lattice data [6] these
models indicate a qualitatively similar picture in the case of
Nf � 2 QCD [6–8]. Support has also been provided by
studies employing a real-time static potential [9,10] and a
T-matrix approach which includes scattering states [11].
Note, however, that doubts have been expressed whether
any potential model can satisfactorily describe the high-
temperature behavior of quarkonium correlators [12],
while some recent potential model studies have questioned
the survival of quarkonia [13].

There are now high-statistics data available for J= 
production at SPS [14,15] and RHIC [16], showing similar
amounts of suppression at both experiments, despite the
big difference in energy density. Two different scenarios
have been developed to explain this result. The sequential
suppression scenario [17] takes its cue from lattice results,
suggesting that the entire observed suppression originates
from feed-down from the excited 1P and 2S states, which
melt shortly above Tc, while the 1S state survives up to
energy densities higher than those reached in current ex-
periments. On the other hand, the regeneration scenario
[18–21] suggests that additional charmonium is produced

at RHIC energies from coalescence of c and �c quarks
originating from different pairs.

Lattice simulations with dynamical fermions (2 or 2� 1
light flavors) will be one of the essential ingredients in
resolving several of these issues. In the present paper, we
present first results from such simulations. Preliminary
results have appeared in Refs. [22,23].

Hadron properties are encoded in the spectral functions
���!;p�, which are related to the imaginary-time correla-
tor G���;p� according to

 G���;p� �
Z 1

0

d!
2�

K��;!����!;p�; (1)

where the subscript � corresponds to the different quantum
numbers. The kernel K is given by

 K��;!� �
cosh�!��� 1=2T��

sinh�!=2T�
: (2)

From now on we consider zero momentum only and drop
the p dependence.

Spectral functions can be extracted from lattice correla-
tors G��� using the maximum entropy method (MEM)
[24]. For this to work and give reliable results, it is neces-
sary to have a sufficient number of points in the Euclidean
time direction: at least O�10� independent lattice points are
needed. At T � 2Tc, this implies a temporal lattice spacing
a� & 0:025 fm. If the spatial lattice spacing as were to be
the same, a simulation with dynamical fermions on a
reasonable volume would be far too expensive to carry
out with current computing resources.

In order to make the simulation feasible, anisotropic
lattices, with a� 	 as, are therefore required. However,
dynamical anisotropic lattice simulations introduce addi-
tional complications not present in isotropic or quenched
anisotropic simulations. The anisotropic formulation intro-
duces two additional parameters, the bare quark and gluon
anisotropies, which must be tuned so that the physical
anisotropies are the same for gauge and fermion fields. In
the presence of dynamical fermions, this requires a simul-
taneous two-dimensional tuning, which has been described
and carried out in Ref. [25].

In this study we attempt to determine charmonium spec-
tral functions in 2-flavor QCD using anisotropic lattices
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and the maximum entropy method. The MEM analysis has
been performed using Bryan’s algorithm [26] with the
modified kernel recently introduced in Ref. [27]. We found
that this greatly improved the stability and convergence
properties of MEM. In Sec. II we describe our procedure
and simulation parameters. In Sec. III we briefly discuss
the spectrum at zero temperature, while Sec. IV contains
the main body of our results above Tc. A detailed discus-
sion of dependence on the default model, time range,
energy cutoff and statistics is given in Sec. V. Finally, in
Sec. VI we discuss remaining uncertainties and give our
conclusions and prospects for further work.

II. SIMULATION DETAILS

We use the two-plaquette Symanzik improved gauge
action [28] and the fine-Wilson, coarse-Hamber-Wu fer-
mion action [29] with stout-link smearing [30]. The pro-
cess of tuning the action parameters, and the parameters
used, are described in more detail in Ref. [25]. We have
performed simulations with parameters corresponding to
run 6 in Ref. [25] as well as at the tuned point, which we
denote run 7. The parameters are given in Tables I and II.
They correspond to a spatial lattice spacing as 
 0:165 fm
with a (renormalized) anisotropy � � as=a� 
 6. The sea
quark mass corresponds to m�=m� 
 0:54. The lattice
spacing was determined from the 1P–1S splitting on the
123 � 80 run 7 lattice; the run 6 lattice spacing was then
determined using the 1P–1S splitting on the 83 � 80 lattice
corrected for finite volume effects.

The pseudocritical temperature Tc was determined by
measuring the Polyakov loop hTrLi on 123 � N� lattices on
run 6. A jump in the value of hTrLi was found between
N� � 34 and 33, so we conclude that a�Tc 
 1=33:5, or
205–210 MeV for both parameter sets. We have not been
able to determine the pseudocritical temperature Tc to
greater precision on these lattices because of the finite
lattice size. Partly for this reason, we have chosen to
express our temperatures in units of MeV rather than as
T=Tc, as is often done in quenched studies. Since this
analysis is carried out with 2 dynamical light quark flavors,
there is also less need to rescale temperatures with Tc to

correct for the difference between the simulation and the
real world with 2� 1 light quark flavors.

We have computed charmonium correlators in the pseu-
doscalar (�c) and vector (J= ) channels, as well as the
scalar (�c0) and axial-vector (�c1) channels. In the non-
relativistic quark model, the former two are S-waves and
the latter 2 P-waves. In this study we have used local
(unsmeared) operators,

 G���� �
1

N3
sN�

X
x;y;t
hMy��x; t�M��y; t� ��i; (3)

where

 M��x; �� � � �x; ��� �x; ��; (4)

and � � �5, �i, 1, �5�i for the pseudoscalar, vector, scalar,
and axial-vector channel, respectively. All-to-all propaga-
tors [31] have been used to improve the signal and sample
information from the entire lattice. The propagators were
constructed with no eigenvectors and two noise vectors
diluted in time, color and even/odd in space. On the 83

lattices, for run 6, we have computed correlators for two
different bare quark masses, a�mc � 0:080 and 0.092, as
the precise charm quark mass had not been determined on
these lattices. Both masses are somewhat smaller than the
physical charm quark mass. This may result in an under-
estimate of the melting temperatures for the P-waves. For
run 7 we used a�mc � 0:117, tuned to reproduce the
physical J= mass on the 123 � 80 lattices. The bilinear

TABLE II. Lattices and parameters used in this simulation.
The separation between configurations is 10 HMC trajectories,
except for the N� � 80 runs where configurations were separated
by 5 trajectories.

Run Ns N� T (MeV) T=Tc Ncfg

6 8 80 88 0.42 250
12 33 214 1.02 80

8 32 221 1.05 500
12 32 221 1.05 400
12 31 228 1.08 100
12 30 235 1.12 100
12 29 243 1.16 100
12 28 252 1.20 125

8 24 294 1.40 1000
12 24 294 1.40 500

8 20 353 1.68 1000
12 20 353 1.68 1000

8 18 392 1.86 1000
8 16 441 2.09 1000

12 16 441 2.09 500
7 8 80 90 0.42 250

12 80 90 0.42 250
8 32 226 1.05 1000
8 24 301 1.40 1000
8 16 451 2.09 1000

TABLE I. Simulation parameters. �0
g;s;c are the bare (input)

anisotropies for gluons (g), sea quarks (s), and charm quarks (c),
while �g;s are the renormalized (measured) anisotropies. The
charm quark anisotropy was tuned independently to give an
output anisotropy of 6. a� and as are the temporal and spatial
lattice spacings. The bare sea quark mass is a�ms � �0:057 for
both sets of parameters, with m�=m� � 0:54.

Run �0
g �0

s �g �s a�1
� as �0

c a�m
0
c

6 8.06 7.52 5.90 6.21 7.06 GeV 0.167 fm 5.9 0.08, 0.092
7 8.42 7.43 6.04 5.84 7.23 GeV 0.163 fm 5.9 0.117
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operators have not been renormalized, so our results only
concern the shapes of the resulting correlators and spectral
functions, not their overall magnitude.

III. ZERO TEMPERATURE

The charmonium spectrum at zero temperature (N� �
80) has been computed using standard spectroscopic meth-
ods, with a variational basis of smeared operators in S-, P-
and D-wave channels. Preliminary results were presented
in Refs. [32,33]; the full results will be reported elsewhere
[34]. Here we only report results for ground state S-wave
(pseudoscalar, vector) and P-wave (axial, scalar) masses,
which are given in Table III.

In Fig. 1 we show the pseudoscalar spectral function for
our T � 0 lattice (83 � 80, run 7). Each spectral feature is
fitted to a Gaussian with peak position M, full width at half
maximum �. The ‘‘error’’ bars shown in the figure require
careful interpretation. The horizontal bar’s center and
width represent M and � respectively, and its height rep-
resents the area of the Gaussian evaluated over the range
M� �=2 toM� �=2. The vertical error bar represents the
error in this area as determined by the Bryan algorithm
[26]. The width of the horizontal bar does not correspond
to the error in the peak’s position. We expect that this width
is primarily determined by statistics, and will decrease as
our correlators become better determined, see Sec. V.

The position of the primary peak can be seen to agree
with the standard spectroscopy results within errors. The
second peak at 4.1 GeV cannot be identified with the first
radial excitation �c�2S�, which has a mass of 3.64 GeV;
rather, it is most likely a combination of the 2S, 3S, and 4S
states, possibly with some contamination from lattice arte-
facts. With more statistics it should be possible to resolve
these states further, as has been demonstrated in quenched
QCD some time ago [35]. The third bump in the spectral
function is most likely a lattice artefact, corresponding to a
cusp in the free lattice spectral function. As shown in the
appendix, the free spectral function has cusps at a�!�
0:72 and 1.14, corresponding to 5 and 8 GeV respectively;
these may merge or be pushed to higher energies in the
interacting case.

We find the same picture in the vector channel. In the
axial and scalar channels the spectral function is much less
well determined; however, the position of the primary peak
is found to agree within errors with the standard spectros-
copy result also in these channels.

IV. HIGH TEMPERATURE

Spectral functions just above Tc (T � 226 MeV,
T=Tc � 1:05) are presented in Fig. 2. We show results in
four channels, on the 83 � 32 lattice (run 7). To obtain
these results, we used the continuum free spectral function
m�!� � m0!2 as default model and discretised the energy
integral (1) using a��! � 0:005 and a cutoff a�!max �
5:0 (!max � 35 GeV). Since the first two time slices may
contain short-distance lattice artefacts we have used G���
at �=a� � 2; . . . ; N�=2 in Eq. (1). An extensive discussion
on the dependence on these choices is given in Sec. V. In all
channels we find a peak which is consistent with the zero-
temperature ground state mass. There are indications that
the vector, axial-vector, and scalar masses have shifted
slightly upwards, although this cannot be determined
with any certainty given our current precision. The second

TABLE III. Ground state masses (in GeV) at zero temperature
from a variational calculation. The a�mc � 0:08 results were
obtained by extrapolation from two higher masses.

Run a�mc mPS mV mAV mSC

6 0.080 2.643 2.689 3.118 3.018
0.092 2.800 2.835 3.233 3.209

7 0.117 3.145 3.174 3.637 3.615
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FIG. 1. Pseudoscalar spectral function at zero temperature on
the 83 � 80 lattice (run 7). The dashed line denotes the standard
spectroscopy result quoted in Table III.
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FIG. 2 (color online). Spectral functions on the 83 � 32 lattice
(run 7), in the pseudoscalar (PS), vector (V), axial-vector (AV),
and scalar (SC) channels.
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peak at ! 
 6 GeV is again most likely a lattice artefact,
as discussed in the appendix for the free theory. It should be
noted that the proximity of this second peak may distort the
shape of the primary peak. In order to fully disentangle the
first peak from any lattice distortions, simulations with
finer lattices are necessary. However, at this temperature
the structure in the spectral functions is quite robust and,
given the position of the first peaks, we are confident that
they are separate features corresponding to the ground
states in the respective channels.

A. Reconstructed correlators

One way of determining whether or not medium mod-
ifications of hadron properties are present is by studying
reconstructed correlators [36]. These are correlators ob-
tained by integrating up Eq. (1) with the spectral function
��!;T0� obtained at some reference temperature T0, and
the temperature-dependent kernel K��;!;T�. If the spec-
tral function is unchanged, the reconstructed correlator
Grec��� will be equal to the actual correlator G���, while,
conversely, if Grec��� � G��� this shows that the spectral
function must be modified. In this procedure MEM is only
used at the lowest temperature T0 (with the largest value of
N�), making this analysis a robust tool for higher tempera-
tures. As we will demonstrate shortly, we find that the
conclusions drawn from the reconstructed correlators in
our dynamical simulations are surprisingly close to those
obtained in quenched lattice QCD studies [4,5].

Figure 3 shows the reconstructed correlator in the S-
wave (vector and pseudoscalar) channels, using the spec-
tral functions obtained at T � 221 (run 6) and 226
(run 7) MeV (N� � 32, see Fig. 2) as the reference point.
In the pseudoscalar channel we see very little change: only
at the highest temperature (T � 441 and 451 MeV for

run 6 and 7 respectively; T=Tc � 2:1) does the recon-
structed correlator differ from the actual one by more
than 3% at large imaginary time. This suggests that �c
survives relatively unscathed in the medium up to this
temperature, although it cannot be ruled out that even a
2% change in the reconstructed correlator may correspond
to substantial modifications in the spectral function [13]. In
the vector channel, somewhat larger modifications are
seen, although still less than 10% at the highest tempera-
tures. This may be related to the transport contribution
which can be present in vector correlators, and is related
to quark diffusion [37–39]. We have also compared the
pseudoscalar correlator at N� � 32 with the reconstructed
correlator from the zero-temperature spectral function
shown in Fig. 1. In that case we found no more than a
1.5% difference at large �.

Figure 4 shows the reconstructed correlator in the P-
wave (scalar and axial-vector) channels, again using T �
221 MeV as reference temperature. Here we see much
greater changes in a smaller temperature range: already
at T � 235 MeV (T=Tc � 1:12) the long-distance corre-
lator differs from the reconstructed one by 20%, while at
T � 252 MeV (T=Tc � 1:2) the difference is up to 50%. If
we instead use T � 0 as reference temperature, we find
that the T � 221 MeV correlator differs from the recon-
structed one by a factor 2.5 at large distances and by 20% at
�=a� � 10. We infer that there are considerable medium
modifications in this channel for Tc & T & 1:2Tc.
Whether this corresponds to thermal broadening, a mass
shift or melting of the �c1 state, will be investigated in the
following.

B. Temperature-dependent spectral functions

We now proceed to a discussion of temperature depen-
dence of spectral functions in the range Tc & T & 2:1Tc.
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FIG. 3 (color online). Reconstructed correlator in the vector
(J= ) and pseudoscalar (�c) channel, for different temperatures,
on 83 � N� lattices. The filled symbols are for run 7, while the
open symbols are for run 6, a�mc � 0:092.
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FIG. 4 (color online). Reconstructed correlator in the scalar
(�c0) and axial-vector (�c1) channel, for different temperatures,
on the 123 � N� lattice (run 6, a�mc � 0:080).
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1. Pseudoscalar channel

Figure 5 shows the pseudoscalar spectral function at
various temperatures on the 83 � N� lattices. The �c
peak can be seen to persist up to at least T � 392 MeV
(N� � 18). At our highest temperature, T �
440–450 MeV (N� � 16), no peak survives for run 7 or
for the larger lattice on run 6, while the smaller lattice on
run 6 shows a distorted peak structure with a very large
uncertainty in the peak height. Since the correlators on the
two volumes differ by less than 0.5%, this discrepancy is
more a sign of a breakdown of MEM than a physical effect.
At these high temperatures the small number of available
points means that it cannot be determined at present
whether the disappearance of the peak signals the melting
of the resonance or the failure of the maximum entropy
method. Indeed, the spectral function obtained from run 6
N� � 32 correlators using the same time range (� � 2–8)
and default model also exhibits no peak.

The possibility that at higher temperatures there is no
bound state, but only a threshold enhancement, must also
be considered. Because of the proximity of the second
peak, our spectral functions are nonzero everywhere, and
we are therefore not able to unambiguously distinguish the
two possibilities. However, a threshold enhancement
would be expected to become smaller as the temperature
is increased, while we find a remarkably constant peak,
consistent with a bound state. Because of these uncertain-
ties, we are not in a position to conclude exactly when the
�c melts. However, our results suggest that the �c state is
bound up to T 
 392 MeV.

In general, we see very little volume dependence in this
channel, with the Ns � 12 data for the most part being
completely compatible with the Ns � 8 data. This is con-
sistent with �c being a compact bound state with a diame-
ter much smaller than our lattice size, and indicates that
this remains the case in the plasma up to the point where it
melts.

2. Vector channel

The spectral function in the vector channel is shown in
Fig. 6. We observe the same pattern as in the pseudoscalar
channel. The ground state peak appears to melt around
350 MeV (T=Tc 
 1:7, N� � 20), although it is again
difficult to draw firmer conclusions, especially at higher
temperatures. At the highest temperature no peak is visible
any more. Instead, we find nonzero spectral weight at all
energies. This may be related to a transport contribution,
signalling a nonzero charm diffusion coefficient. We hope
to address this in the near future.

3. Axial channel

Figure 7 shows the temperature dependence of the axial-
vector spectral function on the 12� N� lattice (run 6,
a�mc � 0:08). Since the P-waves are much more sensitive
to finite volume effects than the S-waves, we use the larger
volume in this analysis. The ground state peak appears to
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FIG. 6 (color online). As in the right panel of Fig. 5, for the
vector spectral function, using m�!� � 8!2.
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FIG. 5 (color online). Pseudoscalar spectral function for different temperatures on the 83 � N� lattice, for run 7 (left) and run 6,
a�mc � 0:092 (right). All results have been obtained using m�!� � 3!2, !max � 35 GeV, and �=a� � 2; . . . ; N�=2.
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survive up to T � 243 MeV (T=Tc � 1:16, N� � 29),
while at T � 252 MeV (T=Tc � 1:2, N� � 28) there is
no sign of any �c1 peak. We interpret this as a sign of the
melting of �c1 somewhere in this temperature range. A
more detailed study of the 123 � 28 data reveals that by
varying m�!� or !max it is, however, possible to reproduce
a weak �c1 peak, indicating that the bound state may still
not have completely disappeared at this point. Higher
statistics and lattices closer to the continuum limit will
be required to resolve this issue.

4. Scalar channel

Finally, in Fig. 8 the scalar spectral function is shown for
temperatures ranging from 219 MeV to 252 MeV. We see a
similar pattern as in the axial channel, although the �c0

state appears to melt at somewhat lower temperature than

the �c1 state: at T � 235 MeV (T=Tc � 1:12, N� � 30)
there is no sign of any surviving bound state. However, the
scalar correlators are considerably noisier than the axial-
vector correlators, so it is possible that we simply do not at
present have sufficient statistics to obtain a signal in this
channel. Indeed, given the slightly smaller change in the
correlators shown in Fig. 4, a lower melting temperature
seems surprising. Increased statistics will be required to
resolve this issue.

V. MEM SYSTEMATICS

In order to study the robustness of the spectral functions
shown in the previous section, we now consider the depen-
dence of the MEM output on the parameters that can be
varied. This includes the default model dependence, de-
pendence on the energy cutoff and discretisation, depen-
dence on the time range used in the analysis, and the role of
finite statistics. We focus on the pseudoscalar and axial-
vector spectral functions on lattices with a time extent of
N� � 32, since we find that the vector and scalar channels
behave qualitatively similar to the pseudoscalar and axial
channels, respectively.

We start with a discussion of the choice of default
model. Since we are primarily interested in the properties
of the spectral functions in the 3–5 GeV region, we have
mostly used the continuum free spectral function m�!� �
m0!

2 as default model, rather than the default model
m�!� � m0!�b�!� proposed in Ref. [27], which allows
for nontrivial behavior in the !! 0 limit. At the inter-
mediate energies considered here, we find that the two
models result in the same spectral function if the same
value for the model parameter m0 is used, although the
second one tends to yield lower values for m0, when m0 is
determined by a single parameter fit to the correlator, using
Eq. (1). In addition, we have also used two other default
models: m�!� � m0 and m�!� � m0!, which have very
different high-energy behavior. To assess the sensitivity of
our results to the choice of default model, we have varied
the parameterm0 over a wide range. The output using these
different models gives an indication of how tightly the data
constrain the spectral function.

Figure 9 (top) shows the pseudoscalar spectral function
for a large class of default models. The first three default
models vary in their normalization over more than 2 orders
of magnitude. Since the vertical axis of Fig. 9 is ��!�=!2,
these three default models could be plotted as horizontal
lines, at 0.3, 8, and 80, respectively. The fourth and the fifth
default model differ from the first three particularly at
small !. The final two default models [m�!� � m0 and
m�!� � m0!] behave in a qualitatively different manner,
as 1=!2 and 1=!, respectively, in this plot. In the absence
of any input information from the Euclidean correlators,
the MEM output reproduces the default model. Since this
is not happening here, we conclude that the MEM proce-
dure is fairly robust against variations in the default model.
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FIG. 8 (color online). As in Fig. 7, for the scalar spectral
function, using m�!� � !2.
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FIG. 7 (color online). Axial-vector spectral function for differ-
ent temperatures on the 123 � N� lattice (run 6, a�mc � 0:080).
All results have been obtained using m�!� � 2!2, !max �
35 GeV, and �=a� � 1; . . . ; N�=2.
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In particular, we find that the leading edge of the spectral
function is very robust, while also the height and position
of the first peak are reasonably independent of the choice
of default model.

For some choices of default models parameters (espe-
cially for larger values of m0) there appears to be a middle
peak just above 4 GeV, or a broadening of the primary
peak. This second peak, when it appears, coincides more or
less with the second peak in the zero-temperature spectral
function. This is too high to correspond directly to the
radial excitation, �0c (3638 MeV), but it might correspond
to a radial excitation modified by medium effects and the
nearby lattice doubler. However, since this peak is not
reproduced for most of the parameters shown, we are
cautious in attaching too much physical value to it.

The energy integral (1) has been discretised with
a��! � 0:005 and a cutoff at !max. We have studied the
sensitivity of the results to the cutoff by varying !max,
while keeping �! fixed; in practice we find that varying
�! does not change the results. In Fig. 9 (bottom) we show
the dependence of the pseudoscalar spectral function on
the energy cutoff !max. We find little sensitivity, provided
that !max * 28 GeV, or a�!max * 4.

We have performed the same analysis also on the run 6
lattices, for both charm quark masses and both volumes,
and find very little dependence on either energy cutoff or
default model in this case.

In the axial-vector and scalar channel we expect finite
volume effects to be significant. Therefore we will here
analyze the larger lattice, 123 � 32.

In the left panel of Fig. 10 we show the effect of varying
the default model m�!� on the axial-vector spectral func-
tions. There is a great deal of variation, but in all cases we
find either a ground state peak corresponding to the �c1

state and a second peak at 6–7 GeV, or a broad structure
encompassing the two, with a plateau in the middle. In this
case, we cannot say with any confidence whether what we
see is a bound state peak or a continuum threshold, but the
presence of a structure near the �c mass may indicate that
�c1 survives at this temperature, close to but just above Tc,
albeit possibly in a modified form. Generically, we find that

2 4 6 8 10
ω (GeV)

0

5

10

15

ρ(
ω

)/ω
²

m(ω) = 0.1ω²
m(ω) = 2.0ω²
m(ω) = 8.0ω²
m(ω) = 0.5(ω+ω²)
m(ω) = 0.00066
m(ω) = 0.1776ω

χ
c1

m= 0.092

2 4 6 8 10
ω (GeV)

0

5

10

15

ρ(
ω

)/ω
²

ω
max

 = 28 GeV
ω

max
 = 35 GeV

ω
max

 = 42 GeV
ω

max
 = 52.5 GeV

ω
max

 = 63 GeV

χ
c1

m= 0.092

FIG. 10 (color online). Axial-vector spectral function on the 123 � 32 lattice (run 6) with a�mc � 0:092, for different default models
(left) and different energy cutoffs (right).
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energy cutoffs (bottom).
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the spectral function analysis is less robust for P-waves
than for S-waves, which may be due to the local operators
used in this study.

In the right panel of Fig. 10 we show the effect of
varying the energy cutoff !max on the axial-vector corre-
lator. We see very little dependence on the cutoff in the
range shown here, but for lower energy cutoffs, !max &

28 GeV, the peaks become more ‘‘washed out.’’ We take
this as evidence that although the maximum energy for free
fermions is a�!max � 1:48, in the interacting theory the
spectral function reaches higher energies, which must be
included in the integral.

The effect of varying the time range ��min; �max� used in
the MEM analysis is shown in Fig. 11 for the pseudoscalar
correlators. We find a reasonable stability in our results as
long as at least 10 data points are included; for �min � 2 or
3 even fewer points are required to reproduce the spectral
function.

We have carried out the same analysis at all tempera-
tures, in order to try to clarify whether the presence or
absence of a ground state peak is a physical effect or an

artefact of the MEM. This is illustrated in Fig. 12 for the
pseudoscalar channel at T � 294 MeV (83 � 24) and T �
392 MeV (83 � 18). We see evidence of a surviving
ground state (�c) peak, but there is a quite strong depen-
dence on both default model and energy cutoff, which
becomes stronger as the temperature is increased. This
means that our data are not sufficient to unambiguously
determine whether the bound state survives at these tem-
peratures, much less to say anything quantitative about
changes to the spectral function.

Finally, spectral functions reconstructed using MEM on
a finite sample will always display a finite peak width, so
the width of the peaks found here cannot be directly
interpreted as a thermal width of the corresponding mes-
onic states. (A further limitation is given by the finite
resolution offered by the singular value decomposition
procedure used in our MEM analysis, but we believe we
are not yet in this regime whenN� � 32.) One may attempt
to disentangle the unphysical statistical width from a pos-
sible physical thermal width by varying the number of
configurations used. Specifically, if the shape of the spec-
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higher temperature on the 83 � 24 (top) and 83 � 18 (bottom)
lattice (run 6), for different default models.
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tral function is found to be independent of the statistics
above a certain number of configurations, one can be more
confident in the physical relevance of the results.

In Fig. 13 we show the pseudoscalar spectral function on
the 83 � 32 lattice, obtained using different numbers of
configurations. We see that as the number of configurations
is reduced, the primary peak at first gets narrower, then
remains approximately constant before broadening some-
what for the lowest statistics. The rather surprising initial
narrowing may be related to the disappearance of the weak
secondary peak discussed above, in which case it may be
argued that the peak width for intermediate statistics is in
fact a real thermal width. To test this hypothesis, we also
show, in the bottom panel of Fig. 13, the spectral functions
obtained from the same data but with m�!� � 16!2,
where we already have seen that three peaks are produced.
We see that as the statistics are reduced, the middle peak
vanishes, but the primary peak remains unchanged. Only
for very low statistics did we find a broadening. This lends
some support to the hypothesis that the middle peak is
indeed related to a surviving �0c state. However, this result

must be treated with caution because of the proximity of
the lattice artefact peak at !� 6 GeV.

VI. DISCUSSION AND CONCLUSIONS

We have computed charmonium correlators at a range of
different temperatures on anisotropic lattices with two light
sea quark flavors. We find that the S-wave (vector and
pseudoscalar) correlators remain largely unchanged as
the temperature is increased up to about twice the pseudo-
critical temperature, or 400 MeV. The P-wave correlators,
on the other hand, exhibit substantial modifications already
between 220 and 250 MeV. This behavior of the correlators
is in good agreement with what has been found in
quenched QCD studies [2–5]. Using the maximum entropy
method to obtain the corresponding spectral functions, our
results indicate that the ground state S-wave peak survives
largely unchanged up to T � 390 MeV, while at our high-
est temperature, T 
 440 MeV, uncertainties in the MEM
procedure prevent us from drawing any conclusion about
the presence or absence of a ground state. In the axial-
vector (P-wave) channel, we find that the ground state
appears to melt between 240 and 250 MeV, although higher
statistics will be needed to draw definite conclusions. The
scalar meson �c0 appears to melt earlier, although this may
be a function of limited statistics. Generically, we find that
the spectral function analysis for S-waves is more robust
than for P-waves, which may be related to the local opera-
tors used to represent the meson states. There is some
indication that a radial S-wave excitation may survive in
the plasma phase just above Tc, but it is premature to draw
any conclusions about this. Again these results are in
qualitative agreement with most corresponding calcula-
tions in the quenched approximation [2–5].

Our results appear to be compatible with the sequential
charmonium suppression scenario [17], which requires that
S-waves melt at T * 2Tc while P-waves melt close to Tc.
A simple hydrodynamical model calculation based on the
sequential suppression picture [40] gave melting tempera-
tures of 2:1Tc for the S-waves and 1:34Tc for the P-waves
and radial excitation. The former is quite compatible with
our results, while the latter appears quite high; however,
given the simplicity of the model calculation and the
systematic uncertainties in our calculation, the discrepancy
is relatively minor.

There are several features of this calculation which must
be improved before any firm, quantitative conclusion can
be reached. The most important of these relate to the use of
a single, fairly coarse lattice spacing, as 
 0:17 fm and
a� 
 0:028 fm. As a result, we are unable to reach tem-
peratures much beyond 2Tc or 440 MeV, and our results at
the highest temperatures are subject to uncertainty due to
the small number of points in the imaginary-time direction.
Furthermore, lattice artefacts at larger energies expected
from free fermion calculations are close to the first peak
representing the ground state at lower temperatures, which
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complicates a straightforward interpretation. A finer lattice
would help overcome both of these problems. Simulations
on finer lattices, bringing the main systematic uncertainties
in this study under control, are currently underway.

We also note that the fairly heavy sea quarks bring Tc up
from its physical value of 150–200 MeV [41–43], as does
the absence of a third active flavor. Lighter sea quarks will
also facilitate charmonium dissociation and thus bring
down the melting temperature. Simulations with lighter
sea quark masses are planned.

In terms of addressing the experimental situation, two
further developments are possible. First, the RHIC experi-
ment corresponds to a small but nonzero baryon chemical
potential, while the calculations presented here have been
carried out at zero chemical potential. It would be useful to
calculate the response of the meson correlators to a small
chemical potential to determine what, if any, effect this has.
Second, and perhaps more importantly, the J= particles
which escape from the plasma and are observed as dilep-
tons in detectors will have nonzero (transverse) momen-
tum, and the momentum and rapidity dependence of the
J= yields is a crucial factor in differentiating different
models [16,20]. It is therefore important to study the
temperature dependence of charmonium correlators and
spectral functions also at nonzero momentum. This is
currently underway.
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APPENDIX: FREE LATTICE SPECTRAL
FUNCTIONS

In order to estimate lattice artefacts, we have studied
meson spectral functions in the free lattice theory, follow-
ing the approach of Refs. [44–46]. Since the temporal
discretisation in the fermion action used in this paper is
identical to the standard Wilson fermions, most details can
be found in Sec. 3.1 of Ref. [45]. Here we only list the
expressions that are different.

The fermion dispersion relation is determined by

 cosh�a�Ek� � 1�
K2

k �M2
k

2�1�Mk�
; (A1)

where in this case

 K k �
�r

6�

X3

i�1

�i�8 sinki � sin2ki�;

Mk � �ra�m�
2s
�

X3

i�1

�3–4 coski � cos2ki�;

(A2)

with �r � 1� a�m=2 and s � 1=8. The free meson spec-
tral functions take the same form as in Ref. [45]; the only
change is in the coefficient Si�k�, which now reads

 Si�k� �
i�r

6�
8 sinki � sin2ki

2Ek cosh�Ek=2T�
: (A3)

The finiteness of the Brillouin zone results in lattice arte-
facts in spectral functions. In particular there are cusps at
! � 2Ek, when k � ��; 0; 0� and ��;�; 0�. The maximal
energy is given by ! � 2Ek, when k � ��;�;��. For
a�m � 0:1, this corresponds to cusps at a�! � 0:72 and
1:14, and a maximal energy of a�! � 1:48.
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