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With sufficiently light up and down quarks the isovector (a0) and isosinglet (f0) scalar meson
propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation
of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states
that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice
approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root
procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS�PT).
Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson
correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-
point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure
and its proposed chiral realization. Through numerical simulation we have measured correlators for both
the a0 and f0 channels in the ‘‘Asqtad’’ improved staggered-fermion formulation in a lattice ensemble
with lattice spacing a � 0:12 fm. We analyze those correlators in the context of rS�PT and obtain values
of the low-energy chiral couplings that are reasonably consistent with previous determinations.
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I. INTRODUCTION

The recent evident successes of numerical simulations
of QCD with improved staggered fermions demand a
thorough examination of its most controversial ingredient,
namely, using fractional powers of the determinant to
simulate the correct number of quark species (the
‘‘fourth-root trick’’). The procedure is known to introduce
nonlocalities and violations of unitarity at nonzero lattice
spacing [1]. If these problems do not vanish in the contin-
uum limit, they may even place the theory in an unphysical
universality class. There are, however, strong theoretical
arguments [2–5] that the fourth-root trick is valid, i.e. that
it produces QCD in the continuum limit.

One may also test the fourth-root procedure numerically.
One can, for example, check that taste symmetry gets
restored as the lattice spacing gets smaller, by looking at
the eigenvalue spectrum [6–10], the Dirac operator [11], or
the pion spectrum [12]. Alternatively, low-energy results of
staggered-fermion QCD simulations can be compared with
predictions of rooted staggered chiral perturbation theory
(rS�PT) [13,14]. Since staggered chiral perturbation the-
ory becomes standard chiral perturbation theory in the
continuum limit, agreement between rooted QCD and
(rS�PT) at nonzero lattice spacing would suggest that, at
least for low-energy or long-range phenomena, lattice
artifacts produced by the fourth-root approximation are
as harmless as those produced by partial quenching.
Partial quenching also induces unitarity violations, but

they disappear in the limit of equal valence and sea quark
masses.

There are two recent tests of agreement between rooted
staggered-fermion QCD and rS�PT: (1) Measurements of
the light pseudoscalar meson masses and decay constants
in partially quenched and full staggered-fermion QCD fit
well to expressions derived from rS�PT [15]. A byproduct
of this fit is a determination of the low-energy couplings of
the theory. (2) The topological susceptibility measured in
full QCD agrees reasonably well with predictions of
rS�PT [16].

In the present work we examine scalar meson correlators
in full QCD and compare their two-meson content with
predictions of rS�PT. Since the appearance of the two-
meson intermediate state is a consequence of the fermion
determinant, an analysis of this correlator provides a direct
test of the fourth-root recipe. The a0 channel has been
studied recently in staggered-fermion QCD by the MILC
collaboration [17] and UKQCD collaboration [18]. Both
groups found that the correlator appeared to contain states
with energies well below possible combinations of physi-
cal mesons.

A simple explanation of the nonstandard features of the
scalar correlators is provided by rS�PT [19,20]. In that
theory all pseudoscalar mesons come in multiplets of 16
tastes. The pattern of mass splittings is predicted by the
theory. The � and K multiplets are split in similar ways.
The � and �0 mesons, however, are peculiar, because their
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masses are shifted by the axial U�1� anomaly. Since the
anomaly is a taste singlet, only the taste singlet � and �0

acquire approximately physical masses. Some of the re-
maining members of the � multiplet remain degenerate
with the pions. According to taste-symmetry selection
rules, any two mesons coupling to a taste singlet a0 must
have the same taste. But all tastes are equally allowed.
Among other states, the taste singlet a0 couples to the
Goldstone pion (pseudoscalar taste) and an �, also with
pseudoscalar taste and of the same mass. This spurious
two-body state at twice the mass of the Goldstone boson
accounts for the anomalous low-energy component in that
channel.

This explanation raises concerns. Clearly, only the taste
singlet � approximates the physical state, since it is the
only member of the multiplet subject to the anomaly. So if
the other �’s are not allowed as external states, we have
violated unitarity in the sense that some intermediate states
are not allowed as external states. Further examination of
the taste multiplets in the intermediate states reveals that in
addition to the several unphysical �� taste combinations,
there is a negative norm ‘‘ghost’’ contribution in the taste
singlet � meson leg [21]. Remarkably, all lattice artifacts
resolve themselves in the continuum limit, however [22].
The taste multiplets become degenerate, the two-body
states merge, and the ghost state cancels the spurious taste
combinations, leaving only the taste-singlet mesons. To
achieve this cancellation requires following the rules of
flavor counting in rS�PT.

In the present work we extend the analysis of
Refs. [19,20] and carry out a quantitative comparison of
measured correlators and predictions of rS�PT. Despite
the considerable complexity of channels with dozens of
spectral components, the chiral theory models the correla-
tors precisely in terms of only a small number of low-
energy couplings, which we may determine through fits to
the data.

This article is organized as follows. Following a review
of some needed results from S�PT in Sec. II, we derive the
chiral predictions for the a0 and f0 in Sec. III. We present
results of our fits to the predicted forms in Sec. IV and
conclude in Sec. V.

II. ELEMENTS OF STAGGERED CHIRAL
PERTURBATION THEORY

In this section we give a brief review of rooted staggered
chiral perturbation theory with particular emphasis on the
tree-level pseudoscalar mass spectrum. We obtain the
rooted version of the theory through the replica trick,
according to which each quark flavor, u, d, and s, comes
in four tastes and is repeated nr times [23]. We calculate
various quantities in the replicated theory, and in the final
step, we set nr � 1=4 to obtain the correct flavor counting.

The low-energy effective chiral theory is formulated in
terms of the meson field

 � �
X16

b�1

1

2
Tb�b; (1)

where Tb � f1; �5; i�5�� . . .g are Dirac gamma matrices
and �b is a 3nr � 3nr matrix with rows and columns
labeled by the flavor and replica index ur, dr, and sr.
The staggered chiral action is written in terms of the
unitary matrix � � exp�2i�=f�:
 

S��; m� �
Z
d4y

�
f2

8
Tr�@��y@��� �

�f2

4
Tr�M�y

�My�� �
m2

0

2
�2

0I � a
2V ���

�
: (2)

The low-energy couplings at this order are f, �, and the
quark mass matrix M � It � Irdiag�mu;md;ms�, where It
is the unit matrix in taste space and Ir is the unit matrix in
replica space. The axial anomaly appears through the mass
term m2

0. It involves the flavor-singlet taste-singlet field
�0I �

P
f;r�

I
fr;fr=

��������
3nr
p

. The taste-breaking term V is a
linear combination of operators [13,14,24]

 �V ��� �
X
CiOi; (3)

where

 O 1 � Tr�T0;5�T0;5�y�; (4)

 O 2V �
1
4�Tr�T0;���Tr�T0;��� � H:c:	; (5)

 O 2A �
1
4�Tr�T0;�5��Tr�T0;5��� � H:c:	; (6)

 O 3 �
1
2�Tr�T0;��T0;��� � H:c:	; (7)

 O 4 �
1
2�Tr�T0;�5�T0;5��� � H:c:	; (8)

 O 5V �
1
2�Tr�T0;���Tr�T0;��y�	; (9)

 O 5A �
1
2�Tr�T0;�5��Tr�T0;5��y�	; (10)

 O 6 �
X
�<�

Tr�T0;���T0;���y�: (11)

Without the anomaly and taste-breaking term the tree-
level masses of the pseudoscalar mesons with quark flavor
content f, f0 are, as usual,

 M2
f;f0;b � ��mf �mf0 �: (12)

The taste-breaking term splits the nonisosinglet states
(�b and Kb) to give

 M2
f;f0;b � ��mf �mf0 � � a

2�b; (13)

where to leading order the multiplets split five ways,
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�5 � 0;

��5 �
16

f2 �C1 � 3C3 � C4 � 3C6�;

��� �
16

f2 �2C3 � 2C4 � 4C6�;

�� �
16

f2 �C1 � C3 � 3C4 � 3C6�;

�I �
16

f2 �4C3 � 4C4�;

(14)

which we label P, A, T, V, and I, respectively. This
predicted multiplet pattern has been well confirmed in
simulations [17,25].

We will be working with degenerate u and d quarks
(mu � md � m‘), so it will be convenient to introduce the
notation

 M2
Ub � 2�m‘ � a

2�b; M2
Sb � 2�ms � a

2�b;

M2
Kb � ��m‘ �ms� � a2�b:

(15)

The isosinglet states (� and �0) are modified both by the
taste-singlet anomaly and by the two-trace (quarkline hair-
pin) taste-vector and taste-axial-vector operators O2V ,
O2A, O5V , and O5A. When m2

0 is large, in the taste-singlet
sector we obtain the usual result

 M2
�;I �

1
3M

2
UI �

2
3M

2
SI; M�0;I � O�m2

0�: (16)

In the taste-axial-vector sector we have
 

M2
�A �

1
2�M

2
UA �M

2
SA � 3nr�A � ZA	;

M2
�0A �

1
2�M

2
UA �M

2
SA � 3nr�A � ZA	;

Z2
A � �M

2
SA �M

2
UA�

2 � 2nr�A�M2
SA �M

2
UA� � 9n2

r�2
A;

(17)

where �A � a2�0A � a216�C2A � C5A�=f
2, and likewise

for A! V.
In the taste-pseudoscalar and taste-tensor sectors, in

which is there is no mixing of the isosinglet states, the
�b and �0b by definition have quark content � �uu� �dd�=

���
2
p

and �ss, respectively, and masses

 M2
�;b � M2

Ub; M2
�0;b � M2

Sb: (18)

In Table I we list the masses of the resulting taste
multiplets for the lattice ensemble used in the present study
with taste-breaking parameters �A and �V determined in
Refs. [15,17].

III. SCALAR CORRELATORS FROM S�PT

In this section we rederive the ‘‘bubble’’ contribution to
the a0 channel of Ref. [20], using the language of the
replica trick [13,26], and then extend the result to the f0

channel.
We match the point-to-point scalar correlators in chiral

low-energy effective theory and staggered-fermion QCD
by matching the Green’s functions, which are defined
through the generating functionals of the respective theo-
ries:

 

@2 logZ
@mf;f0 �y�@me0;e�0�

: (19)

For this purpose the quark mass term diag�mu;md;ms� is
converted to a local meson sourcemff0 �y� (including flavor
off-diagonal terms) in both S�PT and QCD.

A. Scalar correlator in staggered-fermion QCD

First we review the construction of the needed correla-
tors in staggered lattice QCD, where the generating func-
tional is

 Z�mff0 � �
Z
dU exp��Sg�U�	 det�M�U;mff0 �	

1=4: (20)

Here U are the gauge link variables, Sg�U� is the gauge
action, and M is the fermion matrix including flavor com-
ponents. We work on a lattice of spacing a and dimension
L3 � Nt and label sites by the integer four-vector x�.
Hypercubes of size 24 are similarly labeled by y�, so x� �
2y� � ��.

Staggered-fermion meson correlators can be defined in
the one-component basis of the Grassman color vector field
�f�x� or in the spin-taste basis of the field qa	f �y� with spin
label 	 and taste label a. The fields are related through

 qa	f �y� �
1

8

X
�

�a	� �f�2y� ��;

�f�2y� �� � 2 Tr��y�qf�y�	;

(21)

where �� � 
�0
0 


�1
1 


�2
2 


�3
3 , and the sum over � runs over

sites in the 24 hypercube labeled by y. The lattice y has
spacing A � 2a.

For constructing the meson correlators via the functional
derivative (19) we need to introduce the source term into
Lagrangian

TABLE I. Masses of pseudoscalar meson taste multiplets in
lattice units for the MILC coarse (a � 0:12 fm) lattice ensemble
� � 6:76, amud � 0:005, ams � 0:05, as measured or inferred
from measured masses and splittings. The mass of the �0I
depends on the anomaly parameter m0.

b �b Kb �b �0b

P 0.1594 0.3652 0.1594 0.4927
A 0.2342 0.4036 0.1843 0.5129
T 0.2694 0.4250 0.2694 0.5384
V 0.2966 0.4428 0.2825 0.5491
I 0.3205 0.4592 0.4958 —
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 Sm � a4
X
x

��f�x��f0 �x�mf;f0 �x�: (22)

To express the source in terms of the spin-taste basis we use
the relation

 a4 ��f�2y����f0 �2y����
A4

16

X
�

���;��f;f0;��y� (23)

with

 ���; �� � Tr��y��y����=4 (24)

and

 f;f0;��y� � �qf�y�� � �
qf0 �y�: (25)

The direct product �S � �
T acts on spin and taste compo-
nents, respectively. So we obtain

 Sm � A4
X
y;�

f;f0;��y�mf;f0;��y� (26)

with

 mf;f0;��y� �
1

16

X
�

���; ��mf;f0 �2y� ��: (27)

The desired source for the scalar density, mf;f0;I�y�, has
� � I and ��I; �� � 1. It is the component of mf;f0 �x� that
is constant over a 24 hypercube. The other terms mf;f0;��y�
are sources for the other local staggered mesons.

A particular correlator is obtained by differentiating the
generating functional with respect to the appropriate
source mass terms. The general two-point function is, then,

 

@2 logZ
@mf;f0;��y�@me0;e;�0 �0�

��������mff0 �x���ff0mf

� A8h �f;f0;��y�e0;e;�0 �0�i: (28)

The above quantity will be calculated for � � I also within
S�PT below.

Now, we need to relate the quantity (28) to the correlator
generated from the code. In practice the simulated corre-
lator is computed from a point source at the origin

 Oe;e0;src � a3 ��e0 �0��e�0� �
A3

8

X
�

e;e0��0�; (29)

and a single time slice sink operator at time � � 2t� �0,
 

Of;f0sink� ~y;���a
3
X
~�

��f0 �2 ~y� ~�;���f�2 ~y� ~�;��

�A3�f;f0;I�2 ~y;t������0f;f0;05�2 ~y;t�	; (30)

where we have used relation (23), ��I; �� � 1, and
��05; �� � ����0 . Note that the sink operator is defined
on spatial cubes ~y but all time slices �.

In this language the computed correlator is

 Cf;f0;e;e0 � ~p; �a� �
X
~y

exp�i ~p � ~yA�h �Of;f0sink� ~y; ��Oe;e0srci:

(31)

The meson taste is conserved, so the correlator separates
into nonoscillating and oscillating components for a taste-
singlet scalar contribution and a taste-axial-vector pseudo-
scalar meson contribution, respectively.

 Cf;f0;e;e0 � ~p; �a� � Cf;f0;e;e0;I� ~p; �a�

� ����Cf;f0;e;e0;05� ~p; �a�; (32)

where

 Cf;f0;e;e0;�� ~p; �a� �
A6

8

X
~y

exp�i ~p � ~yA�

� hf;f0;��2 ~y; t�e;e0;��0�i: (33)

The correlator has a quark-line-connected part and may
also have a quarkline disconnected part:

 Cf;f0;e;e0;�� ~p; �a� � Cf;f0;e;e0;�;conn� ~p; �a�

� Cf;f0;e;e0;�;disc� ~p; �a�: (34)

The quarkline disconnected part appears only in the taste-
singlet isosinglet correlator.

To compute the correlator we need to express it in terms
of quark propagators. So we start from the definition of the
correlator in Eq. (31), substitute the definitions of the
operators in Eqs. (29) and (30), and use the relation

 a8h ��f�2y� ���f0 �2y� �� ��e��
0��e0 ��0�i

�
@2 logZ

@mf;f0 �2y� ��@me0;e��
0�

��������mff0 �x���ff0mf

�
A8

256

X
�;�0
���; �����0; �0�h �f;f0;��y�e0;e;�0 �0�i; (35)

which follows from the identity

 

@
@m�2y� ��

�
1

16

X
�

���; ��
@

@m��y�
: (36)

Finally we arrive at the point-to-point correlators
 

Cf;f0;e;e0;conn� ~p; �a� � �
X
~x

���x exp�i ~p � ~xa�

� hTr�M�1
f � ~x; �; 0; 0�

�M�1y

f0 � ~x; �; 0; 0�	i�ef�e0f0 ;

Cf;f0;e;e0;disc� ~p; �a� �
1

4

X
~x

exp�i ~p � ~xa�

� hTr�M�1
f � ~x; �; ~x; ��	

� Tr�M�1y
e �0; 0; 0; 0�	i�ee0�ff0 ;

where we have used Eq. (20) and the normalization M �
2D� 2am for the Dirac matrix. We keep the momentum p
small, so we can neglect variation of the exponential over
the hypercube.
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As it is computed, at zero momentum the quarkline
disconnected correlator includes the vacuum disconnected
piece:

 Cf;e;0�
L3

4
hTr�M�1

f �0;0;0;0�	ihTr�M�1
e �0;0;0;0�	i: (37)

B. Scalar correlator in S�PT

The continuum generating functional for scalar correla-
tors in S�PT

 ZSXPT�mff0 � �
Z
�d�	 exp��S��; mff0 �	; (38)

where S��; mff0 � is given by Eq. (2). We do not include
explicit scalar meson fields in the chiral Lagrangian, but
add their contributions in the final expressions. To match
the functional derivatives (19) we approximate the contin-
uum integration in the chiral theory with a sum over hyper-
cubic volumes of size A4 and differentiate with respect to a
constant source inside that volume. In this casemf;f0;I�y� �
mf;f0 �y�. The source is also constant over replicas of the
same flavor. The space-time volume equals that of QCD,
namely, A4�L=2�3Nt=2 for A � 2a. We use the integer
four-vector y to label the hypercubes in the chiral theory.
The functional derivative in S�PT is
 

@2 logZSXPT

@mf;f0 �y�@me0;e�0�

� A8�2
X
r;r0
hTrt��

2�y��fr;f0r Trt��
2�0��er0;e0r0 i: (39)

At tree level the action (2) has no explicit quark-antiquark
scalar meson fields, but it generates the two-pseudoscalar-
meson bubble terms in the correlator. The functional de-
rivative (39) corresponds to (28) with � � I. We use B to

denote the bubble contribution corresponding to the corre-
lator (33)
 

Bf;f0;e;e0;I� ~p; tA� �
A6

8

X
~y

exp�i ~p � ~yA�hf;f0;I�y�e;e0;I�0�i

�
A6

8

X
~y

exp�i ~p � ~yA��2

�
X
r;r0
hTrt��

2�y��fr;f0r Trt��
2�0��er0;e0r0 i:

(40)

We introduce its time Fourier transform

 Bf;f0;e;e0;I�p� �
XNt=2

t�0

exp�ip0tA�Bf;f0;e;e0;I� ~p; tA�: (41)

At tree level the vacuum expectation value reduces
through Wick contractions to products of meson two-point
functions. In momentum space we have, generically, the
Euclidean correlator

 h��y���0�i �
1

A4�L=2�3�Nt=2�

X
k

exp�ik � yA�

� h���k���k�i; (42)

where h���k���k�i � 1=�k2 �m2�. So

 h��y���0�i �
1

A3�L=2�3
X
~k

exp��E� ~k�tA� i ~k � ~yA	

2E� ~k�

(43)

for E� ~k� �
��������������������
j ~kj2 �m2

q
. In terms of momentum compo-

nents, the general term in the correlator becomes

 Bf;f0;e;e0;I�p� �
A6�2

8

X
y

exp�ip � yA�
X
g;s;r;b

X
g0;s0;r0;b0

h�b
fr;gs� ~y; t��

b
gs;f0r� ~y; t��

b0
er0;g0s0 �0��

b0
g0s0e0r0 �0�i

�
�2

8�L=2�3�Nt=2�A2

X
k

X
g;s;r;b

X
g0;s0;r0;b0

�h�b
fr;gs��k��

b0
er0;g0s0 �k�ih�

b
gs;f0r�k� p��

b0
g0s0e0r0 �p� k�i

� h�b
fr;gs��k��

b0
g0s0e0r0 �k�ih�

b
gs;f0r�k� p��

b0
er0;g0s0 �p� k�i	: (44)

We have used the fact that the bubble term, by definition,
does not include the vacuum disconnected piece corre-
sponding to Eq. (37).

There are two types of two-point functions, namely, the
connected two-point function for all tastes:

 h�b
gs;fr��k��

b
f0r0;g0s0 �k�iconn �

�r;r0�f;f0�g;g0�s;s0

k2 �M2
fg;b

; (45)

and the additional disconnected contribution for the taste-
singlet, taste-axial-vector, and taste-vector mesons. For the
taste singlet it is

 h�I
gs;fr��k��

I
f0r0;g0s0 �k�idisc � �

�r;s�r0;s0�f;g�f0;g0

3nr

�
k2 �M2

SI

�k2 �M2
UI��k

2 �M2
�I�
:

(46)

Here we have already decoupled the taste singlet �0 by
taking m2

0 ! 1. The disconnected contribution for the
taste-axial-vector meson is
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h�A
gs;fr��k��

A
f0r0;g0s0 �k�idisc

� ��r;s�r0;s0�f;g�f0;g0

�
�A�k2 �M2

SA�

�k2 �M2
UA��k

2 �M2
�A��k

2 �M2
�0A�

; (47)

and there is a similar contribution for the taste-vector
meson.

It is convenient to carry out a partial fraction expansion
of the disconnected contributions as follows:

 h�I
gs;fr��k��

I
f0r0;g0s0 �k�idisc � �

�r;s�r0;s0�f;g�f0;g0

3nr

�

�
3=2

k2 �M2
UI

�
1=2

k2 �M2
�I

�

(48)

and
 

h�A
gs;fr��k��

A
f0r0;g0s0 �k�idisc � ��r;s�r0;s0�f;g�f0;g0�A

�

�
gU

k2 �M2
UA

�
g�

k2 �M2
�A

�
g�0

k2 �M2
�0A

�
; (49)

where

 gU �
M2
SA �M

2
UA

�M2
�A �M

2
UA��M

2
�0A �M

2
UA�

;

g� �
M2
SA �M

2
�A

�M2
UA �M

2
�A��M

2
�0A �M

2
�A�

;

g�0 �
M2
SA �M

2
�0A

�M2
UA �M

2
�0A��M

2
�A �M

2
�0A�

:

(50)

In the language of Refs. [13,14], gU, g�, and g�0 are simply
the residues for Eq. (47). Similarly, the factors of 3=2 and
�1=2 in Eq. (48) are the residues for Eq. (46).

C. Isovector a0 correlator

We now specialize to the isovector a0 correlator. We
consider, for simplicity, the u �d flavor state. Only the quark-
line-connected contribution appears in the QCD correlator

 Ba0
� ~p; �a� � Bu;d;d;u� ~p; �a�

� �
X
~x

���x exp�i ~p � ~x�

� hTr�M�1
u � ~x; �; 0; 0�M�1y

d � ~x; �; 0; 0�	i:

(51)

In terms of the meson fields, the bubble correlator is (for
�a � tA)

 

Bu;d;u;d;I� ~p; tA� �
A6�2

8

X
~y

exp�i ~p � ~yA�

�
X
r;s;f;b

X
r0;s0;f0;b0

h�b
ur;fs� ~y; t�

��b
fs;dr� ~y; t��

b0
dr0;f0s0 �0��

b0
f0s0;ur0 �0�i: (52)

After carrying out the Wick contractions and switching to
momentum space we get

 Ba0
�p� �

�2

8A2�L=2�3�Nt=2�

�
n2
r

X
f;b

X
k

�
1

k2 �M2
fu;b

1

�k� p�2 �M2
fu;b

�
� 4nr

X
k

�
1

�k� p�2 �M2
UI

1

3nr

�
k2 �M2

SI

�k2 �M2
UI��k

2 �M2
�I�

�
� 4nr

X
k

�
4�A

�k� p�2 �M2
UA

k2 �M2
SA

�k2 �M2
UA��k

2 �M2
�A��k

2 �M2
�0A�

�

� 4nr
X
k

�
4�V

�k� p�2 �M2
UV

k2 �M2
SV

�k2 �M2
UV��k

2 �M2
�V��k

2 �M2
�0V�

��
: (53)

Notice, in particular, the negative weight threshold in the second term and the spurious taste nonsinglet �� thresholds
involving Goldstone-boson-like members of the � taste multiplet.

In the continuum limit, in which taste symmetry is restored, we have

 Ba0
�p� �

�2

8A2�L=2�3�Nt=2�

�
16n2

r

X
f

X
k

�
1

k2 �M2
fu

1

�k� p�2 �M2
fu

�
�

4

3

X
k

�
1

�k� p�2 �M2
U

k2 �M2
S

�k2 �M2
U��k

2 �M2
��

��
:

Here the total contribution from pairs of light states with mass MU is proportional to

 �32n2
r � 2�; (54)

which vanishes when nr � 1=4. The negative-norm threshold has neatly canceled the unphysical thresholds. The surviving
thresholds are the physical �KK and taste singlet ��.
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D. Isosinglet f0 correlator

In this case we use the isosinglet operator �uu;I �
dd;I�=

���
2
p

. We have both quark-line-connected and
quark-line-disconnected contributions

 Bf0
� ~p; �a� � Bf0;conn� ~p; �a� � Bf0;disc� ~p; �a�; (55)

 

Bf0;conn� ~p;�a� �
1

2
�Bu;u;u;u;conn� ~p;�a��Bd;d;d;d;conn� ~p;�a�	

��
X
~x

���x exp�i ~p � ~xa�hTr�M�1
u � ~x;�; 0;0�

�M�1y
u � ~x;�; 0;0�	i; (56)

 

Bf0;disc� ~p; �a� �
1

2
�Bu;u;u;u;disc� ~p; �a� � Bu;u;d;d;disc� ~p; �a�

� Bd;d;u;u;disc� ~p; �a� � Bd;d;d;d;disc� ~p; �a�	

�
1

2

X
~x

exp�i ~p � ~xa�hTr�M�1
u � ~x; �; ~x; ��	

� Tr�M�1y
u �0; 0; 0; 0�	i: (57)

The weight of the disconnected part is nf=4 for nf � 2
degenerate flavors for the state. The connected part of the
correlator is identical to the full a0 correlator.

In terms of the meson fields, the bubble correlator is (for
�a � tA)

 Bf0
� ~p; tA� �

�2A6

8

X
~y

exp�i ~p � ~yA�
X
r;s;f;b

X
r0;s0;f0;b0

1

2

��h�b
ur;fs�t��

b
fs;ur�t��

b0
ur0;f0s0 �0��

b0
f0s0;ur0 �0�i

� h�b
ur;fs�t��

b
fs;ur�t��

b0
dr0;f0s0 �0��

b0
f0s0;dr0 �0�i

� h�b
dr;fs�t��

b
fs;dr�t��

b0
ur0;f0s0 �0��

b0
f0s0;ur0 �0�i

� h�b
dr;fs�t��

b
fs;dr�t��

b0
dr0;f0s0 �0��

b0
f0s0;dr0 �0�i	:

(58)

In momentum space the correlator becomes

 Bf0
�p� �

�2

8A2�L=2�3�Nt=2�

�
n2
r

X
f;b

X
k

�
1

k2 �M2
fu;b

1

�k� p�2 �M2
fu;b

�
� 2n2

r

X
b

X
k

�
1

k2 �M2
Ub

1

�k� p�2 �M2
Ub

�

� 4nr
X
k

�
1

�k� p�2 �M2
UI

1

3nr

k2 �M2
SI

�k2 �M2
UI��k

2 �M2
�I�

�
� 4nr

X
k

�
4�A

�k� p�2 �M2
UA

�
k2 �M2

SA

�k2 �M2
UA��k

2 �M2
�A��k

2 �M2
�0A�

�
� 4nr

X
k

�
4�V

�k� p�2 �M2
UV

k2 �M2
SV

�k2 �M2
UV��k

2 �M2
�V��k

2 �M2
�0V�

�

� 4n2
r

X
k

�
1

3nr

�k� p�2 �M2
SI

��k� p�2 �M2
UI	��k� p�

2 �M2
�I	

1

3nr

k2 �M2
SI

�k2 �M2
UI��k

2 �M2
�I�

�

� 4n2
r

X
k

�
4�A��k� p�2 �M2

SA	

��k� p�2 �M2
UA	��k� p�

2 �M2
�A	��k� p�

2 �M2
�0A	
�

�A�k2 �M2
SA�

�k2 �M2
UA��k

2 �M2
�A��k

2 �M2
�0A�

�

� 4n2
r

X
k

�
4�V��k� p�2 �M2

SV	

��k� p�2 �M2
UV	��k� p�

2 �M2
�V	��k� p�

2 �M2
�0V	
�

�V�k2 �M2
SV�

�k2 �M2
UV��k

2 �M2
�V��k

2 �M2
�0V�

��
:

(59)

In terms of valence quark world lines the first five terms are quarkline connected and the last three are disconnected.
In the continuum limit we have

 

Bf0
�p� �

�2

8A2�L=2�3�Nt=2�

�
16n2

r

X
f

X
k

�
1

k2 �M2
fu

1

�k� p�2 �M2
fu

�
� 32n2

r

X
k

�
1

k2 �M2
U

1

�k� p�2 �M2
U

�

� 4nr
X
k

�
1

�k� p�2 �M2
U

1

3nr

k2 �M2
S

�k2 �M2
U��k

2 �M2
��

�

� 4n2
r

�
1

3nr

�k� p�2 �M2
S

��k� p�2 �M2
U	��k� p�

2 �M2
�	

1

3nr

k2 �M2
S

�k2 �M2
U��k

2 �M2
��

��
: (60)

The two-pion threshold �p� k�2 �M2
U � 0 and k2 �M2

U � 0 has a weight proportional to

 �64n2
r � 1��2: (61)
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When nr � 1=4 the weight is 3 (for three physical pion
channels). Thus, once again, only physical thresholds sur-
vive the continuum limit.

E. Single-flavor staggered fermions

Single-flavor QCD has no Goldstone bosons. The low-
lying pseudoscalar (call it the �0) is lifted by the anomaly.
With the staggered-fermion action, however, only the taste
singlet �0 is lifted by the anomaly. The other 15 members
of the taste multiplet (call them �) remain light. The
member with pseudoscalar taste is an exact Goldstone
boson. Such a spectrum would seem to spell trouble for
the rooted theory. It is interesting to examine the scalar
meson (f0) correlator to see how the corresponding rooted
chiral theory heals itself in the continuum limit.

Call the single replicated flavor u. The connected meson
correlator is as before [Eq. (45)]. We choose not to de-
couple the taste singlet �0 in this case because it is the only
physical meson. The disconnected correlator for the taste
singlet is then

 h�I
gs;fr��k��

I
f0r0;g0s0 �k�idisc �

�r;s�r0;s0�f;g�f0;g0

nr

�

�
�

1

�k2 �M2
UI�

�
1

k2 �M2
�0I

�
: (62)

Similarly, the disconnected correlators for the taste axial
vector and taste vector can be written as
 

h�A
gs;fr��k��

A
f0r0;g0s0 �k�idisc � �r;s�r0;s0�f;g�f0;g0

�
��A

�k2 �M2
UA��k

2 �M2
�0A�

(63)

and (A! V), where in this caseM2
�0A � M2

UA � nr�A, and
similarly for M2

�0V .
With these changes the f0 correlator becomes

 

Bf0
�p� �

�2

8A2�L=2�3�Nt=2�

�
2n2

r

X
b

X
k

�
1

k2�M2
Ub

1

�k�p�2�M2
Ub

�
� 4nr

X
k

1

�k�p�2�M2
UI

1

nr

�
1

k2�M2
UI

�
1

k2�M2
�0I

�

� 4nr
X
k

�
�A

��k�p�2�M2
UA	�k

2�M2
UA��k

2�M2
�0A�

�
� 4nr

X
k

�
�V

��k�p�2�M2
UV	�k

2�M2
UV��k

2�M2
�0V�

�

� 2n2
r

X
k

1

nr

�
1

�k�p�2�M2
UI

�
1

�k�p�2�M2
�0I

�
1

nr

�
1

k2�M2
UI

�
1

k2�M2
�0I

�

� 2n2
r

X
k

�
�2
A

��k�p�2�M2
UA	��k�p�

2�M2
�0A	�k

2�M2
UA��k

2�M2
�0A�

�

� 2n2
r

X
k

�
�2
V

��k�p�2�M2
UV	��k�p�

2�M2
�0V	�k

2�M2
UV��k

2�M2
�0V�

��
: (64)

We note that a simplified version of our result (setting the
discretization corrections from �A and �V to zero) was
presented previously [3]. In the continuum limit the
would-be Goldstone thresholds become degenerate with
the negative-norm threshold, with a net weight propor-
tional to

 �32n2
r � 2�: (65)

When nr � 1=4, the would-be Goldstone bosons decouple
from the f0 correlator, leaving only the physical high-lying
�0�0 channel.

IV. SIMULATIONS AND RESULTS

In this work we analyzed the 0.12 fm ensemble of 510
243 � 64 gauge configurations generated in the presence of
2� 1 flavors of Asqtad improved staggered quarks with
bare quark masses amud � 0:005 and ams � 0:05 and bare
gauge coupling 10=g2 � 6:76 [17].

We set valence quark masses equal to the sea quark
masses. Table I gives the pseudoscalar masses used in
our fits with the exception of the masses �A, �0A, �V , �0V .
Those masses vary with the fit parameters �A and �V .

For the light quark Dirac operator Mu, we measured the
point-to-point quarkline connected correlator

 Cconn� ~p; �� �
X
~x

���x cos� ~p � ~x�

� hTr�M�1
u � ~x; �; 0; 0�M�1y

u � ~x; �; 0; 0�	i

(66)

and point-to-point quarkline disconnected correlator

 Cdisc� ~p; �� �
X
~x

���x cos� ~p � ~x�

� hTrM�1
u � ~x; �; ~x; ��TrM�1

u �0; 0; 0; 0�i:

(67)
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In the latter case we use noisy estimators based on random
Z�2� color vectors [27] �k for k � 1; . . .N � 200:

 TrM�1
u � ~x; �; ~x; ��TrM�1

u �0; 0; 0; 0�

�
1

N�N � 1�

X
k�k0;y;y0

��k� ~x; ��M
�1
u � ~x; �; y��k�y�

� ��k0 �0; 0�M
�1
u �0; 0; y0��k0 �y0�: (68)

In terms of these correlators the a0 and f0 correlators are

 Ca0
� ~p; �� � Cconn� ~p; ��;

Cf0
� ~p; �� � Cconn� ~p; �� �

1
2Cdisc� ~p; ��:

(69)

Correlators in each channel were measured at five mo-
menta ~p � �0; 0; 0�, (1,0,0), (1,1,0), (1,1,1), and (2,0,0).
All ten correlators were then fit to the following model

 Ca0
� ~p; �� � Cmeson;a0

� ~p; �� � Ba0
� ~p; ��;

Cf0
� ~p; �� � Cmeson;f0

� ~p; �� � Bf0
� ~p; ��;

(70)

where
 

Cmeson;a0
� ~p; �� � ba0

�p� exp��Ea0
�p��	

� b�;A�p����� exp��E�;A�p��	

� ��! Nt � ��;

Cmeson;f0
� ~p; �� � c0�p� � bf0

�p� exp��Ef0
�p��	

� b�;A�p����� exp��E�;A�p��	

� ��! Nt � ��: (71)

This fitting model adds explicit a0 and f0 poles, as well as
the corresponding negative parity states, to the bubble
contribution. Such states are outside the scope of the low
order chiral Lagrangian in Eq. (2). Of course it is possible
to enlarge the Lagrangian to include them [21]. Taste-
breaking effects complicate this exercise. Moreover, we
would need to introduce a variety of higher order chiral
couplings, which are unlikely to be well constrained by our
data. Therefore, we took the more modest approach and
treated these additional terms empirically, keeping in mind
the possibility of higher order chiral effects.

Our parametrization of the momentum dependence of
the overlap factors bj�p� requires some discussion. The a0

and f0 are produced through the scalar density with spin-
taste assignment 1� 1. Thus at zeroth order in the a0 �
�� � coupling their contributions should be inversely
proportional to their energies bj�0� � 1=2Ej�p�. At higher
order an iteration of the bubble contribution alters the
momentum dependence of the pole residue [21]. For
present purposes we chose the empirical fitting form

 bj�p� � bj0 � bj1p2 (72)

and adjusted the constants bj0 and bj1.

The negative parity states are the taste-axial-vector pion
�A and the taste-axial-vector �A. As staggered partners to
the a0 and f0 they couple through axial vector currents
with spin-taste assignment 
0
5 � 
0
5, which contribute
a factor of the energy to source and sink. Thus their bare
momentum dependence should be proportional to their
energies

 bj�p� � bjE�p�: (73)

We kept this form, adjusting bj.
The constant c0�p� is zero for all momenta except ~p �

�0; 0; 0�, in which case it gives the vacuum-disconnected
part of the f0 correlator. There are 11 fit parameters for the
meson terms alone, but the two negative parity masses
were constrained tightly by priors: the �A, to the previ-
ously measured value, and the �A, to the same derived
mass that we used in the bubble term.

The bubble terms Ba0
and Bf0

in the fitting function
Eq. (70) are given in momentum space by Eqs. (53) and
(60). Their time-Fourier transforms yield Ba0

� ~p; �� and
Bf0
� ~p; �� by applying the following identity term by term:

 B� ~p; �� /
1

A2�Nt=2�2
X
p0;k

e�ip0t

�k2 �M2
1���p� k�

2 �M2
2	

�
X
~k

e��E1� ~k��E2� ~k�	t

4E1� ~k�E2� ~k�
; (74)

where Ej� ~k� �
���������������������
j ~kj2 �M2

j

q
, and, as usual, tA  �a. Thus,

for example, the �KK contribution to Ba0
� ~p; �� for taste b is

 

�2

16L3

X
~k

e��EKb� ~k��EKb� ~k�	t

4EKb� ~k�EKb� ~k�
: (75)

The bubble terms Ba0
�p; �� and Bf0

�p; �� were parame-
trized by the three low energy couplings � � m2

�=�2m‘�,
�A � a4�0A, and �V � a4�0A in the notation of Ref. [15].
They were allowed to vary to give the best fit. The taste
multiplet masses in the bubble terms were fixed as noted
above. The sum over intermediate momenta was cut off
when the total energy of the two-body state exceeded 1:8=a
or any momentum component exceeded �=�3a�. We de-
termined that such a cutoff gave acceptable accuracy for
� � 4.

In summary, we fit all ten correlators with 14 parame-
ters, eleven of which were needed to parametrize the four
explicit meson terms and three low energy couplings were
needed for the bubble contribution. Through a prior, we
constrained the value of �V to conform to previous fits to
the pseudoscalar masses and decay constants [15], leaving
only two of the low energy couplings to be adjusted
independently. Our best fit gave �2=dof � 126=109 (CL
0.13).

The fitted functional form is compared with the data in
Figs. 1–3.
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Results of the fits are compared with results from fits to
the meson masses and decay constants in Table II. The
agreement is worse if we used the bare value r1� � 4:5

from those fits, rather than the higher order m2
�=�2m‘�,

suggesting, perhaps, that a higher order calculation of the
bubble contribution might improve the agreement.

The fitted masses of the a0 and f0 in units of the lattice
spacing are 0.61(5) and 0.45(9), respectively.

V. SUMMARY AND CONCLUSIONS

We have derived the two-pseudoscalar-meson bubble
contribution to the f0 correlator in lowest order S�PT,
thereby extending the result for the a0 in Ref. [20]. We
have used this model to fit simulation data for the point-to-
point a0 and f0 correlators and found that best-fit values of
the three chiral low energy couplings are in reasonable
agreement with values previously obtained in fits to the
light meson spectra and decay constants [15].

The two-meson bubble term in S�PT provides a useful
illustration of the lattice artifacts induced by the fourth-
root approximation, since it involves quark loops coming
from the fermion determinant. The artifacts include thresh-
olds at unphysical energies and thresholds with negative
weights. These are the same sorts of artifacts commonly

FIG. 1 (color online). Best fit to the a0 correlator for five total
cm momenta. The fitting range is indicated by points and fitted
lines in red and blue (darker points and lines). Occasional points
with negative central values are not plotted.

FIG. 3 (color online). Best fit to the zero momentum f0

correlator.

FIG. 2 (color online). Best fit to the f0 correlator for four total
cm momenta.

TABLE II. Comparison of our fit parameters for the rS�PT
low energy constants with results from [15].

Our fit Meson masses and decays

r1m
2
�=�2mu;d� 7.3(1.6) 6.7

�V (prior) �0:016�23�
�A �0:056�10� �0:040�6�
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observed with quenching or partial quenching. These con-
tributions are clearly present in the a0 and f0 channels in
our QCD simulation with the Asqtad action at a �
0:12 fm. We have found that they must be taken into
account in a successful spectral analysis. Fortunately,
rS�PT provides an explicit parametrization of their con-
tributions for the interpolating operators we have chosen,
thereby allowing a fit to simulation data with a manageable
number of parameters. The rS�PT predicts further that
these lattice artifacts disappear in the continuum limit,
leaving only physical two-body thresholds. This result is
in full accordance with the fourth-root analysis of Ref. [3].

It will be interesting to see whether this expectation is
borne out in numerical QCD simulations at smaller lattice
spacing.
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