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We evaluate the nucleon axial form factor, GA�q2�, and induced pseudoscalar form factor, Gp�q2�, as
well as the pion-nucleon form factor, G�NN�q

2�, in lattice QCD. We also evaluate the corresponding
nucleon to � transition form factors, CA5 �q

2� and CA6 �q
2�, and the pion-nucleon-� form factor G�N��q

2�.
The nucleon form factors are evaluated in the quenched theory and with two degenerate flavors of
dynamical Wilson fermions. The nucleon to � form factors, besides Wilson fermions, are evaluated using
domain wall valence fermions with staggered sea quark configurations for pion masses as low as about
350 MeV. Using these form factors, together with an evaluation of the renormalized quark mass, we
investigate the validity of the diagonal and nondiagonal Goldberger-Treiman relations. The ratios
G�N��q

2�=G�NN�q
2� and 2CA5 �q

2�=GA�q
2� are constant as a function of the momentum transfer squared

and show almost no dependence on the quark mass. We confirm equality of these two ratios consistent
with the Goldberger-Treiman relations extracting a mean value of 1.61(2).
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I. INTRODUCTION

Form factors measured in electromagnetic and weak
processes are fundamental probes of hadron structure.
Despite the long history of experimental [1] and theoretical
studies [2] on nucleon electromagnetic form factors, new
measurements of these quantities continue to reveal inter-
esting features. The discrepancy between the ratio of the
electric to magnetic nucleon form factors extracted via
Rosenbluth separation and from recent polarization mea-
surements is a well-known example. The transition form
factors in �N ! � have recently been measured [3,4] to
high accuracy, paving the way for theoretical studies using
chiral effective theories [5,6] and lattice QCD [7–9].
Compared to the electromagnetic form factors, the nucleon
(N) and nucleon to � form factors connected to the axial-
vector current are more difficult to measure and therefore
less accurately known. An exception is the nucleon axial
charge gA � GA�0�, which can be determined precisely
from �-decay. Its q2-dependence has been studied from
neutrino scattering [10] or pion electroproduction [11,12].
On the other hand the nucleon induced pseudoscalar form
factor, Gp�q

2�, is less well known. Muon capture and
radiative muon capture are the main experimental sources
of information [13]. Both GA�q

2� and Gp�q
2� have been

discussed within chiral effective theories [14,15]. The
electroweak N to � transition form factors are even less
studied. Using Adler’s parametrization [16] the N to �
matrix element of the axial-vector current can be written in
terms of four form factors, two of which are suppressed
[17]. The two dominant transition form factors, CA5 �q

2� and
CA6 �q

2�, are analogous to GA�q2� and Gp�q2�, respectively.
Neutrino interactions in hydrogen and deuterium were

studied [18] in an effort to extract information on these
form factors. Experiments using electroproduction of the �
resonance are under way [19] to measure the parity violat-
ing asymmetry in N to �, connected to leading order to the
form factor CA5 �q

2�. Theoretical input on these form factors
is therefore very timely and important.

State-of-the-art lattice QCD calculations can yield
model independent results on these axial form factors,
thereby providing direct comparison with experiment.
Lattice studies reflect the experimental situation regarding
our knowledge of these form factors. There have been
several recent studies on the electromagnetic nucleon
[20–22] and N to � form factors [5–9]. There have also
been several lattice evaluations of gA [23–25], but only
very recently lattice studies have began probing the
q2-dependence of the nucleon axial form factors [26,27]
and the N to � transition form factors [28]. A notable
exception is an early lattice study on the nucleon axial form
factors carried out in the quenched approximation for
rather heavy pion masses [29].

In this work we calculate the nucleon axial form factors
using Wilson fermions in the quenched theory and with
two degenerate flavors of Wilson fermions [30,31]. The
lowest pion mass in the case of dynamical Wilson fermions
that we use is about 380 MeV. We also evaluate the pion-
nucleon (�NN) form factor G�NN�q2�. For the extraction
of this form factor we need the renormalized quark mass,
which we calculate via the axial Ward-Takahashi identity
(AWI). In addition, we present results on the dominant
axial N to � transition form factors CA6 �q

2� and CA5 �q
2�.

The pion-nucleon-� (�N�) form factor, G�N��q2�, is also
computed in an analogous way to the evaluation of
G�NN�q2�. Like in the case of the nucleon axial form
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factors, the starting point is an evaluation in the quenched
theory using the standard Wilson action. A quenched cal-
culation allows an efficient check of our lattice techniques
by enabling a computation of the relevant quantities on a
large lattice minimizing finite volume effects and obtaining
accurate results at small momentum transfers reaching
pion mass, m�, down to about 410 MeV. In the case of
the N to � transition, the light quark regime is studied in
two ways: Besides using configurations with two degener-
ate flavors of dynamical Wilson fermions we use a hybrid
combination of domain wall valence quarks, which have
chiral symmetry on the lattice, and MILC configurations
generated with three flavors of staggered sea quarks using
the Asqtad improved action [32]. The effectiveness of this
hybrid combination has recently been demonstrated in the
successful precision calculation of the nucleon axial
charge, gA [23], as well as in our first evaluation of the N
to � axial transition form factors [28,33]. Since Wilson
fermions have discretization errors in the lattice spacing, a,
of O�a� and break chiral symmetry whereas the hybrid
action has discretization errors of O�a2� and chirally sym-
metric valence fermions, agreement between calculations
using these two lattice actions provides a nontrivial check
of consistency of the lattice results. In this work we obtain
results on the dominant axial N to � form factors CA5 and
CA6 with improved statistics as compared to their evaluation
in Refs [28,33].

The evaluation of the axial form factors as well as the
�NN and �N� form factors allows us to check the
Goldberger-Treiman relations. It is advantageous to calcu-
late ratios of the nucleon elastic and transition form factors,
since ratios have weak quark mass dependence and we
expect them to be less sensitive to other lattice artifacts.
In particular, it is useful to consider ratios for which the
renormalized quark mass cancels since this eliminates one
source of systematic error.

The paper is organized as follows: In Sec. II, we give the
definition of the matrix elements that we consider in terms
of the form factors on the hadronic level. In Sec. III, we
give the lattice matrix elements on the quark level and in
Sec. IV, we discuss how we extract the form factors from
lattice measurements. In Sec. V, we present our results.
Finally in Sec. VI, we summarize and conclude.

II. DEFINITION OF MATRIX ELEMENTS

To extract the form factors, we need to evaluate hadronic
matrix elements of the form hh0jO�jhi, where h and h0 are
the initial and final hadron states and O� a current that
couples to a quark. In all that follows, we assume isospin
symmetry and take the mass of the u and d quarks to be
equal. We consider nucleon-nucleon and nucleon-� matrix
elements of the axial-vector and pseudoscalar currents
defined by
 

Aa��x�� � �x����5
�a

2
 �x�; Pa�x�� � �x��5

�a

2
 �x�; (1)

where �a are the three Pauli matrices acting in flavor space
and  the isospin doublet quark field.

A. Axial form factors

The matrix element of the weak axial-vector current
between nucleon states can be written in the form

 hN�p0; s0�jA3
�jN�p; s�i � i

�
m2
N

EN�p0�EN�p�

�
1=2

�u�p0; s0�

�

�
GA�q

2����5

�
q��5

2mN
Gp�q

2�

�
�3

2
u�p; s�; (2)

where we specifically consider the axial isovector current
A3
�. The form factors depend only on the momentum trans-

fer squared, q2 � �p0� � p���p0� � p��. As defined
above, the form factors GA�q

2� and Gp�q
2� are dimension-

less. As already mentioned in the introduction, there exist
several recent lattice studies on the nucleon axial charge gA
[23–25], whereas only very recently there are lattice stud-
ies to investigate the q2 dependence of GA�q2� or Gp�q2�,
apart from an early calculation in the quenched approxi-
mation [29].

The invariant proton to �� weak matrix element is
expressed in terms of four transition form factors [16,34] as
 

h��p0; s0�jA3
�jN�p; s�i � i

���
2

3

s �
m�mN

E��p0�EN�p�

�
1=2

�u�
��
�p0; s0�

�

��
CA3 �q

2�

mN
�� �

CA4 �q
2�

m2
N

p0�
�

� �g��g�� � g��g���q
�

� CA5 �q
2�g��

�
CA6 �q

2�

m2
N

q�q�

�
uP�p; s� (3)

where, as in the nucleon case, we consider the physically
relevant axial isovector current A3

��x�. By uP and u�
��

we
denote proton and �� spinors.

B. Pseudoscalar matrix elements

Spontaneous symmetry breaking couples pions to the
broken axial charges and currents. The relation

 h0jAa��0�j�
b�p�i � if�p�	

ab (4)

can be used to extract the pion decay constant, f�, on the
lattice by evaluating two-point functions. With our con-
ventions f� � 92 MeV. Taking the divergence of the
axial-vector current we obtain the operator relation

 @�Aa� � f�m2
��a; (5)

known as the partially conserved axial-vector current
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(PCAC) hypothesis. On the QCD level we have the axial
Ward-Takahashi identity

 @�Aa� � 2mqP
a; (6)

where all quantities appearing in Eq. (6) are renormalized
quantities with mq being the renormalized quark mass.
Comparing Eqs. (5) and (6) we can write the pion field
�a in terms of the pseudoscalar density as

 �a �
2mqPa

f�m
2
�
: (7)

The renormalized quark mass can be evaluated by taking
the matrix element of Eq. (6) between a zero momentum
pion state and the vacuum to obtain

 mq �
m�h0jAa0j�

a�0�i

2h0jPaj�a�0�i
: (8)

Taking the matrix element of the pseudoscalar density
between nucleon states we can define the �NN form factor
via
 

2mqhN�p
0; s0�jP3jN�p; s�i �

�
m2
N

EN�p0�EN�p�

�
1=2

�
f�m

2
�G�NN�q

2�

m2
� � q2

� �u�p0; s0�i�5
�3

2
u�p; s�: (9)

Similarly the proton-�� matrix element of the pseudosca-
lar density yields the �N� form factor:
 

2mqh��p
0; s0�jP3jN�p; s�i � i

���
2

3

s �
m�mN

E��p0�EN�p�

�
1=2

�
f�m

2
�G�N��q

2�

m2
� � q

2
�u�

��
�p0; s0�

�
q�

2mN
uP�p; s�: (10)

Equations (9) and (10) define the form factors G�NN�q2�
and G�N��q2� that we study in this work. The �NN and
�N� strong coupling constants are then given by g�NN �
G�NN�0� and g�N� � G�N��0�. PCAC relates the axial
form factors GA�q

2� and Gp�q
2� with G�NN�q

2� and equiv-
alently CA5 �q

2� and CA6 �q
2� with G�N��q

2�. Using the
PCAC hypothesis together with Eq. (9) we obtain the
diagonal Goldberger-Treiman relation (GTR)

 GA�q
2� �

q2

4m2
N

Gp�q
2� �

1

2mN

2G�NN�q2�f�m2
�

m2
� � q2 : (11)

Similarly using Eq. (10) we obtain the nondiagonal GTR

 CA5 �q
2� �

q2

m2
N

CA6 �q
2� �

1

2mN

G�N��q
2�f�m

2
�

m2
� � q

2 : (12)

Assuming pion pole dominance we can relate the form
factors Gp�q

2� to G�NN�q
2� and CA6 �q

2� to G�N��q
2� via

 

1

2mN
Gp�q

2� �
2G�NN�q2�f�
m2
� � q2 ;

1

mN
CA6 �q

2� �
1

2

G�N��q
2�f�

m2
� � q

2 :

(13)

Substituting in Eqs. (11) and (12) we obtain the simplified
Goldberger-Treiman relations

 f�G�NN�q
2� � mNGA�q

2�;

f�G�N��q2� � 2mNCA5 �q
2�:

(14)

III. LATTICE EVALUATION OF CORRELATION
FUNCTIONS

To evaluate the axial nucleon form factors GA�q2� and
Gp�q2�, we use the techniques developed in our study of
the nucleon isovector electromagnetic form factors [22].
Since only the axial isovector is of relevance here, only the
connected diagram shown in Fig. 1 is needed. To extract
the matrix element of the axial isovector current between
nucleon states defined in Eq. (2) we need to calculate the
three-point function
 

hGNA3
�N�t2; t1; p0;p; ��i

�
X

x2;x1

exp��ip0 � x2� exp��i�p0 � p� � x1�

� ��
h�jT	�
�x2; t2�A3
��x1; t1� ����0; 0�
j�i;

(15)

using the local quark bilinear axial current A3
��x� of

Eq. (1). The projection matrices for the Dirac indices are
given by

 �i �
1

2
�i 0
0 0

� �
; �4 �

1

2
I 0
0 0

� �
: (16)

An interpolating field with the quantum numbers of the
nucleon routinely used in lattice studies is

 ��x� � 
abc	uTa�x�C�5d
b�x�
uc�x�: (17)

xAµ

h’(p’) h (p)

(x1,t1)

(x2,t2) (0,0)

FIG. 1 (color online). Connected three-point function between
final and initial hadron states h0�p0� and h�p�.
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We create an initial state (source) by acting with ���0� on
the vacuum. Evolution in Euclidean time with the QCD
Hamiltonian produces, in the large time limit, the nucleon
state. We take t1, the time from the source at which the
axial-vector current couples to a quark, to be large enough
so that the nucleon is the dominant state. We then take the
overlap with a nucleon state that is annihilated at a later
time t2 � t1 by the same interpolating field ��x2� (sink).
Again t2 � t1 is large enough so that the nucleon is the
dominant state. This process is schematically shown in
Fig. 1. In addition, we calculate the nucleon two-point
function,

 hGNN�t;p; ��i �
X

x
e�ip�x��
h�jT�
�x; t� ����0; 0�j�i:

(18)

We then construct a ratio such that, in the large Euclidean
time limit, all exponential dependences on times and un-
known initial state-nucleon overlap constants hNj ��j0i can-
cel. One can construct more than one ratio that
accomplishes this. We require, in addition, that we use
two-point functions that involve the shortest time evolu-
tion. Such a ratio is given by

 

RA�t2; t1; p0;p; �;�� �
hGNA3

�N�t2; t1; p0;p; ��i

hGNN�t2;p0; �4�i

�
hGNN�t2 � t1;p; �4�ihGNN�t1;p0; �4�ihGNN�t2;p0; �4�i

hGNN�t2 � t1;p0; �4�ihGNN�t1;p; �4�ihGNN�t2;p; �4�i

�
1=2

)
t2�t1�1;t1�1

�A�p0;p; �;��; (19)

which, in the large Euclidean time when the nucleon is the
dominant state, produces a constant plateau region in t1.
Throughout this work we use kinematics where the final
hadron state is produced at rest and therefore the momen-
tum transfer q � p0 � p � �p. We take �q2 � Q2 > 0
with Q2 being the Euclidean momentum transfer squared.
The value of RA�t2; t1; p0;p; �;�� in the plateau region,
�A�p0;p; �;��, is directly connected to the nucleon form
factors through the relation

 �A�0;�q; �k;�� � i
C

4mN

�
��EN �mN�	k;�

� qk	�;4�GA�Q2� �
q�qk
2mN

Gp�Q2�

�
(20)

for k � 1, 2, 3, while �A�0;�q; �4;�� � 0. The nucleon

energy EN �
�������������������
m2
N � q2

q
and C �

��������������������
2m2

N
EN�EN�mN�

r
, a factor

related to the normalization of the lattice states. Since
our goal is to evaluate the form factors as a function of
Q2, we calculate the three-point functions with sequential
inversions through the sink. This requires fixing the source-
sink time separation t2 as well as the initial and final hadron
states but allows the insertion of any operator with arbitrary
momentum at any time slice t1. In fact, the usefulness of
this technique is evident in this work: Since the same
matrix elements were calculated for the electromagnetic
current [8,9,22] no new sequential inversions are required
for the axial current or pseudoscalar density operators.

As in the electromagnetic case, it is advantageous to use
a linear combination of nucleon interpolating fields to
construct optimal sources and sinks. Since for axial opera-
tors a nonzero contribution can be obtained only if � � �4

in the three-point function, the most symmetric linear
combination of matrix elements that can be considered is

 

SA�q; j� �
X3

k�1

�A�0;�q; �k;� � j�

� i
C

4mN

�
�EN �mN��	1;j � 	2;j � 	3;j�GA�Q

2�

� �q1 � q2 � q3�
qj

2mN
Gp�Q2�

�
; (21)

where j � 1, 2, 3 labels the spatial current direction. In
order to obtain the three matrix elements corresponding to
three choices of �k in the above sum one would require
three sequential inversions. However, choosing an appro-
priate linear combination of nucleon interpolating fields,
this sum is automatically built in and with one sequential
inversion we can obtain SA�q; j� for all current directions j.
We call such a linear combination optimal sink because it
allows us to take into account in our determination of the
form factors the largest set of momentum vectors contrib-
uting to the same Q2 value. Since the sequential propaga-
tors corresponding to this sink have been computed for the
isovector electromagnetic form factors [22] they can be
used directly here. Therefore, the computational cost for
the evaluation of the three-point function for all intermedi-
ate times t1, current indices �, and a large set of lattice
momenta vectors q is very small.

Similarly, to evaluate the �NN form factor G�NN we
construct the ratio RP, which is the same as the ratio RA

given in Eq. (19) but instead of the three-point function
hGNA3

�N�t2; t1; p0;p; ��i defined in Eq. (15) with the axial
current A3

�, we use the three-point function
hGNP3N�t2; t1; p0;p; ��i, obtained by replacing A3

� in
Eq. (15) by the pseudoscalar density P3. The large
Euclidean time behavior of RP is independent of t1 leading
to the plateau value denoted by �P�0;�q; �;�5�. The
value of RP in the plateau region, �P, is related to the
�NN form factor via
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 �P�0;�q; �k;�5� � C
qk

2mN

f�m2
�

2mq�m2
� �Q2�

G�NN�Q
2�

(22)

for k � 1, 2, 3 while �P�0;�q; �4;�5� � 0. Summation
over the polarized matrix elements now leads to

 SP�q;�5� �
X3

k�1

�P�0;�q; �k;�5�

� C
q1 � q2 � q3

2mN

f�m2
�

2mq�m2
� �Q2�

G�NN�Q
2�;

(23)

from which G�NN can be extracted if we know f� and mq.
The determination of the N to � axial transition form

factors requires the evaluation of the three-point function
 

hG
�A3

�N
� �t2; t1; p0;p; ��i

�
X

x2;x1

exp��ip0 � x2� exp��i�p0 � p� � x1�

� ��
h�jT	�
��x2; t2�A3
��x1; t1� ����0; 0�
j�i;

(24)

where to create an initial state with the �� quantum
numbers we use the standard Rarita-Schwinger interpolat-
ing field

 ���
� �x� �

1���
3
p 
abcf2	uTa�x�C��db�x�
uc�x�

� 	uTa�x�C��ub�x�
dc�x�g: (25)

Besides the nucleon two-point function we also need the �
two-point function given by

 hG��
�� �t;p0; ��i �

X
x
e�ip

0�x��
h�jT�
��x; t� ��
�
� �0; 0�j�i:

(26)

The corresponding ratio which, in the large Euclidean time
limit, becomes t1-independent, is given by
 

RA��t2; t1; p0;p; �;��

�
hG

�A3
�N

� �t2; t1; p0;p; ��i

hG��
ii �t2;p

0; �4�i

�
hG��

ii �t2;p
0; �4�i

hGNN�t2;p; �4�i

�
hGNN�t2 � t1;p; �4�ihG

��
ii �t1;p

0; �4�i

hG��
ii �t2 � t1;p

0; �4�ihGNN�t1;p; �4�i

�
1=2

)
t2�t1�1;t1�1

�A
��p0;p; �;��: (27)

As in the nucleon case, we take the final � state to be
produced at rest and therefore q � p0 � p � �p. The
value of RA� in the plateau region, �A

�, for the case � �
�4, which is the relevant one for this work, is related to the
form factors via

 

�A
k �0;�q; �4; j� � iB

�
�

�
�EN � 2m� �mN�

2
	k;j

�
pkpj

2�EN �mN�

�
CA3

�

�
�EN �m��

m�

mN
	k;j

�
CA4

�mN	k;jCA5 �
pkpj

mN
CA6

�
(28)

for the spatial components of the current, � � j, whereas
for the temporal current component, � � 4, we have

 �A
k �0;�q; �4; 4� � Bpk

�
CA3 �

m�

mN
CA4 �

EN �m�

mN
CA6

�
;

(29)

for k � 1, 2, 3, while �4�0;�q; �;�� � 0. In this case we
have a larger freedom in choosing appropriate linear com-
binations for the optimal sink due to the additional vector
index of the �. Using this freedom we construct � sinks so
that the maximum allowed number of lattice vectors con-
tribute in the evaluation of the form factors at a given value
ofQ2. These turn out to be the same as the ones used in our
study of the N to � electromagnetic transition form factors
[8]. Therefore the sequential inversions already performed
for the evaluation of the N to � electromagnetic transition
form factors [8,9] can be used for the computation of the
axial transition form factors. We give below the expres-
sions that we obtain in the large Euclidean time limit, using
the optimal linear combinations of � interpolating fields:

 

SA1 �q; j� �
X3

��1

�A
��0;�q; �4; j�

� iB
�
�
CA3
2

�
�EN � 2m� �mN�

�

�X3

k�1

pk
�

pj

EN �mN

�
�
m�

mN
�EN �m��C

A
4

�mNC
A
5 �

CA6
mN

pj
�X3

k�1

pk
��
; (30)

 SA1 �q; 4� �
X3

��1

�A
��0;�q; �4; 4�

� B
X3

k�1

pk
�
CA3 �

m�

mN
CA4 �

EN �m�

mN
CA6

�
;

(31)
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SA2 �q; j� �
X3

��k�1

�A
��0;�q; �k; j�

� i
3A
2

��X3

k�1

pk
�
�	j;1�p2 � p3�

� 	j;2�p3 � p1� � 	j;3�p1 � p2��CA3

�
; (32)

 

SA3 �q; j� � �A
3 �0;�q; �3;�� �

1

2
	�A

1 �0;�q; �1;��::

��A
2 �0;�q; �2;��


� iA
�

9

4
�	j;1p2p3 � 	j;2p1p3�CA3

�
; (33)

where j � 1, 2, 3 and

 A �
B

�EN �mN�
; B �

���
2

3

s ��������������������������������
�EN �mN�=EN

p
3mN

: (34)

As can be seen, SA2 �q; j� and SA3 �q; j� isolate the sup-
pressed form factor CA3 for different combinations of lattice
momentum vectors as compared to SA1 that also involves
CA3 . Since here we are only interested in the dominant form
factors CA5 and CA6 , we use only SA1 �q;��. By RAN�, we
denote the ratio constructed analogously to RA�, but with
the optimal sink. The linear combination SA1 �q;�� turns out
to be the suitable one also for the calculation of the form
factor G�N�, defined in Eq. (10). Again replacing the

three-point function hG
�A3

�N
� �t2; t1; p0;p; ��i with the cor-

responding pseudoscalar three-point function
hG�P3N

� �t2; t1; p0;p; ��i in Eq. (27), we obtain the ratio
RP�, which at large Euclidean times becomes time-
independent. Fitting in the plateau region yields
�P
��0;�q; �;�5�, related to the �N� form factor via the

relation

 �P
��0;�q; �4;�5� �

���
2

3

s ��������������������
EN �mN

EN

s
q�

6mN

�
f�m2

�

2mq�m
2
� �Q

2�
G�N��Q

2�: (35)

The optimal combination gives

 SPN��q;�5� �
X3

��1

�P
��0;�q; �4;�5�

�

���
2

3

s ��������������������
EN �mN

EN

s �
q1 � q2 � q3

6mN

�
f�m2

�

2mq�m2
� �Q2�

�
G�N��Q

2�; (36)

from which G�N� can be determined.

In order to evaluate G�NN and G�N�, we need to know
mq. The renormalized quark mass can be defined via the
AWI given in Eq. (8). On the lattice the AWI has correc-
tions, which in the case of Wilson fermions are of order a.
For domain wall fermions (DWF), the divergence of the
four-dimensional vector axial current has an additional
term that goes to zero as the fifth dimension goes to infinity
[35]. For nonsinglet matrix elements at low energies, this
additional term shifts the quark mass by an additive con-
stant known as the residual quark mass [36]. Such a simple
shift is valid up to order a2. Provided that the fifth dimen-
sion is large enough, the residual mass maybe considered a
small correction. The size of the fifth dimension was
adjusted by requiring the residual mass to be small com-
pared to the pion mass. The criterion used to fix the fifth
dimension to 16 is that the residual mass is smaller than
10% of the quark mass [37]. We adopt the same criterion in
this work and take the fifth dimension to be 16. Therefore
we assume that corrections due to the residual mass are
small and we calculate the renormalized quark mass using
the AWI taking matrix elements between a pion zero
momentum state and the vacuum. The initial state with
the pion quantum numbers is created using the axial-vector
current ~A3

4 as an interpolating field. Quantities with tildes
denote operators that are built from smeared quark fields
obtained from point quark fields  �x� as described in the
next subsection. The pion-vacuum matrix element of the
axial-vector current is given by the two-point function

 CALS�t� �
X

x
h�jT�A3

4�x; t� ~A
3
4�0; 0��j�i (37)

and the pion-vacuum matrix element of the pseudoscalar
density is given by

 CPLS�t� �
X

x
h�jT�P3�x; t� ~P3�0; 0��j�i: (38)

The subscripts L and S denote that the axial-vector current
and pseudoscalar density are constructed using local quark
fields unlike the interpolating fields ~A3

4 and ~P3 that use
smeared quark fields. To cancel the overlaps of our initial
pion state with the vacuum we form the ratio

 mAWI
eff �t� �

m�

2

ZA
ZP

CALS�t�
CPLS�t�

�������������
CPSS�t�

CASS�t�

s
(39)

using, in addition to local-smeared (LS) two-point func-
tions, the smeared-smeared two-point functions CASS and
CPSS. We look for a plateau in the large Euclidean time
behavior of the effective mass meff�t�, which determines
mq. The factors ZA and ZP are the renormalization con-
stants for the local axial-vector and pseudoscalar currents,
respectively. We note that ZP is only needed for the deter-
mination of the renormalized quark mass. This dependence
cancels in all physical quantities presented in this work,
which are therefore independent of the value we use for ZP.
The evaluation ofmq together with the determination of f�
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allows us to evaluate G�NN and G�N�. The pion decay
constant f� is determined from the large Euclidean time
behavior of the ratio

 feff
� �t� � ZA

�������
2

m�

s
CALS�t��������������
CASS�t�

q em�t=2: (40)

For large t, the above quantity becomes t independent and
the plateau value gives f�.

In the case of Wilson fermions the evaluation of N to �
matrix elements is done using the sequential propagators
already computed in our study of the electromagnetic
transition form factors [8,9]. On the other hand, in the
hybrid scheme, additional propagators are calculated to
improve the statistical errors beyond those of our previous
work [9,28] and to check for finite volume effects. We
summarize in Tables I and II the details of the calculation.
All the hadron masses given in Table II are computed using
domain wall valence quarks and MILC configurations for
the sea quarks. The value of the valence domain wall quark
mass, mDW

q , was determined by tuning the pion mass
calculated with domain wall fermions to be the same as
the lowest mass pion in the staggered formulation [37].

For Wilson fermions, we convert dimensionless lattice
quantities to physical units by setting the lattice spacing
using the nucleon mass at the chiral limit. The value of a
extracted from the nucleon mass is given in Table I and it is

consistent with the value extracted using the Sommer scale
r0. The dynamical Wilson configurations at � � 0:1575
and 0.1580 were generated by the T�L collaboration [30]
and at � � 0:158 25 by the DESY-Zeuthen group [31]. For
the hybrid calculation we use the scale extracted from
heavy meson spectroscopy as determined by the MILC
collaboration [38]. As can be seen in Table II in the hybrid
approach we consider lattices with temporal extent 32 and
64. Temporal extent 32 is obtained by using Dirichlet
boundary conditions (b.c.) in the temporal direction to
cut into half the original MILC lattices when we calculate
the domain wall quark propagator. This was the procedure
adopted in our previous evaluation of N to � axial form
factors [9] due to the limited computer resources. In this
work we present, in addition, results using the full temporal
extent of the MILC lattices with antiperiodic b.c. in the
temporal direction consistent with what is used in the
simulation of the configurations. Antiperiodic b.c. in the
temporal direction are also used in the case of Wilson
fermions.

IV. EXTRACTION OF OBSERVABLES

A. Ground state dominance and noise reduction

As we already pointed out, in order to extract physical
matrix elements, we must first evolve in Euclidean time to
create the hadronic state of interest. In this work, the

TABLE II. Parameters for the calculations using the hybrid action.

Hybrid action a�1 � 1:58 GeV [38]
Number of confs Volume �amu;d�

sea �ams�
sea �amq�

DW m� (GeV) mN (GeV) m� (GeV)

150 203 � 32 0.03 0.05 0.0478 0.606(2) 1.392(9) 1.670(22)
150 203 � 32 0.02 0.05 0.0313 0.502(4) 1.255(19) 1.567(25)
118 283 � 32 0.01 0.05 0.0138 0.364(1) 1.196(25) 1.561(41)
200 203 � 64 0.03 0.05 0.0478 0.594(1) 1.416(20) 1.683(22)
198 203 � 64 0.02 0.05 0.0313 0.498(3) 1.261(17) 1.589(35)
100 203 � 64 0.01 0.05 0.0138 0.362(5) 1.139(25) 1.488(71)
300 283 � 64 0.01 0.05 0.0138 0.353(2) 1.191(19) 1.533(27)

TABLE I. Parameters for the calculations using Wilson fermions.

Wilson fermions
Number of confs � m� (GeV) mN (GeV) m� (GeV)

Quenched 323 � 64, � � 6:0, a�1 � 2:14�6� GeV
200 0.1554 0.563(4) 1.267(11) 1.470(15)
200 0.1558 0.490(4) 1.190(13) 1.425(16)
200 0.1562 0.411(4) 1.109(13) 1.382(19)

�c � 0:1571 0 0.938(9)

Unquenched [30] 243 � 40, � � 5:6, a�1 � 2:56�10� GeV
185 0.1575 0.691(8) 1.485(18) 1.687(15)
157 0.1580 0.509(8) 1.280(26) 1.559(19)

Unquenched [31] 243 � 32, � � 5:6, a�1 � 2:56�10� GeV
200 0.15825 0.384(8) 1.083(18) 1.395(18)

�c � 0:1585 0 0.938(33)
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hadronic states of interest are the pion, the nucleon, and the
� states. To create the initial states with the pion quantum
numbers, we use the temporal component of the axial-
vector current, and for the nucleon and �, the interpolating
fields given in Eqs. (17) and (25) respectively. The length
of the time evolution required to obtain the true pion,
nucleon, and � eigenstates depends on our choice of the
initial state. It is well known that if one constructs a hadron
initial state using smeared quark fields instead of localized
ones, the convergence to the hadron eigenstate is very
much improved. Therefore, in this work, we always smear
the quark fields in a gauge invariant way using the so-
called Wuppertal or Gaussian smearing [39]. In this
scheme the smeared quark field, ~ �x; t�, is obtained from
the localized field,  �y; t�, via

 

~ �x; t� �
X

y
F�x; y;U�t�� �y; t�: (41)

The gauge invariant smearing function is constructed from
the hopping matrix H:

 F�x; y;U�t�� � �1� 
H�n�x; y;U�t��; (42)

where

 H�x; y;U�t�� �
X3

i�1

�Ui�x; t�	x;y�i �U
y
i �x� i; t�	x;y�i�:

(43)
The parameters for the Wuppertal smearing are determined
by requiring that the nucleon state dominates the two-point
correlator for the shortest time evolution. We find that 
 �
4 and n � 50 are optimal parameters. Although smearing
improves ground state dominance, it introduces gauge
noise increasing the errors on the extracted effective
masses, in particular, when applied both to the source
and to the sink. An efficient way to reduce the ultraviolet
fluctuations is to smooth the gauge fields that enter the
hopping matrix H�x; y;U�t��. It was shown in Ref. [22]
that hypercubic (HYP) smearing [40] on these gauge links
reduces gauge noise and tends to also improve ground state
dominance. In the case of domain wall fermions, HYP
smearing is in fact applied to all the gauge links so as to
accelerate the convergence of the bi-conjugate gradient
method used to evaluate the inverse of the fermionic ma-
trix. In the quenched case, HYP smearing is not used
because self-averaging is more effective on larger lattices.
In the case of dynamical Wilson fermions, the simulations
are done on smaller lattices causing gauge noise, and HYP
smearing needs to be applied to the gauge fields that enter
the hopping matrix H�x; y;U�t��.

B. Plateaus and overconstrained analysis

In this subsection we describe the analysis of the lattice
measurements that lead to the extraction of physical
quantities.

The mass of the lowest hadron state for a given set of
quantum numbers is the simplest quantity to calculate on

the lattice, since it requires only the computation of two-
point functions. In this work, besides the pion, the nucleon,
and the � mass, which are straightforward to determine,
we need the renormalized quark mass. This is evaluated by
taking matrix elements of the AWI as discussed in Sec. III.
The effective mass mAWI

eff �t� defined in Eq. (39) becomes
time-independent if t is large enough so that the pion
ground state dominates (plateau region). We show in
Fig. 2 mAWI

eff �t� as a function of time, both in lattice units.
We consider all three values of the bare quark mass for
each of the three types of simulations that we use in this
work, namely, the quenched approximation, two dynami-
cal Wilson fermions, and the hybrid scheme. As can be
seen, in all cases, allowing for an initial time evolution, the
effective mass becomes time-independent, yielding in the
plateau region mq. In the case of DWF, the extracted value
is expected to be the same as mDW

q used in the domain wall
Dirac matrix and given in Table II. Any differences are
attributed to an additive residual mass that provides a

FIG. 2 (color online). The effective quark mass mAWI
eff �t� de-

fined in Eq. (39) as a function of time, both in lattice units. The
upper graph is for the quenched case, the middle graph for
dynamical Wilson fermions, and the lower graph for the hybrid
scheme. The dashed lines span the range of fitted points and
show the extracted value of mq in lattice units.
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measure of the chiral symmetry breaking due to the finite
extent of the fifth dimension. In the case of Wilson fermi-
ons it is known that the AWI has corrections of O�a�. The
value of mq therefore carries systematic errors, which can
be large as we approach the chiral limit, since corrections
that appear in the right hand side of Eq. (6) will dominate
as the first term decreases. The results on mq will be
discussed in the next section.

For the evaluation of form factors we look for time
independence of the ratios RA, RP, RAN�, and RPN� con-
structed from three-point functions and appropriate com-
binations of two-point functions. We start with the ratio

RP ���!t1�1;t2�t1�1

SP from which the �NN form factor is
determined. We show in Fig. 3 typical examples of the
ratio RP divided by C�q1 � q2 � q3�=2mN and averaged
over all momentum directions that lead to the same Q2

value. A similar averaging is also done in our overcon-
strained analysis described below. The ratio is shown as a
function of t1 in physical units for the four lowest

Q2-values both in the quenched theory at the intermediate
quark mass and for dynamical Wilson fermions at the
heaviest quark mass. When the time separation from the
source and sink is large enough so that the nucleon state
dominates, this averaged ratio is indeed time-independent
and the quantity plotted in Fig. 3 corresponds to
f�m

2
�G�NN=	2mq�Q

2 �m2
��ZP
. Note that, since to ob-

tain the renormalized mass we divide by ZP, the ZP factors
cancel and therefore we do not need to know ZP. As
already pointed out, this is true for all physical quantities
that we calculate in this work. The dashed lines show both
the range used for the fit and the value of the plateau. In
Fig. 4 we show the corresponding average of the ratio RPN�
that, in the large time limit, leads to SPN� defined in Eq. (36)
and to the determination of the �N� form factor. Here we
show results for pions of mass of about 500 MeV (inter-
mediate value) in each of the three types of simulations
considered in this work. As can be seen the quality of the
plateaus in all cases is good enough to allow us to fit to a

FIG. 3 (color online). The ratio RP used to extract G�NN for
the four lowest values ofQ2. The upper graph is for the quenched
theory at � � 0:1558 (m� � 0:49 GeV) and the lower graph for
dynamical Wilson fermions at � � 0:1575 (m� � 0:69 GeV).
The dashed lines are fits to the plateaus and span the range of
fitted points.

FIG. 4 (color online). The ratio RPN� used to extract G�N� for
the four lowest values ofQ2. The upper graph is for the quenched
theory, the middle graph for dynamical Wilson fermions, and the
lower graph for the hybrid scheme for a pion of mass about
500 MeV (intermediate value). The dashed lines are fits to the
plateaus and span the range of fitted points.
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constant within the plateau range with a
�2=degrees of freedom�d:o:f� & 1 to extract the �N�
form factor.

In Fig. 5 we show the ratio RA defined in Eq. (19) for the
optimal combination that, for large t1 and t2 � t1 time
intervals, leads to Eq. (21). We show results for the four
lowest values of the lattice momentum vector, q, since, in
this case, the ratio depends on the momentum vector and
not just its magnitude. We note that this is not what is
actually fitted, since in our overconstrained analysis we
consider all lattice vectors q that result in the same Q2

value. However Fig. 5 gives an idea of the quality of the
plateaus that are used in the overconstrained analysis to
extract the nucleon axial form factors. Similar plateaus are
obtained for the ratio RAN� needed to extract the N to �
axial form factors. Again the quality of the data allows

identification of a plateau region to which to perform a fit
to a constant to extract the matrix element we are interested
in.

The overconstrained analysis uses all the stochastically
independent lattice measurements that contribute at a given
Q2 when extracting the form factors [41]. This is done by
solving the overcomplete set of equations

 P�q;�� � D�q;�� � F�Q2�; (44)

where P�q;�� are lattice measurements of appropriately
defined ratios. For concreteness, let us consider the analy-
sis for the nucleon axial form factors. In this case P�q;��
is the ratio RA given in Eq. (19) having statistical errorswk.
The vector F contains the form factors:

 F�Q2� �
GA�Q

2�

Gp�Q2�

 !
: (45)

If N is the number of current directions and momentum
vectors contributing to a given Q2 then D is an N � 2
matrix, which depends on kinematical factors. We extract
the form factors by minimizing

 �2 �
XN
k�1

�P2
j�1 DkjFj � Pk

wk

�
2

(46)

using the singular value decomposition ofD. Therefore we
do not actually fit to the plateaus shown in Fig. 5 for each
momentum vector but combine all momentum vectors in
the overconstrained analysis. A similar analysis is done for
the determination of all the other form factors.

C. Fixing the source-sink time separation

All the results shown in Figs. 3–5 are obtained keeping
the source-sink separation, t2, fixed. In the quenched case
we take t2=a � 11, for dynamical Wilson fermions we take
t2=a � 12 and for the hybrid scheme we take t2=a � 8 so
as to keep the physical time separation approximately
constant at about 5 GeV�1 or 1 fm. In order to ensure
that this time separation is large enough to isolate the
nucleon and � states we must increase the sink-source
time separation and check that the results remain un-
changed. This check is carried out in the quenched theory
at the lowest quark mass and in the hybrid scheme. In both,
we increase the source-sink separation by two time slices.

We choose to do this check for quenched rather than
dynamical Wilson fermions since the errors are smaller and
we can therefore identify deviations more easily. We
choose the smallest mass to be as close as possible to the
physical limit. In Fig. 6 we show the ratio RA for the
optimal nucleon source SA of Eq. (21) for source-sink
time separation t2=a � 11 and t2=a � 13. Results are
shown for the lowest momentum vector q �
�1; 0; 0�2�=Ls and for q � �1; 1; 1�2�=Ls, where Ls is
the spatial extent of the lattice. As can be seen the ratios
yield consistent plateaus. In the same figure we also show

FIG. 5 (color online). The ratio RA defined in Eq. (19) with the
optimal nucleon sink SA from which GA and Gp are extracted for
the four lowest momentum vectors q � �1; 0; 0�2�=Ls, q �
�1; 1; 0�2�=Ls, q � �1; 1; 1�2�=Ls, and q � �2; 0; 0�2�=Ls,
where Ls is the spatial size of the lattice. The upper graph is
for the quenched theory at intermediate pion mass (� � 0:1558)
and the lower for two dynamical Wilson quarks at the heaviest
mass (� � 0:1575). The dashed lines are fits to the plateaus and
span the range of fitted points.
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the ratio RP from which G�NN is extracted for the two
lowest q2-values. The only discrepancy arises at the lowest
q2 value, where the larger source-sink separation produces
a larger result. At all higher values of q2, the plateaus are
however consistent as demonstrated for the second lowest
value of q2. Given that the plateaus for RA for both time
separations are consistent at all values of the momentum
vectors, the discrepancy seen in the case of RP at the
smallest q2 value may have a different origin. We note
that SP is proportional to q1 � q2 � q3. As q! 0 extract-
ing G�NN becomes ill-defined and our statistical error in
this case underestimates the true error. The effect of in-
creasing t2 on the actual form factors can be seen in Fig. 7,
where we show the nucleon axial form factors GA�Q2� and
Gp�Q2� as well as G�NN�Q2� extracted for sink-source
separations t2=a � 11 and t2=a � 13. As can be seen,
the results up to Q2 � 1:5 GeV2 at the two time separa-
tions are within error bars with the only exception the value

of G�NN at the lowest Q2 value, which differs by about 1
standard deviation. Differences by about 1 standard devia-
tion in the results for GA�Q

2� for Q2 > 1:5 GeV2 are, most
likely, due to taking numerically the Fourier transform,
which for large values of Q2, becomes noisy, requiring
more statistics. Given this level of agreement at the small-
est quark mass we conclude that, for the quenched case, a
physical time distance of about 5 GeV�1 � 1 fm is suffi-
cient for ground state dominance and identification of a
consistent plateau region with the hindsight that G�NN at
the smallest Q2 maybe underestimated by about 1 standard
deviation.

We next discuss the adequacy of the sink-source sepa-
ration in the hybrid approach. Pion cloud contributions are
expected to become important for dynamical quarks as the
quark mass decreases and one must allow a large enough
time separation for the pion cloud to develop. Therefore it
is important to ensure that the time separation t2 is large
enough for dynamical quarks with the smallest mass. The
results for the larger time separation are obtained using

FIG. 7 (color online). The upper graph shows GA�Q2�, the
middle graph Gp�Q

2�, and the lower graph f�G�NN=mq as a
function of Q2 in the quenched theory for sink-source separa-
tions, t2=a � 13 (crosses), and t2=a � 11 (open triangles) at the
smallest quark mass (� � 0:1562).

FIG. 6 (color online). The upper graph shows RA, from which
GA and Gp are extracted, for momentum vectors q �
�1; 0; 0�2�=Ls and q � �1; 1; 1�2�=Ls. The lower graph shows
the ratio RP, from which G�NN is determined, for momentum
transfer squared q2 � �2�=Ls�

2 and q2 � 2�2�=Ls�
2. Results

on these quantities are shown as a function of t1 for the quenched
theory for sink-source separations, t2=a � 13 (crosses and aster-
isks), and t2=a � 11 (open triangles and squares) at the smallest
quark mass (� � 0:1562).

AXIAL NUCLEON AND NUCLEON TO � FORM . . . PHYSICAL REVIEW D 76, 094511 (2007)

094511-11



Dirichlet b.c. at the first time slice and at the midpoint of
the temporal direction cutting in half the lattice size
whereas for the smaller separation antiperiodic b.c. are
used. We compare in Fig. 8 the N to � form factors
extracted for t2=a � 10 to those obtained with sink-source
time separation t2=a � 8. As can be seen all the results at
the two time separations, including G�N� at the lowest q2

value, are within error bars. Given that we use the same
number of configurations for the two time separations it is
obvious that we have a big advantage for using the smaller
separation since errors are reduced by more that a factor of
2. Given the level of agreement at the smallest quark mass
for both quenched and hybrid results, combined with the
advantage of smaller statistical errors, we conclude that it
suffices to take t2 � 5 GeV�1. Therefore all the results
given in the next section are obtained with this time sepa-
ration. Furthermore results in the hybrid scheme are ob-
tained using the full temporal extent of the MILC lattices
with antiperiodic b.c. in the temporal direction.

D. Volume dependence

Another potential source of a systematic error is the
spatial size of our lattices. Given that for the quenched
case we use a lattice of spatial size of about 3 fm we expect
finite volume effects to be negligible. A rule of thumb is
that finite volume effects are small if Lsm� � 4–5. For all
quark masses used in this work we have Lsm� > 4:6,
except for dynamical Wilson fermions at the smallest
quark mass where we have Lsm� � 3:6. Since we do not
have dynamical Wilson configurations on a larger volume
we test for finite size effects in the hybrid scheme for
which, at the smallest quark mass, there are MILC con-
figurations for Ls � 2:5 and Ls � 3:5 giving Lsm� � 4:6
and Lsm� � 6:4, respectively. In Fig. 9 we show results for
theN to � axial form factorsCA5 �Q

2� andCA6 �Q
2� as well as

G�N��Q
2� for these two spatial sizes. Results on the

smaller lattice are consistent with results on the larger
lattice. This indeed shows that finite volume effects are
small for Lsm� � 4:5. Since for all our quark masses,
except the lightest mass in the case of dynamical Wilson

FIG. 9 (color online). The upper graph shows CA5 , the middle
graph CA6 , and the lower graph G�N� as a function of Q2 in the
hybrid approach for spatial volumes, 203 with 100 configurations
(crosses) and 283 with 150 configurations (open triangles) at the
smallest quark mass, ml � 0:01.

FIG. 8 (color online). The upper graph shows CA5 �Q
2�, the

middle graph CA6 �Q
2�, and the lower graph f�G�N�=mq as a

function of Q2 in the hybrid scheme for sink-source separations,
t2=a � 10 (crosses), and t2=a � 8 (open triangles) at the small-
est quark mass, namely ml � 0:01.
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fermions, Lsm� > 4:6, we expect finite volume effects to
be small. We note, however, that a systematic study of
volume effects that would allow an extrapolation of our
quantities to infinite volume requires results using at least
three different volumes. This is beyond the scope of the
present work.

Finally we comment on the evaluation of the kinematical
factors in the expressions for the form factors, which
involve the masses of the nucleon and � and their energies.
The masses are evaluated using two-point functions in the
standard way. The energies are calculated using the con-

tinuum dispersion relation, E �
������������������
m2 � p2

p
, where p2 �

n�2�=Ls�
2, n � 1, 2,. . .. One can compare results obtained

using continuum dispersion relations to those obtained
with the lattice dispersion relation sinh2�E� � sinh2m�P
i�1;:::;3sin22�ni=Ls. We find that the mean value of the

form factors is almost unchanged. The Q2-values are also
very close for Q2 & 1 GeV2. At larger momentum trans-
fers the lattice dispersion relation shifts the Q2 to smaller
values. Using two-point functions to extract the energy also
yields consistent results for the form factors albeit with
larger errors. In what follows we will present results as a
function of Q2 calculated using the continuum dispersion
relation.

V. RESULTS

We first discuss results on quantities and ratios for which
the renormalized quark mass is not required. This elimi-
nates one source of systematic error, namely, lattice arti-
facts on the value of mq. Furthermore, in general, ratios
show weaker dependence on quark mass. For these rea-
sons, they are more suited for comparison with physical
results.

For the same lattice momentum vectors theQ2 values for
the nucleon system differ from those in the N � � system.
In order to take ratios of form factors computed in these
two different systems we interpolate the form factors in the
nucleon system to the Q2 value of the N � � system. In
Fig. 10 we show the ratio of the form factors
G�N��Q2�=G�NN�Q2� for quenched and two degenerate
flavors of dynamical Wilson quarks denoted by NF � 0
and NF � 2 respectively. As can be seen, this ratio is Q2

independent and shows no statistically significant quark
mass dependence. Fitting the quenched results to a con-
stant we obtain the value of 1.60(2) shown by the dashed
line. The unquenched results are more noisy and a fit to a
constant yields a ratio of 1.63(4), which is consistent with
the quenched result. If we assume pion pole dominance for
the form factors Gp�Q

2� and CA6 �Q
2� then the GTRs sim-

plify to the relations given in Eq. (14). Taking the ratio of
the diagonal and nondiagonal relations we find that
G�N��Q

2�=G�NN�Q
2� � 2CA5 �Q

2�=GA�Q
2�. In Fig. 11,

we show the ratio 2CA5 �Q
2�=GA�Q

2�, which is indeed also
Q2 independent, and fitting to the quenched data we find
the value of 1.63(1) shown by the dashed line. The un-

quenched data lie higher than quenched and a fit yields a
value of 1.75(3). Therefore, on the level of ratios, the GTRs
are satisfied in the quenched case where the results are
most accurate. In the unquenched case they differ by about
2 standard deviations. We can use the relations given in
Eq. (13) for Gp and CA6 to eliminate G�NN and G�N� in
Eqs. (11) and (12) to obtain

 Gp�Q2� �
4m2

N=m
2
�

1�Q2=m2
�
GA�Q2�;

CA6 �Q
2� �

m2
N=m

2
�

1�Q2=m2
�
CA5 �Q

2�:

(47)

FIG. 10 (color online). The ratio of form factors
G�N��Q

2�=G�NN�Q
2� as a function of Q2 for Wilson fermions

for the quenched theory, denoted by NF � 0, at � �
0:1554�m� � 0:56 GeV�, � � 0:1558�m� � 0:49 GeV�, and
� � 0:1562�m� � 0:41 GeV� and for two dynamical Wilson
quarks, denoted by NF � 2, at � � 0:1575�m� � 0:69 GeV�
[30], � � 0:1580�m� � 0:51 GeV� [30], and � �
0:158 25�m� � 0:38 GeV� [31]. The dashed line is the result
of fitting the quenched results to a constant, yielding a value of
1.60(2).

FIG. 11 (color online). The ratio of 2CA5 �Q
2�=GA�Q

2� as a
function of Q2. The notation is the same as that of Fig. 10.
Fitting the quenched results to a constant yields a value of
1.63(1).
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These relations are again a manifestation of pion pole
dominance. Taking ratios, we find that 8CA6 �Q

2�=Gp�Q2�

should be equal to the ratio 2CA5 �Q
2�=GA�Q

2� and conse-
quently to G�N��Q2�=G�NN�Q2�. As can be seen in
Fig. 12, we indeed find that also this ratio is constant as a
function of Q2. Fitting the quenched data to a constant we
obtain the value of 1.73(3), shown by the dashed line in the
figure. This is about 6% larger than what we find for the
other two ratios. Fitting the unquenched data we find
8CA6 �Q

2�=Gp�Q
2� � 1:78�5� consistent with the quenched

result and higher than the ratio G�N��Q
2�=G�NN�Q

2�.
Therefore we conclude that ratios based on the relations
given in Eqs. (14) and (47) are satisfied on the few percent
level. Relaxing the assumption on pion pole dominance of
Gp and CA6 , we can consider directly the ratio of the non-
diagonal to the diagonal GTR given in Eqs. (11) and (12)
respectively. As can be seen in Fig. 13, the ratio is indeed
consistent with unity.

Having examined the Q2-dependence on the level of
ratios of GTRs in the nucleon and N � � systems we
now discuss the Q2 dependence of the form factors for
the two systems separately. In Fig. 14 we show the ratio of
nucleon axial form factors Gp�Q

2�=GA�Q
2� as a function

of Q2 for quenched and two degenerate flavors of dynami-
cal Wilson quarks. Recent results from Ref. [27] obtained
in the hybrid scheme at the same quark masses as the ones
used in this work for the calculation of the N to � form
factors are also included. In all cases, the ratio decreases
with Q2 confirming the stronger Q2-dependence expected

FIG. 13 (color online). The ratio of Eq. (12) to Eq. (11). The
notation is the same as that of Fig. 10.

FIG. 14 (color online). The ratio of nucleon axial form factors
Gp�Q

2�=GA�Q
2� for Wilson fermions for the quenched theory

and for two dynamical Wilson quarks using the same notation as
in Fig. 10. We also show results from Ref. [27] obtained in the
hybrid approach using the same quark masses as the ones used in
this work, namely ml � 0:03 (stars), ml � 0:02 (filled triangles),
and ml � 0:01 (inscribed squares). The dashed line shows the
expected behavior assuming pion pole dominance as given in
Eq. (47), where for m� and mN we use the values computed on
the lattice at � � 0:1562. The solid curve is a fit to a monopole
form of the quenched data at � � 0:1562.

FIG. 15 (color online). The ratio of N to � axial transition
form factors CA6 �Q

2�=CA5 �Q
2�. The notation is the same as that of

Fig. 14. The dotted line shows the prediction of pion pole
dominance predicted in Eq. (47) but for the hybrid case at the
lightest quark mass.

FIG. 12 (color online). The ratio of 8CA6 �Q
2�=Gp�Q

2� as a
function of Q2. The notation is the same as that of Fig. 10.
Fitting the quenched results to a constant yields a value of
1.73(3). The dotted line denotes the value of 1.60 obtained by
fitting the ratio G�N��Q

2�=G�NN�Q
2�.
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for Gp�Q
2� as compared to GA�Q

2�. A similar behavior is
also observed for the corresponding ratio CA6 �Q

2�=CA5 �Q
2�

for N to � shown in Fig. 15. If pion pole dominance holds,
then the ratios Gp�Q2�=GA�Q2� and CA6 �Q

2�=CA5 �Q
2�

should be described by the relations given in Eq. (47)
with no adjustable parameters. In Figs. 14 and 15 we
show, with the dashed lines, the resulting curves for the
case of quenched lattice results at the lightest pion mass
obtained assuming the relations given in Eqs. (47). As can
be seen, as Q2 ! 0, both ratios increase slower than pion
pole dominance predicts. In addition we show by the solid
curves fits to the same quenched data using a monopole
form

 

c0

�Q2=m2 � 1�
(48)

with fit parameters c0 and m. The values of c0 and m
extracted from the fits are given in Table III. In the
quenched case, we find that m>m�, whereas for the
hybrid scheme, although m�m�, c0 is smaller than
m2
N=m

2
� causing the dotted line shown in Fig. 15, obtained

at the lightest quark mass, to be higher than the correspond-

ing lattice results. The calculation in the hybrid scheme at
the lightest quark mass is done on a larger lattice enabling
us to compute the form factors at low Q2-values, much
lower than in the case of dynamical Wilson fermions.
These results show clear deviations from quenched results
at low Q2, where pion clouds effects are expected to
dominate.

In order to examine the Q2-dependence of the form
factors separately and compare with continuum quantities,
we need to multiply lattice results with the axial renormal-
ization constant ZA. These constants are known for both
Wilson fermions and DWF within the hybrid scheme. The
values that we use are given in Table IV. We collect our
lattice results for the nucleon form factors in Tables V and
VI and for N to � in Tables VII, VIII, and IX of the
Appendix. All errors are calculated using jackknife analy-
sis. In Fig. 16, we show GA�Q2� and the induced pseudo-
scalar form factor Gp�Q

2�. For comparison we also show
results obtained in the hybrid approach from Ref. [27]. The
main observation is again that at the smallest domain wall
quark mass, the hybrid results show deviations. In particu-
lar, we note that the value for the nucleon axial charge gA

TABLE III. The first column gives the pion mass in GeV, the second and third columns the fit parameters m and c0 extracted from
fitting the ratio Gp=GA (CA6=C

A
5 ) for the nucleon (N to �) case, the fourth and fifth columns the dipole parameters mA and g0 extracted

from fitting GA (CA5 ) for the nucleon (N to �), and the sixth and seventh columns the corresponding parameters but using an
exponential Ansatz ~g0 exp��Q2= ~m2

A�. The eighth column gives � or �0 defined in Eq. (52). The last two columns give the value of the
strong coupling constants g�NN or g�N�. The first value of the strong coupling constant is determined using the fit function of Eq. (53),
the second using a linear fit according to Eq. (52).

Nucleon elastic
m� (GeV) m (GeV) c0 mA (GeV) g0 ~mA (GeV) ~g0 � g�NN

Quenched Wilson fermions
0.563(4) 0.671(14) 13.71(34) 1.659(20) 1.088(8) 1.271(9) 1.074(5) 0.110(2) 9.943(99) 10.609(73)
0.490(4) 0.597(14) 15.23(43) 1.632(19) 1.079(7) 1.249(9) 1.069(5) 0.083(2) 9.126(93) 10.143(91)
0.411(4) 0.511(16) 17.70(76) 1.578(28) 1.080(12) 1.220(10) 1.066(6) 0.062(2) 8.410(100) 9.725(140)

NF � 2 dynamical Wilson fermions
0.691(8) 0.750(43) 14.13(1.01) 1.831(22) 1.067(6) 1.393(16) 1.063(6) 0.114(3) 11.48(245) 10.486(122)
0.509(8) 1.709(46) 0.999(17) 1.296(29) 0.995(17) 0.038(15) 9.071(294)
0.384(8) 0.642(77) 11.15(1.82) 2.019(78) 0.951(18) 1.528(44) 0.943(15) 0.044(10) 8.613(551)

Nucleon to �
m� (GeV) m (GeV) c0 mA (GeV) g0 ~mA (GeV) ~g0 �0 g�N�

Wilson fermions quenched
0.563(4) 0.691(13) 3.44(79) 1.544(32) 0.952(16) 1.205(8) 0.926(5) 0.106(2) 16.560(194) 17.174(166)
0.490(4) 0.624(15) 3.75(12) 1.537(33) 0.930(14) 1.192(10) 0.910(7) 0.079(2) 14.692(188) 16.195(206)
0.411(4) 0.545(16) 4.23(17) 1.534(36) 0.906(15) 1.189(13) 0.887(9) 0.052(2) 12.609(180) 14.873(264)

Wilson fermions, dynamical NF � 2
0.691(8) 0.604(95) 4.75(1.04) 1.696(51) 0.988(24) 1.368(13) 0.937(5) 0.109(2) 17.536(190)
0.509(8) 0.352(151) 8.38(6.11) 1.760(59) 0.865(25) 1.454(46) 0.808(20) 0.063(2) 14.970(452)
0.384(8) 0.379(58) 6.34(1.69) 1.968(118) 0.843(40) 1.410(51) 0.808(24) 0.024(15) 12.685(1.416)

Hybrid action
0.594(1) 0.576(28) 5.08(22) 1.924(85) 0.883(22) 1.477(42) 0.868(15) 0.076(5) 17.649(236)
0.498(3) 0.485(27) 6.15(52) 1.892(101) 0.864(32) 1.505(71) 0.835(27) 0.0648(7) 17.329(496)
0.353(3) 0.384(15) 8.64(55) 2.202(113) 0.750(19) 1.666(65) 0.741(15) 0.036(5) 12.282(289) 13.472(487)

AXIAL NUCLEON AND NUCLEON TO � FORM . . . PHYSICAL REVIEW D 76, 094511 (2007)

094511-15



becomes larger in the hybrid scheme approaching the
experimental value. This is in agreement with the findings
of Ref. [23]. Since there are recent state-of-the-art lattice
studies of gA [23,24] we will not discuss it further here but
rather investigate the Q2 dependence of the form factors.
We also find that Gp�Q

2� increases more rapidly at low Q2

in the hybrid scheme when the pion mass decreases to
about 350 MeV. In Fig. 17 we show the corresponding N
to � transition form factors CA5 �Q

2� and CA6 �Q
2�. The

hybrid results show the same behavior as in the case of
the nucleon form factors, yielding a different behavior at
low Q2 when the pion mass becomes about 350 MeV. The
Q2-dependence of both GA�Q

2� and CA5 �Q
2� can be well

described by a dipole Ansatz

 

g0

�Q2=m2
A � 1�2

: (49)

This is what is usually used to describe experimental data
forGA�Q

2�where a value ofmA � 1:1 GeV is extracted for
the axial mass. The same dipole Ansatz is also used to
describe CA5 �Q

2�, where an axial mass of 1:28� 0:10 GeV
[44] has been found. In addition, we fit to an exponential
form given by ~g0e

�Q2= ~m2
A . Both Ansätze describe well our

results as can be seen in Figs. 16 and 17 where the two
lines, which are fits to quenched lattice results at the small-
est quark mass, can hardly be distinguished. The values of
the axial masses extracted from these fits are given in
Table III. We find an axial mass that is larger than what
is deduced from experiment. This means that GA�Q

2� and
CA5 �Q

2� fall off slower than in experiment. This is clearly
seen in Fig. 16 where we include the dipole curve taking
mA � 1:1 GeV. Having fitted GA�Q2� and CA5 �Q

2�, the
Q2-dependence for the form factors Gp�Q2� and CA6 �Q

2�

can be obtained using Eq. (47). The resulting curves are

shown by the dashed line in Figs. 16 and 17 and show
deviations at low Q2. In addition we show curves that
correspond to

 

g0c0

�Q2=m2
A � 1�2�Q2=m2 � 1�

(50)

with m extracted from fitting the ratio of Gp�Q2�=GA�Q2�

in the case of the nucleon system and CA6 �Q
2�=CA5 �Q

2� for
the N to �. As expected this provides a good description of
the Q2-dependence for both Gp�Q2� and CA6 �Q

2� shown by
the solid lines, which correspond to the parameters of the
quenched data at � � 0:1562.

We now present results that require knowledge of the
renormalized quark mass. The renormalized quark mass,
mq, is determined by evaluating the pion to vacuum matrix
element of the axial Ward-Takahashi identity given in
Eq. (8). As mentioned already, for Wilson fermions the
axial Ward identity is satisfied only up to O�a� terms. We
expect these corrections to become more severe as we
approach the chiral limit. As we already mentioned, the
quark mass in the hybrid scheme, mDW

q , was tuned to
reproduce the mass of the lightest pion in the staggered
theory. Given that domain wall fermions satisfy the AWI
when the size of the fifth dimension is taken to infinity,

TABLE IV. The first column gives the hopping parameter � for
Wilson fermions or the mass of the domain wall fermion, the
second the renormalized quark mass, the third the unrenormal-
ized pion decay constant f�=ZA in lattice units, and the fourth
the axial renormalization constant ZA.

� or ml amq af�=ZA ZA

Quenched Wilson fermions
0.1554 0.0403(4) 0.0611(14) 0.808(7) [42]
0.1558 0.0307(4) 0.0587(16) 0.808(7)
0.1562 0.0213(4) 0.0563(17) 0.808(7)

NF � 2 Wilson fermions
0.1575 0.0441(4) 0.0649(8) 0.77(2) [43]
0.1580 0.0229(4) 0.0494(9) 0.78(4) [43]
0.15825 0.0122(3) 0.0467(13) 0.8a

Hybrid action
0.03 0.0475(3) 0.0678(6) 1.1085(5) [23]
0.02 0.0324(4) 0.0648(8) 1.0994(4) [23]
0.01 0.0157(2) 0.0639(2) 1.0847(6) [23]

aEstimated from the values of ZA at � � 0:1575 and 0:1580.

FIG. 16 (color online). The upper graph shows GA�Q
2� and the

lower graph Gp�Q
2� as a function of Q2. The solid curve is a fit

to a dipole form of the quenched results at � � 0:1562. The fit to
an exponential form shown by the dashed line falls on top. The
dotted line shown in the upper graph corresponds to a dipole
form with axial mass mA � 1:1 GeV used to describe experi-
mental data. The dashed line in the lower graph shows the result
expected from pion pole dominance in Eq. (47). The solid line
corresponds to Eq. (50). The rest of the notation is the same as
that in Fig. 14. Results in the hybrid approach are from Ref. [27].
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corrections to Eq. (8) come from the residual mass due the
finite length of the fifth direction. Therefore differences
between the values of mq and mDW

q are due to chiral
symmetry breaking because of the finite size of the fifth
dimension. We show in Fig. 18, the renormalized quark
mass extracted from the axial Ward identity for quenched
and two dynamical Wilson fermions and in the hybrid
approach. As can be seen, the pion mass extrapolates to
zero at mq � 0 for the quenched theory. For dynamical
Wilson fermions m� is not exactly zero at mq � 0 indicat-
ing finite a-corrections. For the hybrid scheme we show
both the renormalized mass computed using the AWI, mq,
and mDW

q . As can be seen mq is approximately equal to
mDW
q confirming that the residual mass is small. The big-

gest deviation, as expected, is observed at the smallest
value of the quark mass. From these results we confirm
that in the hybrid scheme m2

� / mq within our statistical
errors.

Having determined mq and f� using Eq. (40) we
can evaluate the form factors G�NN�Q

2� and G�N��Q
2�.

We first examine the Goldberger-Treiman relations
as given in Eq. (14) by considering the ratios
f�G�NN�Q

2�=mNGA�Q
2� and f�G�N��Q

2�=2mNC
A
5 �Q

2�,
which should be equal to unity. Note that in these ratios
the axial and pseudoscalar renormalization constants can-
cel. These ratios are shown in Fig. 19. We find that, in the
quenched theory, they are less than one for small Q2 but

become one for Q2 * 0:5 GeV2. This is also approxi-
mately true for dynamical Wilson for the two heaviest
quark masses. Results in the hybrid approach, on the other
hand, show smaller deviations from unity at low Q2. We
also expect that the ratios

FIG. 17 (color online). The upper graph shows CA5 �Q
2� and

lower graph CA6 �Q
2� as a function ofQ2. The notation is the same

as that in Fig. 15.

FIG. 18 (color online). The renormalized quark mass mq ver-
sus m2

� for the quenched theory (crosses), for two dynamical
Wilson fermions (open circles), and for the hybrid scheme (filled
squares). In the hybrid case we also show mDW

q (asterisks)
determined by tuning the pion mass [37]. The lines are linear
fits to m2

�. The open square shows the extrapolated value of mq

in the hybrid scheme.

FIG. 19 (color online). The upper graph shows the ratio
f�G�NN�Q

2�=mNGA�Q
2� and the lower graph the ratio

f�G�N��Q
2�=2mNC

A
5 �Q

2�. The notation is the same as in
Fig. 14.
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4mNf�
m2
�Gp�Q

2�

G�NN�Q2�

�1�Q2=m2
��
;

mNf�
2m2

�C
A
6 �Q

2�

G�N��Q2�

�1�Q2=m2
��
;

(51)

should be unity if pion pole dominance is valid. As can be
seen in Fig. 20, for the lightest quark masses in our three
types of action these ratios are indeed consistent with one.

Finally we discuss the Q2-dependence of the form fac-
tors G�NN�Q2� and G�N��Q2� separately. In Fig. 21 we
show G�NN�Q2� and G�N��Q2� at the smallest quark mass
in the quenched theory and for dynamical Wilson quarks.
ForG�N��Q

2�we also show results in the hybrid scheme at
a similar quark mass. Results for these form factors at
small Q2 are consistent with each other unlike the other
form factors, indicating that unquenching effects on these
quantities are still small for a pion mass of about 350 MeV.
Assuming PCAC and pion pole dominance, the
Q2-dependence of G�NN�Q2� and G�N��Q2� is completely
determined from the GTRs given in Eq. (14) once we know
GA�Q

2� and CA5 �Q
2�. Using the dipole Ansatz of Eq. (49)

for the Q2-dependence of GA�Q
2� and CA5 �Q

2� with the
parameters given in Table III, we obtain the dashed lines
shown in Fig. 21. The discrepancy already observed in the
ratio f�G�NN�Q2�=mNGA�Q2� and

f�G�N��Q2�=mNCA5 �Q
2� at low Q2 values is clearly seen

here. Results in the hybrid approach confirm deviations
from the GTRs at low Q2. The Q2-dependence of
G�NN�Q

2� and G�N��Q
2� can be described using a linear

Ansatz given by

 G�NN�Q2� � a
�
1� �

Q2

m2
�

�
;

G�N��Q
2� � a0

�
1��0

Q2

m2
�

� (52)

with a (a0) and � (�0) fit parameters. These linear fits are
shown by the solid curves in Fig. 21 and provide a good
description to the results. Note that we have excluded from
the fits the value at the lowest Q2 in all cases in the
quenched theory as well as in the hybrid approach at the
smallest quark mass, since our statistical error maybe
underestimated for this value of Q2. The values we find
for the parameters a (a0), which determine the strong
coupling constant g�NN (g�N�), and � (�0) are given in

FIG. 20 (color online). The upper graph shows the ratio
4mNf�G



�NN�Q

2�=m2
�Gp�Q

2� and the lower graph the ratio
mNf�G
�N��Q

2�=2m2
�CA6 �Q

2� for the lightest quark mass con-
sidered in each of our three types of calculations. We have
defined G
�NN�Q

2� � G�NN�Q2�=�1�Q2=m2
�� with a corre-

sponding expression for G
�N�.

FIG. 21 (color online). The upper graph shows G�NN�Q
2� for

Wilson fermions at the smallest pion mass. The lower graph
shows G�N��Q

2� for Wilson fermions and DWF at the smallest
pion mass. The dashed lines follow from the GTR relations given
in Eq. (14). The solid lines are fits using Eq. (52). In the case of
G�N��Q

2�, we also show by the dash-dotted line (with larger
slope) the curve that corresponds to taking G�N��Q

2� �
1:6G�NN�Q2�.
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Table III. Note that � and �0 decrease as the quark mass
decreases. In the quenched theory at the smallest quark
mass �� 6%. One expects that this value decreases fur-
ther as we approach the physical limit becoming compa-
rable to the value of � � 2:44% obtained using baryon
chiral perturbation theory [15]. However, the correspond-
ing value of a is smaller than the expected value of
mNgA=f� and decreases with the quark mass being about
83% less at the heaviest and about 73% at the lightest quark
mass in the quenched theory. The relation G�N��Q2� �
1:6G�NN�Q2� can be used to determine the Q2 behavior of
G�N� from that ofG�NN . The dashed-dotted line in Fig. 21
shows the resulting curve, which approximates the results
well.

In Fig. 22, we show results forG�N��Q
2� andG�NN�Q

2�
at all values of the quark masses considered in this work.
Assuming pion pole dominance we relate the G�NN and
G�N� toGP and CA6 respectively using Eq. (47). Taking the
functions defined in Eq. (50) for the Q2-dependence of
Gp�Q

2� and CA6 �Q
2� , we write

 G�NN�Q
2� � KN

Q2=m2
� � 1

�Q2=m2
A � 1�2�Q2=m2 � 1�

(53)

with a corresponding expression for G�N��Q2�. The only
free parameter is an overall constant, KN , to be fitted to the

results. The value of KN determines g�NN and is given in
Table III. The fits to the quenched data at the smallest
quark mass using Eq. (53) are shown by the dashed lines in
Fig. 22. Note that if m were the pion mass, then the pole
term would cancel, leaving a dipole Q2-dependence for
these form factors. Allowing m � m� and adjusting the
overall strength, we can obtain a reasonable description of
the Q2- dependence of G�NN and G�N�. Since lattice
results for these form factors do not increase at low values
of Q2 as fast as expected by PCAC, we obtain a smaller
value at Q2 � 0. The values of g�NN � G�NN�0� and
g�N� � G�N��0� extracted using Eq. (53), when the fit
yields �2=d:o:f: & 1:5, are given in Table III. If one uses
the relation G�NN�Q2� � �mN=f��GA�Q2� as the GTR
would suggest, then the extrapolated value at the lightest
pion mass would be g�NN � 11:8� 0:3 in the quenched
theory closer to the experimental value of 13:21�0:11

�0:05 [45].
Therefore the different lowQ2 dependence observed in the
lattice results compared to what is usually assumed, is
responsible for the lower values of g�NN and g�N� ex-
tracted from these fits.

VI. SUMMARY AND CONCLUSIONS

We have presented results for the nucleon axial-vector
form factors GA�Q

2� and Gp�Q
2� as well as for the corre-

sponding N to � axial transition form factors CA5 �Q
2� and

CA6 �Q
2�. The �NN and �N� form factors G�NN�Q

2� and
G�N��Q2� are also evaluated. Using ratios that show very
weak quark mass dependence and are therefore expected to
have the same value in the physical limit, we reach a
number of phenomenologically important conclusions.
One of the main conclusions is that G�NN and G�N�

have the same Q2 dependence yielding a ratio of
G�N��Q2�=G�NN�Q2� � 1:60�2� in good agreement with
what is expected phenomenologically. Similarly the ratio
2CA5 �Q

2�=GA�Q2� � 1:63�1� is also independent of Q2.
Equality of these two ratios implies the Goldberger-
Treiman relations. The ratio 8CA6 �Q

2�=Gp�Q
2� on the other

hand is larger by about 6%. The popular pion pole domi-
nance hypothesis is examined using our lattice results. We
find that in the quenched theory the ratios of
Gp�Q

2�=GA�Q
2� and CA6 �Q

2�=CA5 �Q
2� require a larger

pole mass m than the corresponding pion mass in order
to get a good description at low values of Q2. On the other
hand, these ratios in the hybrid approach are well described
with m�m�. However the overall strength differs from
what is predicted using the Goldberger-Treiman relations.

We also studied the Q2-dependence of the form factors
separately. Comparing quenched and unquenched results at
pion mass of about 350 MeV, we observe large unquench-
ing effects on the low Q2-dependence of the four form
factors, GA�Q

2�, GP�Q
2�, CA5 �Q

2�, and CA6 �Q
2�. This con-

firms the expectation that pion cloud effects are expected to
be large at low Q2. We find that the Q2-dependence of the
form factors GA and CA5 is well described by a dipole of the

FIG. 22 (color online). The upper graph shows G�NN�Q2� and
the lower graph shows G�N��Q

2� as a function of Q2. The
dashed lines are fits to the quenched results at � � 0:1562
obtained using the functions of Eq. (53) and allowing an overall
constant to be fitted.
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form c0=�1�Q
2=m2

A�
2. For the pion masses used in this

work we find that mA * 1:5 GeV as compared to 1.1 GeV
used to describe the Q2 of experimental data for GA. An
exponential Ansatz of the form ~c0 exp��Q2= ~m2

A� also pro-
vides a good description of the Q2-dependence. In agree-
ment with a recent lattice evaluation of the nucleon axial
charge gA [23], we find that gA increases when using
unquenched configurations on a large volume and pion
mass of about 350 MeV becoming consistent with experi-
ment. A different low Q2-dependence is observed for both
quenched and unquenched results in the case of G�NN�Q

2�
and G�N��Q

2�. Instead of the dipole form expected from
the Goldberger-Treiman relations of Eq. (14) one finds that
G�NN andG�N�, in the limitQ2 ! 0, increase less rapidly.
As a result of this, the values that we extract for the strong
coupling constants g�NN � limQ2!0G�NN�Q2� and
g�N� � limQ2!0G�N��0� are smaller than those extracted
from experiment. One ingredient that is needed for the
determination of these form factors is the renormalized
quark mass. In this work, we use the axial Ward identity to
determine it. On the lattice, the axial Ward identity has
O�a� corrections in the case of Wilson fermions, which can
become important, in particular, as we approach the physi-
cal limit. In the case of domain wall fermions, the axial
Ward identity is only exact in the limit of large fifth
dimension with corrections due to the residual mass, which
again become more important in the chiral limit. The
renormalized quark mass, however, affects the overall
strength of these form factors and therefore it cannot ex-
plain the differentQ2-dependence. To investigate this issue
further one would like to use lighter quark masses on a finer
lattice. This will become feasible in the near future as such
dynamical simulations are under way.
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APPENDIX

TABLE V. The first column gives the Q2 in GeV2, the second
GA=ZA, the third Gp=ZA, and the fourth G�NN for quenched
Wilson fermions. The errors quoted are jackknife errors.

Nucleon elastic:Quenched Wilson fermions
Q2 (GeV2) GA=ZA Gp=ZA G�NN

m� � 0:563�4� �GeV�
0.0 1.332(17)
0.17 1.193(13) 12.117(188) 9.645(232)
0.34 1.077(16) 8.456(169) 9.296(139)
0.49 0.977(15) 6.227(153) 8.804(202)
0.64 0.893(15) 5.102(157) 8.294(240)
0.79 0.825(18) 4.123(95) 7.799(254)
0.93 0.752(18) 3.277(111) 7.318(286)
1.19 0.662(25) 2.502(117) 6.352(374)
1.32 0.589(27) 2.037(102) 5.738(380)
1.44 0.557(31) 1.885(114) 5.384(456)
1.56 0.502(32) 1.563(106) 4.910(475)
1.68 0.421(38) 1.220(141) 3.780(565)
1.79 0.451(47) 1.307(147) 4.177(590)
1.90 0.371(40) 1.001(119) 3.374(497)
2.12 0.337(86) 0.951(274) 2.437(881)

m� � 0:490�4� �GeV�
0.0 1.325(15)
0.17 1.183(15) 12.432(321) 9.109(190)
0.33 1.065(21) 8.352(147) 8.845(166)
0.49 0.961(23) 5.964(169) 8.419(243)
0.64 0.879(20) 4.914(166) 7.850(247)
0.78 0.811(15) 3.902(116) 7.457(262)
0.91 0.738(22) 3.044(109) 7.065(318)
1.17 0.654(28) 2.317(124) 6.183(421)
1.29 0.577(30) 1.874(108) 5.534(428)
1.41 0.546(33) 1.750(119) 5.037(487)
1.53 0.489(36) 1.426(110) 4.677(518)
1.64 0.409(42) 1.094(147) 3.644(657)
1.75 0.451(55) 1.234(161) 4.055(651)
1.86 0.363(45) 0.917(126) 3.246(537)
2.07 0.323(93) 0.853(282) 2.033(903)

m� � 0:411�4� �GeV�
0.0 1.319(19)
0.17 1.177(19) 12.824(345) 8.619(182)
0.33 1.054(22) 8.225(202) 8.417(232)
0.48 0.947(19) 5.649(185) 8.085(277)
0.63 0.867(28) 4.700(199) 7.380(309)
0.76 0.798(21) 3.650(117) 7.102(301)
0.90 0.723(27) 2.762(120) 6.886(393)
1.14 0.647(36) 2.084(142) 6.167(535)
1.26 0.566(35) 1.685(117) 5.405(550)
1.38 0.538(40) 1.601(128) 4.601(541)
1.49 0.474(41) 1.269(118) 4.434(589)
1.60 0.394(47) 0.938(164) 3.549(854)
1.70 0.453(67) 1.148(187) 4.009(777)
1.81 0.353(52) 0.817(142) 3.217(633)
2.00 0.324(115) 0.778(322) 1.578(986)
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TABLE VI. The first column gives the Q2 in GeV2, the second
GA=ZA, the third Gp=ZA, and the fourth G�NN for dynamical
Wilson fermions. The errors quoted are jackknife errors.

Nucleon elastic: NF � 2 Wilson fermions
Q2 (GeV2) GA=ZA Gp=ZA G�NN

m� � 0:691�8� �GeV�
0.0 1.382(11)
0.43 1.105(16) 8.976(298) 9.367(228)
0.82 0.893(16) 5.115(170) 8.361(278)
1.19 0.735(22) 3.075(172) 7.696(361)
1.53 0.658(36) 2.575(193) 6.621(516)
1.86 0.592(44) 2.033(190) 5.980(552)
2.17 0.484(45) 1.325(159) 5.460(617)
2.75 0.356(91) 1.108(322) 2.441(788)
3.03 0.290(74) 0.678(212) 3.081(853)

m� � 0:509�8� �GeV�
0.0 1.270(27)
0.42 0.982(21) 7.229(388) 8.505(350)
0.81 0.809(24) 3.914(221) 7.827(331)
1.16 0.657(32) 1.983(225) 7.913(517)
1.49 0.502(50) 0.668(218) 7.689(1.057)
1.79 0.457(43) 0.663(151) 7.005(860)
2.09 0.377(72) 0.300(161) 7.416(1.691)
2.63 0.216(74) 0.702(143) 4.551(1.841)
2.88 0.104(60) �0:025�84� 3.298(1.897)
3.12 0.028(25) 0.226(54) 0.651(0.442)

m� � 0:384�8� �GeV�
0.0 1.175(33)
0.42 0.990(25) 5.418(370) 7.812(391)
0.78 0.835(32) 3.395(244) 6.454(366)
1.11 0.786(49) 2.269(221) 5.166(549)
1.41 0.611(50) 1.270(220) 5.673(689)
1.68 0.632(98) 1.361(223) 4.867(1.017)
1.95 0.476(77) 0.979(177) 2.058(734)
2.43 0.092(527) 0.241(1.377) 0.638(5.365)

TABLE VII. The first column gives the Q2 in GeV2, the
second CA5=ZA, the third CA6=ZA, and the fourth G�N� for
quenched Wilson fermions. The errors quoted are jackknife
errors.

N to �: Quenched Wilson fermions
Q2 (GeV2) CA5=ZA CA6=ZA G�N�

m� � 0:563�4� (GeV)
0.16 1.016(14) 2.675(81) 15.613(356)
0.35 0.902(8) 1.778(52) 15.207(298)
0.53 0.803(15) 1.269(45) 14.441(361)
0.70 0.712(14) 1.012(38) 12.795(501)
0.87 0.635(17) 0.774(26) 11.882(415)
1.03 0.571(18) 0.607(26) 11.203(442)
1.34 0.465(21) 0.418(24) 9.610(538)
1.48 0.414(23) 0.348(23) 8.440(515)
1.63 0.371(25) 0.305(26) 7.318(681)
1.77 0.330(25) 0.247(23) 6.895(639)
1.90 0.295(31) 0.204(26) 5.744(764)
2.03 0.273(32) 0.188(25) 6.216(856)
2.16 0.230(28) 0.145(20) 5.106(669)
2.42 0.172(48) 0.116(39) 3.603(1.527)

m� � 0:490�4� �GeV�
0.16 0.999(14) 2.741(105) 14.396(351)
0.35 0.885(16) 1.741(52) 14.343(325)
0.53 0.787(16) 1.202(46) 13.758(354)
0.70 0.691(18) 0.950(44) 11.918(535)
0.87 0.616(19) 0.712(30) 11.200(441)
1.03 0.553(22) 0.552(26) 10.717(456)
1.34 0.450(26) 0.377(25) 9.412(592)
1.48 0.401(26) 0.313(24) 8.129(572)
1.62 0.357(28) 0.274(27) 6.807(751)
1.76 0.315(29) 0.220(24) 6.563(708)
1.90 0.288(36) 0.183(27) 5.584(883)
2.03 0.262(36) 0.169(26) 6.176(966)
2.15 0.219(31) 0.129(21) 5.015(735)
2.40 0.150(48) 0.092(37) 3.466(1.749)

m� � 0:411�4� �GeV�
0.15 0.975(19) 2.804(129) 12.928(392)
0.34 0.864(16) 1.688(71) 13.263(315)
0.53 0.769(19) 1.114(58) 13.023(474)
0.71 0.668(19) 0.876(52) 10.784(719)
0.87 0.593(23) 0.634(34) 10.453(479)
1.04 0.536(25) 0.488(27) 10.225(563)
1.34 0.438(30) 0.333(28) 9.496(718)
1.49 0.391(31) 0.272(25) 7.978(684)
1.63 0.347(32) 0.240(30) 6.303(901)
1.77 0.303(34) 0.190(26) 6.269(848)
1.90 0.284(44) 0.157(29) 5.555(1.089)
2.03 0.250(44) 0.150(28) 6.346(1.179)
2.15 0.211(37) 0.113(22) 5.127(870)
2.40 0.121(50) 0.065(37) 3.425(2.354)
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