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In the past several decades there have been a number of proposals for computing with dual forms of
non-Abelian Yang-Mills theories on the lattice. Motivated by the gauge-invariant, geometric picture
offered by dual models and successful applications of duality in the U�1� case, we revisit the question of
whether it is practical to perform numerical computation using non-Abelian dual models. Specifically, we
consider three-dimensional SU�2� pure Yang-Mills as an accessible yet nontrivial case in which the gauge
group is non-Abelian. Using methods developed recently in the context of spin foam quantum gravity, we
derive an algorithm for efficiently computing the dual amplitude and describe Metropolis moves for
sampling the dual ensemble. We relate our algorithms to prior work in non-Abelian dual computations of
Hari Dass and his collaborators, addressing several problems that have been left open. We report results of
spin expectation value computations over a range of lattice sizes and couplings that are in agreement with
our conventional lattice computations. We conclude with an outlook on further development of dual
methods and their application to problems of current interest.
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I. INTRODUCTION

In this work we describe recent progress in lattice gauge
theory (LGT) computations in a model dual to pure Yang-
Mills theory. The dual model we consider is based upon the
character expansion of the amplitude at each fundamental
plaquette, a procedure that has been known since the early
days of lattice gauge theory [1–3]. To date, the most
common use of this duality transformation has been in
the strong-coupling expansion, as described, for example,
in [4–6] and references therein. Because of this historical
association with strong-coupling approximations, we
should emphasize here that it is the exact dual model that
we compute with, sampling from the full space of dual
configurations to find the expectation values of observ-
ables. The first steps towards such dual computations in
the non-Abelian case were taken by Hari Dass et al. in [7–
9]; more recently, interest in dual computations of lattice
Yang-Mills theory has grown within the spin foam com-
munity [10–12].

Perhaps the most significant change in passing to the
dual model is that the variables include discrete labels
assigned to lattice plaquettes. This aspect alone gives a
very different character to the computation when compared
to the conventional formulation of LGT, where continuous
group-valued variables are assigned to lattice edges.
Another significant difference is the fact that the discrete
labels must satisfy certain constraints, making the choice
of Metropolis moves nontrivial (see Sec. II). The allowed
configurations can be viewed as closed, branched surfaces
colored by the irreducible representations of the gauge

group. To illustrate, some renderings of nonzero dual
configurations are shown in Fig. 1.

As general motivation for the dual approach, we observe
that the dual configurations have a gauge-independent
meaning rooted in the statistical geometry of the two-
dimensional branched surfaces, providing a compelling
geometric picture for the evolution of the physical degrees
of freedom. For example, in the strong-coupling limit, the
dual picture provides a straightforward analytic proof of
confinement (see, e.g., [6] and references therein). By
making topological excitations manifest, a dual model is
well suited to evaluating proposed mechanisms of quark
confinement, such as the dual superconductor picture. This
advantage has already been demonstrated in the Abelian
U�1� case [13–19] and has also been remarked upon in the
non-Abelian case [11]. Recently, effective theories have
been derived directly from the dual theory [20], and so we
believe a computational framework for numerical compu-
tations within the dual theory is timely.

While results have been reported with dual models in the
U�1� theory, the non-Abelian case has presented a greater
computational challenge. As a testing ground for dual non-
Abelian simulation algorithms, we focus in the present
work on SU�2� pure Yang-Mills in three space-time di-
mensions. The observable we study is the average spin (see
Sec. III) which is convenient for testing as it takes a simple
form on both sides of the duality. In describing our algo-
rithm and results, we address potential problems for non-
Abelian dual computations that were discussed in the work
of Hari Dass et al. [8,9], the most critical of which were the
construction of ergodic moves and a sign problem. The
results obtained with our Metropolis algorithm appear to
overcome these difficulties for the range of lattice sizes and
coupling constants presented here. With the current algo-
rithm, a difficulty (discussed in Sec. IV B) emerges at weak
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coupling; however, our expectation is that it will be re-
solved with a more refined form of the algorithm.

Although there is an intriguing possibility that dual
algorithms may eventually outperform their conventional
equivalents in certain contexts, the present work focuses on
the general features of computing with dual algorithms and
verifying their correctness against a conventional lattice
code. In future work, we will address more optimized
implementations of the algorithms described here, with
the ultimate goal of providing results in four dimensions
with lattice sizes typical of contemporary lattice QCD. An
important next step will be to extend our methods to
Wilson loop observables crucial to the study of quark
confinement and glueball spectra; this work is currently
in progress [21].

The paper is organized as follows. In Sec. II, we define
the dual model under study and describe a Metropolis
algorithm for numerical computations. In Sec. III, we
describe computations on a 23 lattice that allow us to verify
threefold agreement (within statistical error) between dual
Metropolis, conventional Metropolis and the exact parti-
tion function. In Sec. IV, we describe our computations for
lattice sizes of 43, 83, and 163 and report agreement be-
tween dual and conventional Metropolis results, again
within statistical error. Section V provides a brief outlook
on generalizing the algorithm and Sec. VI presents our
conclusions. Some details relevant for performing the
computations are given in the Appendix, which also shows
how the dual amplitude formula used by Hari Dass [8,9],
originally given in [22] and discussed in [23,24], fits into
the spin foam formalism used to develop our algorithm.

II. REVIEW OF THE DUAL MODEL AND
ALGORITHM CONSTRUCTION

In this section we define the dual model for SU�2� pure
Yang-Mills on a hyper-cubic lattice and describe a
Metropolis algorithm for performing dual computations.

Of particular relevance to our present work is the applica-
tion of diagrammatic methods and spin foam formalism, as
described, for example, in [10,11,25], a critical feature
being the expression of group integrals of representation
matrices and their contractions as sums over intertwiners.1

While the spin foam formalism for dual models is a more
recent development, the construction of exact dual non-
Abelian models has a longer history [22,24,26–30].
Traditional derivations of the duality transformation and
their use in strong-coupling expansions can be found in the
texts [4,6].

A. Review of pure Yang-Mills theory on the lattice

First we recall the Euclidean partition function of pure
Yang-Mills theory inD dimensions, with gauge groupG �
SU�N�, where N � 2 [we shall later specialize to the
SU�2� case]. It takes the form

 Z �
Z

DA exp��S�; (1)

with Aa� the gauge field, S the action functional, and DA
the functional integration measure. In the continuum ver-
sion of the theory the standard action functional is

 S � S�A� �
1

4g2

Z
dDxFa��F

��
a ; (2)

where Fa�� is the field strength tensor and g the continuum
coupling. Unfortunately, the continuum functional mea-
sure DA is not well defined.

One way to give the above path integral rigorous mean-
ing and, at the same time, make it amenable to computa-
tional treatment, is to put the theory on a discrete finite
lattice. The simplest variant uses a hyper-cubic lattice. Let
E and P denote, respectively, the sets of edges and pla-

FIG. 1 (color online). Two examples of dual configurations on a 63 lattice. Opposite sides of the lattice are identified. In the right-
hand figure a sheet of flux spanning the lattice is present, allowed due to the nontrivial homology of the 3-torus. In the left-hand figure
there are no such sheets present.

1An intertwiner is a map between representations of a group
that commutes with the action of the group.

CHERRINGTON, CHRISTENSEN, AND KHAVKINE PHYSICAL REVIEW D 76, 094503 (2007)

094503-2



quettes of a hyper-cubic lattice inD dimensions. The gauge
field A is replaced by gauge group elements ge assigned to
each oriented lattice edge e 2 E. The same edge with
opposite orientation gets g�1

e instead of ge. The functional
integral measure can now be replaced by an integral over
the product of jEj copies of G using Haar measure:

 DA �
Y
e2E

dge: (3)

At the same time, the action functional is replaced by a
discretized version, S � S�g�, that must reproduce the
continuum action S�A� as the lattice spacing is taken to
zero. The discretized action is usually split into a sum over
plaquettes, S�g� �

P
p2PS�gp�, where the group element

gp is the holonomy around an oriented plaquette p. That is,
gp � g1g2g3g4, where gi is either the group element as-
signed to the ith edge of p or its inverse if the orientations
of p and the ith edge are opposing. This yields the con-
ventional lattice partition function

 Z �
Z Y

e2E

dgee
�
P

p2P
S�gp�: (4)

There are many candidate discretized plaquette actions
S�gp�. While the Wilson action [31] is perhaps the most
well known in conventional LGT (it was also used in the
dual computations of [7–9]), a variety of actions S�gp�
leading to the correct continuum limit are known and have
been used in the literature [32–34]. In the present work, we
use the heat kernel action [35]; in the dual model this
action leads to plaquette factors that are particularly easy
to compute. The heat kernel action (at lattice coupling �)
for a fundamental plaquette p and plaquette holonomy gp
is

 e�S�gp� �
K�gp;

�2

2 �

K�I; �
2

2 �
; (5)

where the heat kernel K, which is a function of a group
element g and of a ‘‘time’’ parameter t, satisfies a diffusion
type differential equation

 

@
@t
K�g; t� � �K�g; t�; K�g; 0� � �I�g�: (6)

Here � is the Laplace-Beltrami operator onG and �I is the
delta function at the group identity I. The denominator in
(5) represents a normalization of the partition function in
which flat holonomies (gp � I) are assigned an amplitude
of unity. We shall follow the common practice of discus-
sing the phase structure of a lattice theory using the �
parameter (inverse temperature) � � 4

�2 .

We now turn to the definition of the dual model for the
specific case of G � SU�2� pure Yang-Mills in three di-
mensions. Starting from the conventional formulation of
the lattice partition function Z given in (4) above, the
duality transformation can be applied (see Appendix A 1)

to yield the following expression for Z in terms of the dual
variables:

 Z �
X
j

�X
i

Y
v2V

18jv�iv; jv�
Y
e2E

Ne�ie; je��1

�

	

�Y
p2P

e��2=��jp�jp
1��2jp 
 1�
�
: (7)

Here V denotes the vertex set of the lattice, while the
summations over i and j range over all possible edge and
plaquette labellings, respectively. A plaquette labelling j
assigns an irreducible representation of SU�2� to each
element of P. These representations are labeled by non-
negative half-integers (we will denote this set by 1

2 N) and
are referred to as spins; a labelling j is thus a map j: P!
1
2N. An edge labelling i, on the other hand, is valued in a
basis of maps that intertwine the representations of the
plaquettes incident on the same edge. In our present case,
the choice of basis corresponds to a grouping of the four
incident plaquette spins into two pairs. When such an edge
splitting has been made, the intertwiners may also be
labeled by spins, as described just before Definition 2.2
and in Appendix A 2. Different choices of splitting can be
made, but some are more computationally efficient
than others. In writing (7), we assume a fixed choice of
splitting has been made and so an edge labelling is a map i:
E! 1

2N.
In the first pair of parentheses of (7), there is a product of

18j symbols, each of which is a function of the 18 spins
which label the 12 plaquettes and 6 edges incident to a
vertex v; we denote the spins which appear by jv and iv.
Next to it is a product of edge normalizationsNe depending
on the edge spin ie and on the four spins je labelling the
plaquettes incident on e. It is important to recognize that
the 18j symbol and the normalization factors Ne are purely
representation-theoretic quantities (independent of the ac-
tion chosen) and that, from a computational viewpoint,
they represent the nontrivial part of the amplitude evalu-
ation. Efficient algorithms can be found (using diagram-
matic techniques similar to those used in [36]) for
computing the 18j symbols and edge normalizations.
Two of these are reviewed in Appendix A 2.

In the second parentheses of (7) there is a product of
factors depending on jp only; these arise from the character
expansion coefficients of the heat kernel action (5) and are
clearly straightforward to compute.

For the purposes of this paper, we define a spin foam to
be an assignment of spins and intertwiners to the plaquettes
and edges of the lattice,2 respectively. We define supported
spin foams to be those with nonvanishing amplitude, and

2In spin foam quantum gravity, the 2-cells and 1-cells of a
simplicial complex are typically used, rather than the plaquettes
and edges of a cubic lattice. The general definition of spin foam
was introduced by Baez in [37].
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denote the set of them by F
. In terms of the supported
spin foams we can write (7) as

 Z �
X

f2F

A�f�

�
X

f2F


�Y
v2V

18jv�iv; jv�
Y
e2E

Ne�ie; je��1

�

	

�Y
p2P

e��2=��jp�jp
1��2jp 
 1�
�
: (8)

It turns out that the spin foams that actually make a nonzero
contribution to Z are highly constrained, a fact that is not
manifest in (7) where every possible edge and plaquette
coloring contributes a term. Moreover, once the plaquette
spins have been specified, there is a limited range of
intertwiner spins that give a nonzero amplitude. The details
of these constraints will be discussed in Sec. II B.

The essential challenge for performing Metropolis simu-
lations with this model is to find a set of moves that connect
all the supported spin foams F
. To see why this is a
nontrivial task, observe that if one has any supported spin
foam and changes the spin labelling of a single plaquette
by a half-unit of spin, the result will be a spin foam with
vanishing amplitude; this follows immediately from the
parity condition (see Definition 2.1 below), enforced by the
18j symbol. Changing single plaquettes by two half-units
of spin preserves parity but restricts one to a single parity
class. Thus a move involving a single plaquette is ‘‘too
local’’ and so moves involving multiple plaquettes and
edges simultaneously are needed. We now turn to this
problem.

B. Algorithm construction—ergodic moves

We first define the set of admissible plaquette configu-
rations. These configurations are precisely those plaquette
labellings that satisfy edge admissibility at every edge of
the lattice:

Definition 2.1 (Edge admissibility).—The spins as-
signed to plaquettes incident to an edge are said to be
edge admissible if the parity and triangle inequality con-
ditions are satisfied. Writing j1, j2, j3, and j4 for the four
spins incident to a given edge, these conditions are

(1) Parity:

 j1 
 j2 
 j3 
 j4 is an integer:

(2) Triangle inequality: for each permutation �k; l;m; n�
of f1; 2; 3; 4g we have

 jk 
 jl 
 jm � jn:

These conditions are equivalent to the existence of a non-
zero invariant vector in the SU�2� representation j1 � j2 �
j3 � j4.

If a splitting has been made for the edge, say with j1 and
j2 on one side and j3 and j4 on the other, then the triangle

inequality can be written in the less symmetric form

 jj1 � j2j � j3 
 j4; jj3 � j4j � j1 
 j2: (9)

Representation-theoretically, the less symmetric form says
that there exists a nontrivial intertwiner between j1 � j2

and j3 � j4. A basis of such intertwiners is labeled by spins
which match parity with j1 
 j2 and j3 
 j4 and fall into
the specific range defined below. This leads us to the
following definition of an admissible spin foam:

Definition 2.2 (Admissible spin foam).—A spin foam is
admissible if and only if:

(1) The assignment of spins to plaquettes is everywhere
edge admissible.

(2) For every edge e 2 E, ie satisfies

 ie 
 j1 
 j2 and ie 
 j3 
 j4 are integers

and

 ie 2 Ie � �jj1 � j2j; j1 
 j2� \ �jj3 � j4j; j3 
 j4�;

where �a; b� � fj 2 1
2N j a � j � bg.

We call the interval Ie the range of the triangle inequalities
at edge e. It is guaranteed to be nonempty by edge admis-
sibility. We denote the set of admissible spin foams by F A.

At this point we observe that while any supported spin
foam is admissible, the converse does not necessarily hold,
as the amplitude can vanish despite admissibility condi-
tions being satisfied. We define exceptional spin foams to
be admissible spin foams of vanishing amplitude and
denote them by F E � F A nF
. In practice, exceptional
spin foams are rarely encountered during simulation. If one
assumes that exceptional spin foams are sufficiently iso-
lated (i.e. do not form surfaces that separate the configu-
ration space) then the question of ergodicity will not be
affected, i.e. it will be sufficient to show ergodicity of
moves on admissible spin foams. In what follows, we shall
make this assumption and refer to it as the isolation of
exceptionals hypothesis.

Before considering ergodicity with respect to spin
foams, it is useful to first describe moves by which any
admissible plaquette configuration can be reached from
any other admissible plaquette configuration:

Definition 2.3 (Plaquette cube move).—A plaquette
cube move consists of

(1) A choice of 3-cell of the cubic lattice. These are
simply the smallest cubes of the lattice, with 6
plaquettes, 12 edges, and 8 vertices.

(2) For each of the 6 plaquettes of the 3-cell, a change is
made to that spin by 
 1

2 or � 1
2 units of spin.

It can be shown that these moves are ergodic on the
space of admissible plaquette configurations (ignoring for
the moment nontrivial global topology of the lattice3); a
similar argument is used for instance in [38].

3If boundary conditions result in a lattice of nontrivial homol-
ogy, homology changing moves must be added, as described
below.
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We next observe that, within our present context where
the amplitude depends on intertwiner labellings, the pla-
quette cube moves will transform between admissible pla-
quette configurations but inadmissible spin foams, unless
some simultaneous changes are made to the intertwiners
labelling the edges of the cube. This leads us to define spin
foam cube moves as follows:

Definition 2.4 (Spin foam cube move).—A spin foam
cube move consists of the following:

(1) A plaquette cube move.
(2) For each edge in the 3-cell chosen for the plaquette

cube move, a randomly chosen change is made to
the intertwiner labelling that edge, from a fixed set
of possible changes. The possible changes are such
that for any plaquette cube move, there is always a
change that results in an admissible spin foam. The
intertwiner changes that are proposed depend on
how the edges are split within the selected cube;
further details can be found in Appendix A 3.

We should mention here that for all the spin foam moves
discussed in this section there will be many moves that are
rejected immediately due to violation of the constraints;
these are nonetheless counted as moves in order to satisfy
detailed balance.

By construction, spin foam cube moves will reach some
subset of intertwiner labellings for each plaquette configu-
ration. The possibility that this may omit some admissible
intertwiner configurations leads us to introduce an inde-
pendent edge move.

Definition 2.5 (Spin foam edge move).—A spin foam
edge move consists of the following:

(1) An edge is selected.
(2) The intertwiner label is incremented or decremented

by two half-units of spin (to preserve parity).
To see that the combination of spin foam cube and edge

moves are ergodic on admissible spin foams (up to non-
trivial global homology), we argue as follows. Observe that
the spin foam cube moves allow us to move freely amongst
the admissible plaquette configurations. To reach any given
spin foam, one first obtains the associated plaquette con-
figuration through the spin foam cube moves. We then
apply whatever spin foam edge moves are needed to set
the edge labels to their given values. This is possible
because the admissible ranges Ie are connected by spin
foam edge moves.

We now turn to the issue of configurations arising from
the nontrivial global topology of the lattice. It is common
in lattice computations to impose periodic boundary con-
ditions which are toroidal; i.e. in the present case the lattice
is a discretization of the 3-torus. For these boundary con-
ditions, if one introduces a sheet of half-unit spin having
nontrivial global topology (see Fig. 1, right), the spin foam
cube moves are not able to remove it. Such a sheet (and its
deformations by cube moves) can be introduced in any of
the three directions of the 3-torus, in correspondence with

the three generators of the second homology group of the
3-torus. A simple way to move between configurations
corresponding to different homology classes is to create
and remove sheets of half-unit spin; we do this by intro-
ducing the following moves:

Definition 2.6 (Spin foam homology move).— A spin
foam homology move consists of the following:

(1) A 2-dimensional plane of plaquettes spanning the
lattice is selected. Applying periodic boundary con-
ditions, this plane topologically defines a 2-torus
wrapped around the 3-torus.

(2) For the selected plane, change each edge and pla-
quette label contained in it by the same amount,
either 
 1

2 or � 1
2 .

We note that the cost of computing the change in am-
plitude induced by these moves scales with L2 (where L is
the side length of the lattice), making them costly for large
lattices; we shall return to this point in our discussion
below.

Now we have all the components to give a simple state-
ment of our algorithm.

Algorithm 2.7 (Ergodic spin foam algorithm).— A
single iteration of the algorithm consists of the following:

(1) Apply a single spin foam cube move, spin foam
edge move, or spin foam homology move.

(2) For the edges affected by the move, immediately
reject the move if any spin foam admissibility con-
dition is violated.

(3) Accept the move if jAnewj
jAoldj

>�, where Anew and Aold

denote the spin foam amplitudes before and after the
move, and � is a sample drawn from the uniform
distribution on the unit interval.

Step 1 gives a choice from among a set of moves that are
ergodic on admissible spin foams, not just within a homol-
ogy class but between classes as well. For each type of
move, detailed balance is guaranteed as any move and its
inverse is proposed with equal probability. The relative
probability of proposing a cube, edge, or homology move
can be freely chosen, for example, to tune the algorithm for
better convergence or acceptance rate.4 Step 2 could in
principle be absorbed into Step 3, as the zeroes of the 18j
symbols enforce all the admissibility constraints. In prac-
tice, admissibility is very easy to check and so one can
often avoid computing the full 18j symbol. Step 3 is just
the usual Metropolis acceptance condition; observables
depending on the dual variables can be measured at each
iteration or at regular intervals. The absolute value of the
amplitudes in Step 3 are necessary due to the possibility of
negative amplitudes (arising from the 18j symbols). The

4For the computations given in the present work, the proposal
probabilities were set at 5%, 90%, and 5% for the edge, cube,
and homology moves, respectively.
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standard sign trick for computing expectation values in this
situation is reviewed in Sec. II C 1.

In summary, we have defined a dual Metropolis algo-
rithm for non-Abelian SU�2� pure Yang-Mills in the case
of three dimensions. Assuming the isolation of exception-
als hypothesis, this algorithm is ergodic on supported spin
foams. Before presenting results for our algorithm in
Secs. III and IV, we review some practical points of
implementation.

C. Algorithm construction—practical considerations

We discuss here two important considerations not found
in conventional computations on the original side of the
duality—the possibility of a sign problem due to the
presence of negative amplitude configurations, and the
cost associated with homology moves that change state
on a global scale.

1. Sign problem

Because the 18j symbol can take on negative values, the
most straightforward form of the Metropolis algorithm is
not applicable. Nonetheless, one can try to avoid this
problem by applying what is commonly referred to as the
‘‘sign trick,’’ e.g. [39]. We note that the sign trick was also
employed in the work of Hari Dass [7]. Letting ��f� denote
the sign of the amplitude A�f� for spin foam f, one can
express the expectation value of an observable O�f� as
follows:

 hOi �

P
f2F
 O�f�A�f�P

f2F
 A�f�
�

P
f2F
 O�f���f�jA�f�jP

f2F
 ��f�jA�f�j

�

�

P
f2F


O�f���f�jA�f�jP
f2F


jA�f�j
�

�

P
f2F


��f�jA�f�jP
f2F


jA�f�j
�

�
h�Oik
h�ik

: (10)

Observe that we now have a ratio of two expectation
values, which can be estimated using simulations of a
system governed by the absolute value jA�f�j of the origi-
nal amplitude (we indicate this by adding a subscript k ). A
common failing of this approach is that for many systems
studied in quantum Monte Carlo (where the sign problem
arises frequently), both numerator and denominator of the
expression decay exponentially with a parameter under
study. In such cases there are more sophisticated ap-
proaches available; invariably, resolving a serious sign
problem requires exploiting foreknowledge of the distri-
bution of positive and negative weights in the configuration
space.

As discussed in Sec. IV, for the range of �< 2:85 and
lattice sizes up to the maximum studied (163), the numera-
tor and denominator of (10) are of order unity. In this
regime, the sign problem is very tame and does not prevent
accurate results from being obtained.

2. Cost of homology moves

Because of the extended nature of the structures added
and removed by the homology moves (involving on the
order of L2 vertices and plaquettes), the associated change
in amplitude becomes increasingly expensive to calculate
for larger lattices. The situation for the present case of
SU�2� Yang-Mills in three dimensions can be summarized
as follows. Homology changing moves are necessary to
achieve agreement with conventional code on very small
lattices, such as the 23 lattice discussed in Sec. III.
However, we have found in practice that as the lattice
size increases, the frequency with which homology moves
are attempted can be greatly decreased and ultimately set
to zero without affecting the result. This is because adding
a sheet of half-unit spin has a very low acceptance rate for
larger lattices. We should mention, however, that for differ-
ent spin foam models, particularly those which are in a
deconfining phase, the nontrivial homology sectors of the
ensemble will likely make significant contributions for
arbitrarily large lattice sizes, and so cannot be neglected.

III. VERIFICATION OF DUAL METROPOLIS
CODE ON A SMALL LATTICE

Before proceeding to simulations at larger lattice size, an
implementation of the dual algorithm described in Sec. II
was verified on a 23 lattice. For this lattice and all lattices
discussed in the paper, toroidal boundary conditions were
applied. The observable measured was 1

N

P
p2Pjp, the av-

erage spin per plaquette. The expectation value for this
observable is

 hji �

P
f2F �

1
N

P
p2P jp�A�f�P

f2F A�f�
: (11)

From the translation invariance of our lattice, this is a good
estimator for the expectation value of spin on a single
plaquette.

While too small to be of physical interest, the 23 lattice
size makes it easy to check agreement between different
Monte Carlo algorithms, as convergence is fast on smaller
lattices. Moreover, by applying a spin cutoff it is possible
to exactly compute the (cutoff) partition function of the
dual model on a 23 lattice. This is done for cutoffs jcut �

1
2

and jcut � 1, which correspond to the restrictions that j 2
f0; 1

2g and j 2 f0; 1
2 ; 1g, respectively. While jcut � 1 gives

on the order of 1010 configurations on the 23 lattice, the
case of jcut �

3
2 already requires on the order of 1015

configurations and is not practical. In Fig. 2, we show the
results for spin cutoff jcut � 1. For the conventional com-
putations, the cutoff is realized by truncating the character
expansion of the heat kernel; e.g. for jcut � 1 only the first
three terms of the character expansion are used. This
truncation leads to a mild sign problem for the conven-
tional calculation that can be resolved using the sign trick
for the range of � presented here.
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The main plots in Fig. 2 each show two curves which
appear on top of each other. The inset plots show the
relative errors

 ec �
hjie � hjic
hjie

and ed �
hjie � hjid
hjie

; (12)

where the subscripts c, d, and e refer to the conventional,
dual, and exact calculations. The expectation values hjic
and hjid and their standard deviations were found from the
results of 12 runs of 7:5	 108 simulation steps each. The
error bars are 3� in magnitude. The data is consistent with
the expected error being zero.

IV. TESTING THE DUAL ALGORITHM

A. Results

In this section we describe results obtained on an 83

lattice over a range of coupling constants. For dual spin
foam simulations, 25 runs of 1010 moves were used to
generate the data shown in Fig. 3; for the conventional
results, 15 runs of 109 moves were used. The observable
measured was the expectation value hji of the spin observ-

able, as described in Sec. III. In the main part of Fig. 3, the
expectation value for both conventional and dual results are
shown, with standard deviation computed from the results
of different runs. Qualitatively, we see that the two algo-
rithms are in very good agreement, as the curves fall nearly
on top of one another. To better exhibit the detailed behav-
ior, the inset plots show the relative error ecd �

hjic�hjid
hjic

.
The standard deviation in the relative error was computed
by combining the standard deviations of the expectation
values. All error bars are 3� in magnitude. We find agree-
ment between the two algorithms within about 1%, which
is within the estimated error.

The results for lattices of size 43 and 163 are very
similar. The above computations were done with the ladder
recoupling of the 18j symbol (see Appendix A 2 a) due to
its simpler implementation. For the range of coupling
presented, we found that the results were insensitive to
increases in the cutoff past jcut � 3, which was the specific
value used for both the dual and conventional data.

In obtaining the results described above, we found that
the acceptance ratio for the algorithm was lower than
typically found in conventional simulations. Taking the
case of � � 1:5, the acceptance ratio was 0.0004 for
edge moves and 0.04 for cube moves. For homology
moves, the acceptance ratio was 10�4 for a 33 lattice and
less than 10�7 for a 63 lattice. Because cube moves have a
much higher acceptance ratio than the other two and are
attempted 90% of the time, the raw acceptance ratio of the
algorithm is essentially the raw cube acceptance ratio of
0.04. The low acceptance ratio causes less of a slow-down
than one might expect, since most moves are rejected by
the need to satisfy admissibility, and this can be checked
very quickly. Considering only those moves that satisfy
admissibiliy, roughly 20% are accepted at � � 1:5.

B. Slow-down at weak coupling

With the current implementation of the algorithm, there
is a problem in obtaining results for� � 2:85. For these �,
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FIG. 3. Conventional and dual results for the 83 lattice.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

<
j>

(2β)-1

<j>e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

<
j>

(2β)-1

<j>e
<j>c

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

re
la

tiv
e 

er
ro

r 
e c

(2β)-1

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

re
la

tiv
e 

er
ro

r 
e c

(2β)-1

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

re
la

tiv
e 

er
ro

r 
e c

(2β)-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

<
j>

(2β)-1

<j>e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

<
j>

(2β)-1

<j>e
<j>d

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

re
la

tiv
e 

er
ro

r 
e d

(2β)-1

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

re
la

tiv
e 

er
ro

r 
e d

(2β)-1

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

re
la

tiv
e 

er
ro

r 
e d

(2β)-1

FIG. 2. Comparison of conventional (top) and dual (bottom)
computations with exact dual result on 23 lattice for jcut � 1.
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the Metropolis simulation eventually becomes ‘‘trapped’’
in a region of higher spin than untrapped configurations.
These trapped regions appear to have steep or narrow exits,
as the simulation remains trapped for the duration of the
computation. This behavior is also observed in some runs
at stronger coupling (small �); the trapped mode generally
takes a longer time to develop as coupling is increased, and
is absent entirely from most of the runs at the strongest
couplings considered.

While the precise nature of this slow-down is not yet
fully understood, it shows some of the symptoms of similar
problems noted for dual U�1� in three dimensions. In [40],
long autocorrelation times (not seen with the conventional
code at the same �) are observed past a certain �. Slow-
down of dual algorithms due to overly local moves at weak
coupling is also alluded to in [17–19] for U�1� in four
dimensions.

By analogy with the existing literature on the dual U�1�
case, it is possible that the solution will involve adding
moves that simultaneously change spins over regions that
are larger than the minimal cube. A useful analog to
consider may be spin systems, where the variables are
also discrete and slow-down has been successfully ad-
dressed using cluster algorithms [41]. In our case, the
presence of admissibility and parity constraints tends to
make it difficult to find moves with reasonable acceptance
rates. As is common with cluster algorithms, the ‘‘size’’ of
the extended moves will likely need to be tuned with �.

V. OUTLOOK FOR FURTHER DEVELOPMENT

A. Generalizations

Although we have so far limited ourselves to SU�2� pure
Yang-Mills in three dimensions, the algorithm we describe
is in principle straightforward to extend to more physically
relevant models.

1. Wilson loop observables

The theory behind Wilson loop observables in the dual
spin foam picture can be found in the work of [11]. The
basic challenge for computations is the fact that, in the
dual, the Wilson loop is a ratio of two partition functions
with different admissibility conditions. In a forthcoming
paper, we describe how to extend the method described
here to define a Metropolis algorithm for Wilson loop
observables [21].

2. Four dimensions

In four dimensions on a hyper-cubic lattice, the 18j
symbol is replaced by its higher-dimensional analog,5 a

32j symbol (involving 24 plaquettes and 8 edges); for the
heat kernel action the plaquette weights take the same form
as in (7). As the edges will have six incident plaquettes, the
triangle inequalities will be more involved. Assuming
these differences can be accounted for, we expect an
algorithm with the same general form will be feasible.

Of particular interest in D � 4 will be the behavior of
autocorrelation times as the theory becomes critical in the
limit of large lattice and �! 1.

3. Higher N Lie groups and their q-deformations

The algorithm has direct generalizations to SU�3� and
even SU�N�. Vertex amplitudes (generalizations of the 18j
symbol) will likely be more intricate, as for higher N more
than one discrete variable is needed to label a given irre-
ducible representation. The basic structure of the algorithm
should go through, although admissibility constraints can
be expected to take a more complicated form.

An interesting feature of the dual model is the ease with
which q-deformed gauge groups SUq�N� can be treated
once the infrastructure for computing with SU�N� is in
place. One illustration of this is recent work [42] where
computations are performed with a q-deformed version of
the Riemannian Barrett-Crane model of spin foam quan-
tum gravity. In four dimensions, where one expects to
approach a critical point in the continuum limit, it would
be interesting to consider how computations of correlation
functions are affected by q-deformation, for example,
whether or not distinct universality classes emerge.

4. Other extensions

The above mentioned extensions of the method are
straightforward. There are also intriguing (and more in-
volved) possibilities of extending the method into the
realm of dynamical fermions and to gravity. For incorpo-
rating dynamical fermions into a dual model, we are in-
vestigating an approach in which the polymer expansion of
the fermion determinant plays a key role. For computing
pure Yang-Mills coupled to spin foam quantum gravity,
work by Oriti and Pfeiffer [43] provides a useful starting
point. Developments in the theory of dual models [12,25]
indicate that the dual viewpoint has broad applications. We
hope that concrete computational results will encourage its
further development and offer an alternative means for
analyzing theories of current interest.

VI. CONCLUSIONS

Previous work with computing in the dual of non-
Abelian theories due to Hari Dass et al. [7–9] brought to
light a number of important issues, but it had not been clear
how these might be fully resolved.

The work reported here establishes that one can indeed
obtain agreement with conventional lattice gauge theory
using simulation with the dual form of the theory.

5In the same way that the dual model [22,27] is equivalent to a
particular recoupling of the 18j symbol (see Appendix A 2 b),
we expect the 32j to agree with past work on dual forms of
Yang-Mills in four dimensions [24].
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Currently, the algorithm we describe has provided results
on a 163 lattice for � up to 2.85, and work is underway to
extend this to larger lattices and weaker coupling (higher
�). We expect addressing higher � will involve introduc-
ing moves that change spin foams over a larger region of
the lattice, as our algorithm appears to exhibit the symp-
toms of crossover to a delocalized, disordered phase as
observed in [17–19,40] for the case of dual three-
dimensional U�1�. In four dimensions, the expectation is
that similar behavior will be seen as the critical point is
approached. The fact that cluster algorithms have been
remarkably successful at addressing critical slow-down in
discrete spin systems is promising in this regard and it is
likely that some insights from this area may apply.

The ultimate impact of the sign problem is still not fully
understood from the present work, as the sign expectation
begins decreasing away from unity at close to the same �
where the current simulation is obstructed by impractically
long autocorrelation times. Assuming a practical resolution
to the trapping problem can be found, it will be interesting
to see whether or not the sign problem becomes a serious
obstacle at weaker coupling.

An important property of our algorithm is the use of both
plaquette labels and edge (intertwiner) labels as variables
of the simulation. This allows the Metropolis algorithm to
proceed through local moves whose changes in amplitude
can be evaluated very rapidly. Using the spin foam formal-
ism, ergodicity is fairly straightforward to show; it is
essentially an extension of an algorithm used in previous
(quantum gravity) spin foam computations [38,42] to the
case where intertwiner labels are changed as well. Our
claim of ergodicity does, however, depend on the unproven
hypothesis that exceptional zeros of the 18j symbol are
isolated, i.e. the zeros do not form surfaces that separate the
space of admissible spin foams. The agreement of our
results with conventional computations can be viewed as
evidence for this hypothesis.

Another interesting aspect of our algorithm is the neces-
sity (for full ergodicity) of introducing moves that change
homology class, in the case where boundary conditions
lead to nontrivial global topology of the lattice. While for
the specific model studied here such configurations have
negligible weight for large lattices, in more general spin
foam models (e.g. those in a deconfining phase) these
configurations may play a more important role.

Also worth emphasizing is the important role of dia-
grammatic techniques in generating efficient algorithms
for the 18j symbols. In particular, the formula of
Anishetty et al. [22,27] used in [7–9] can be derived
very economically from a particular splitting of the 18j
symbol, as we show in the Appendix.

While still in its very early stages (particularly in com-
parison with several decades development of conventional
LGT codes), we believe dual computations have a prom-
ising future ahead. The algorithm we describe here imme-

diately generalizes to higher N gauge groups and to four
dimensions, and work is underway to incorporate dynami-
cal fermions into the dual framework. The next major step
is the computation of Wilson loop observables, currently in
progress [21]. Finally, the application of the technique to
spin foam quantum gravity coupled to matter provides a
long-term motivation for the present work.
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APPENDIX A: THE DUAL MODEL, 18j SYMBOL
ALGORITHMS AND COMPATIBLE

INTERTWINER MOVES

1. Derivation of the dual model

This section sketches some of the steps of the trans-
formation from the conventional to the dual form of the
lattice Yang-Mills partition function, (4) and (7), respec-
tively. Our approach is inspired by the spin foam picture,
and is closest to that found in [10]. Non-Abelian dual
models have also been analyzed from a spin foam perspec-
tive in [11,25].

We begin by observing that, due to gauge invariance, the
plaquette action S�gp� of (4) depends only on the conju-
gacy class of its argument. Thus, its exponential can be
expanded in terms of group characters 	j

 e�S�g� �
X
j

cj	j�g�; (A1)

where j ranges over the equivalence classes of finite-
dimensional irreducible unitary representations of the
gauge group G. Substituting into (4) and interchanging
the order of summation and integration yields

 Z �
X
fjpg

Z Y
e2E

dge
Y
p2P

cjp	jp�gp�: (A2)

At this point it is convenient to specialize to a D � 3 cubic
lattice with periodic boundary conditions and to fix an
orientation for the plaquettes and edges of the lattice.
Choose a right-handed set of xyz axes for the lattice.
Orient all of the edges in the positive coordinate directions.
Every lattice cube is in the first octant of one of its vertices.
Take each of the three plaquettes of the cube that are
incident to this vertex and orient it in the counterclockwise
direction, as seen from outside the cube. It is easy to see
that this choice of orientations is translation invariant, that
the orientation of each edge agrees with two of the four
plaquettes incident on it and is opposite to the other two,
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and that every plaquette has two edges whose orientations
agree with its own and two that do not.

With this choice of orientation, the holonomy around a
plaquette p is gp � g1g2g�1

3 g�1
4 , where g1, g2, g3, and g4

are the group elements associated to the edges of the
plaquette p, starting with an appropriate edge and going
cyclically. Recall that the inverse g�1

i is used if the ori-
entation of edge i does not agree with that of p. Thus

 	jp�gp� � Ujp�g1�
b
aUjp�g2�

c
bUjp�g

�1
3 �

d
cUjp�g

�1
4 �

a
d; (A3)

where Uj�g�ba denotes a matrix element with respect to a
basis of the j representation. If we insert (A3) into (A2) and
collect together factors depending on the group element ge,
we get a product of independent integrals over the group,
each of the form

 

Here and below we use a graphical notation for tensor
contractions, defined as follows. Each wire represents a
matrix element of the unitary representation labelling it.
Parallel wires represent products of such matrix elements.
The four matrix elements in (A4) come from the characters
associated to the four plaquettes incident on the edge e.
The free ends of the wires represent the indices of these
matrix elements. The wires can be joined together into
loops, one for each plaquette. The joining corresponds to
contracting with other matrix elements from different edge
integrals to form the product of characters as in (A3).

Equation (A4) defines a projection operator on the space
of linear maps j4 � j3 ! j1 � j2. It is the usual group
averaging operator whose image is precisely the inter-
twiners. Since it is a projection operator, it can be resolved
into a sum over a basis of intertwiners Ii: j4 � j3 ! j1 �
j2,

 

where the intertwiners I
i : j1 � j2 ! j4 � j3 are chosen
such that the trace hI
i0 ; Iii of the composite I
i0Ii is zero

whenever i0 � i and nonzero if i0 � i. The projection
property is readily verified.

If, for each edge of the lattice, we fix a term i in the
above summation, we can contract the intertwiners Ii and
I
i with those coming from the other edges. At each vertex
of the lattice, there will be six such intertwiners, and their
contraction can be graphically represented as an octahedral
network that we call the 18j symbol:

 

The vertices are labeled by the directions of the associated
lattice edges emanating from the given lattice vertex,
namely �x, �y, and �z. The value of the 18j symbol
depends on the choice of basis elements Ii and I
i0 in (A5),
the six summation indices i labelling the edges, and the 12
incident plaquette labels j. Each normalization factor N �
hI
i ; Iii depends on the choice of basis elements at an edge,
the summation index i on that edge, and the four plaquettes
incident on that edge. Note that the choice of basis can be
made independently at each edge.

The discussion up to this point has been quite general,
assuming a 3-dimensional cubic lattice. Next, we special-
ize to G � SU�2� and give the plaquette action character
expansion coefficients. For the heat kernel (5), the expan-
sion coefficients take the particularly simple form [35]

 

e�S�g� �
1

K�I; �
2

2 �

X
j

�2j
 1�e���
2=2�j�j
1�	j�g�;

j � 0;
1

2
; 1; . . . ;

(A7)

where K�g; t� is defined by (6). Putting these pieces to-
gether, we obtain the dual formula for the lattice Yang-
Mills partition function

 

Z �
X
j

�X
i

Y
v2V

18jv�jv; iv�
Y
e2E

Ne�ie; je��1

�

	

�Y
p2P

�2jp 
 1�e���
2=2�jp�jp
1�

�
; (A8)

where an overall numerical factor of K�I; �
2

2 � per plaquette
has been discarded. This precisely reproduces Eq. (7),
where we described the notation we are using for the
plaquette and edge labellings j and i.
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2. Efficient algorithms for the 18j symbol via
recoupling

In order to perform computations with (A8), we first
need to choose explicit basis elements Ii and I
i of the
spaces of intertwiners that appear in (A5). Below, we
consider two patterns for choosing such bases for each
edge of the lattice, one we call the ladder recoupling and
one we call the tetrahedral recoupling. They lead to differ-
ent 18j symbols and have different properties with respect
to lattice translations.

a. The ladder recoupling

Recall that for compatible spins j, k, and m, there is an
intertwiner j � k! m that is unique up to scale. To be
explicit, we choose the specific intertwiner defined in [44],
2.5.4, and we denote it by

 

Similarly, we use the same reference6 to define

 

It is well known that for fixed j1, j2, j3, and j4, the
intertwiners

 

form a basis of the space of intertwiners j4 � j3 ! j1 � j2,
as i varies over admissible spins. We call this the vertical
splitting.

There is also a second vertical splitting, given by inter-
changing j3 and j4, which changes the intertwiner by a
factor of ��1�j3
j4�i. The geometry of the lattice provides
a natural way to choose between the two: we make sure
that the plaquette labels on the left (j4 and j1 above) are
part of the same lattice cube, and same for the labels on the
right.

A convenient choice of dual basis is given by

 

One can check that hIv
i0 ; I
v
i i � 0 for i0 � i. We next need to

evaluate the normalization factor

 

In order to accomplish this, we now explain how to relate
our tensor contraction diagrams to spin networks. While it
would be possible to work entirely with tensor contraction
diagrams, there are two reasons to switch to the spin net-
work notation. First, spin networks do not require that the
edges be directed, which relieves us of some complicated
bookkeeping. Second, by using spin networks, we can take
advantage of many existing formulas and software libraries
for computing spin network evaluations.

Recall that a spin network is a trivalent undirected
ribbon graph whose edges are labeled by spins. One as-
signs a value to a spin network in the following way. First,
draw it in the plane, in general position, with the ribbon
flat. Then, read it from top to bottom, interpreting the
vertices as the trivalent intertwiners discussed above, and
interpreting cups and caps as certain intertwiners which
can introduce signs. If the spin network is closed, the
resulting intertwiner is a map from the trivial representa-
tion to itself, and so can be identified with a complex
number. The result is independent of the embedding in
the plane, a fact that is quite useful in computations. In
particular, the trivalent intertwiners are chosen carefully so
that the evaluation remains unchanged when inputs are
deformed into outputs and vice versa. We refer the reader
to [44] for more details. While the starting point is differ-
ent, the formulas given in [45], with A � 1, also apply to
these diagrams.7 Note that some other authors have slightly
different conventions, e.g. some take A � �1.

We will now work out how to compute tensor contrac-
tions using spin networks. Take a tensor contraction dia-
gram involving just the trivalent intertwiners discussed
above and draw it in the plane such that all edges are
pointing downwards except for some edges which leave
the bottom of the diagram and loop around to reenter at the
top. If we erase the arrows, the resulting spin network will
have the same interpretation as the tensor contraction
diagram, except for the signs introduced in the cups and
caps. One can show that the difference is exactly a factor of
��1�2J, where J is the sum of the spins labelling the edges
that loop around.

As a first example, the value of a loop labeled with j in
the tensor notation is the dimension 2j
 1 of the repre-
sentation. However, in the spin network notation, the value
of a loop is �j � ��1�2j�2j
 1�.

6Note that our diagrams are read downwards, while those of
[44] are read upwards.

7Note that while we use half-integer spins, [45] uses twice-
spins, which are always integers.
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Similarly, the value of the edge normalization factor is

 

where 
�a; b; c� stands for the value of the following theta
network:

 

Its value is given explicitly in [45], Chapter 9.
Note that the conversion sign factor ��1�2i from (A14)

can be expressed as ��1�2�j1
j2� by appealing to the parity
constraints. Since each plaquette is ‘‘outgoing’’ from two
edges, each plaquette spin contributes ��1�4j � 1. In other
words, the conversion sign factors from the edge normal-
izationsNv cancel. It can be shown that the conversion sign
factor for the 18j symbol appearing in (A6) is independent
of the edge splitting and can be written as ��1�2J, where,
for instance, J � j
x
y 
 j
x�z 
 j�y�z. Each plaquette
spin shows up in exactly one such sign factor, so the signs
combine to give ��1�2Jtot , where Jtot is the sum of all
plaquette spins. Note that on a lattice with two or more
odd side-lengths, this sign factor can be nontrivial.

Next we must work out the value of the 18j symbols that
arise using the vertical splitting. The corresponding spin
network is obtained by applying this splitting to the verti-
ces of the octahedron shown in (A6) and erasing the arrows
from its edges. A method for evaluating this spin network
is shown in Fig. 4. The calculation is similar to that of [36],
where a ‘‘ladder’’ structure also appears. The recoupling
move

 

is applied to each of the six ‘‘rungs’’ of the ladder, pro-
ducing a chain of bubbles. The function of six spin labels
appearing in (A16) is the tetrahedral network, shown in the
last step of Fig. 5. The value of the tetrahedral network is
given explicitly in [45], Chapter 9, and is closely related to
the Wigner-Racah 6j symbol of angular momentum theory
[46], Appendix B; see (A18).

Because of Schur’s Lemma, the six independent sums
from the recoupling moves become a single sum. The
bubbles are proportional to the identity, weighted by a
theta network divided by a loop. Six theta networks arising
from the bubbles cancel against six of the 12 theta net-
works from the recoupling moves to give the six theta
networks shown in the final line. The bubbles also contrib-
ute six loop factors (�i) in the denominator, which exactly
cancel the loop factors from the recoupling. The final result
can be written as

 

X
m

�m
Q

6 bubbles

� � � � � � m
� � � � � � � � �

� �


�m; i
x; j�y�z�
�m; i�x; j
y
z�
�m; i
y; j�x�z�
�m; i�y; j
x
z�
�m; i
z; j�x�y�
�m; i�z; j
x
y�
; (A17)

where the arguments of the six tetrahedral networks are those that appear in the last line of Fig. 4. The explicit relation
between the tetrahedral network and the Wigner-Racah 6j symbols is

 

J1 J2 J3

j1 j2 j3

� �
�

�������������������������������������������������������������������������������������������������
j
�J1; J2; j3�
�j1; j2; j3�
�J1; j2; J3�
�j1; J2; J3�j

q �
j1 j2 j3

J1 J2 J3

�
: (A18)

Note the row swap and the fact that the four theta networks
correspond to the four triples of spins from the 6j’s argu-
ments that must satisfy triangle inequalities. For reference,
j
�a; b; c�j � ��1�a
b
c
�a; b; c�.

The 18j symbol described in this section was used in
computing the data appearing in Secs. III and IV.

b. The tetrahedral recoupling

Next we consider a different splitting of the vertices of
the octahedron, which we call the tetrahedral recoupling.

The 18j symbol that arises here is more efficient to com-
pute than the 18j symbol for the ladder recoupling, because
it does not require a sum. However, the splitting is not
translation invariant, which makes it slightly harder to
work with. This section is not needed in the rest of the
paper, but is useful as a comparison to other sources and
will be important for future calculations.

We begin by considering a different basis for the space
of intertwiners j4 � j3 ! j1 � j2. It is given by the hori-
zontal splitting
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FIG. 4. The ladder recoupling of the 18j symbol; a single sum.
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as i varies over admissible spins. Note that it makes no
difference which way the arrow on the edge labeled by i
points.

There is also a second horizontal splitting, given by
interchanging j3 and j4. As we did for the vertical splitting,
we choose between the two by requiring that j4 and j1 label
plaquettes that are part of the same cube. Unlike the
vertical splitting, the two horizontal splittings are not in
general related by a sign.

A convenient dual basis is given by

 

The traces hIh
i0 ; I
h
i i work out to be

 Nh � hIh
i0 ; I
h
i i � ��1�2�j1
j2�


�j1; j4; i�
�j2; j3; i�
�i

:

(A21)

For the tetrahedral recoupling, we use the vertical split-
ting (A11) on three edges and the horizontal splitting on
the opposite edges. The pattern we use is indicated in the
first step of Fig. 5. The result is a planar network consisting

FIG. 5. The tetrahedral recoupling of the 18j symbol; no sum.
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of four triangles connected to one another in a tetrahedral
pattern.

For this recoupling, a minor complication arises because
the intertwiner splittings are different on opposite edges.
This means that a simple translation of the given tetrahe-
dral 18j symbol to neighboring vertices does not corre-
spond to a consistent choice of basis for the intertwiners.
This is easily overcome by dividing the lattice into a
checkerboard of odd and even sites, and alternately using
the original and reflected versions of the 18j symbol. For
periodic boundary conditions, this does limit one to lattices
with even side lengths, but this constraint is not serious in
practice.

As was the case with the ladder recoupling, the conver-
sion sign factors from the normalization factors cancel, and

the conversion sign factors from the 18j symbols give a
factor of ��1�2Jtot . In this case, because the checkerboard
pattern forces even side lengths, one can show that
��1�2Jtot � 1.

The diagrammatic relation

 

can be used to collapse each of the four triangles into 3-
valent vertices, as shown in the last step of Fig. 5. The final
result is simply

 

� i
x j
x
z i
z
j
y
z i
y j
x
y

�� i
z j�y
z i�y
j�x�y i�x j�x
z

�� i
x j
x�z i�z
j�y�z i�y j
x�y

�� i
y j�x
y i�x
j�x�z i�z j
y�z

�� i�x i�y i�z
i
x i
y i
z

�


�i
x; i
y; i
z�
�i
z; i�x; i�y�
�i
x; i�y; i�z�
�i
y; i�z; i�x�

(A23)

Because this formula is essentially a product of tetrahedral
networks with no auxiliary summations, it is highly effi-
cient to compute.

The tetrahedral recoupling is easy to express in terms of
Wigner-Racah 6j symbols using relation (A18). In order to
compare our work to other work, we give some of the
details. Ignoring signs for the moment, the theta networks
from the edge normalizations (A14) and (A21), the con-
version formula (A18), and the vertex amplitude (A23) all
cancel. Now we collect the signs of the theta networks. The
theta networks from the edge normalizations contribute a
sign of ��1�2i��1�j1
j2
j3
j4 , where i labels the edge and
the jk label the incident plaquettes. Since each plaquette is
shared by four edges, the factors ��1�j1
j2
j3
j4 cancel.
Thus the edge normalizations become ��1�2i=�i �
1=�2i
 1�. Since this is positive, we can multiply each
vertex amplitude by

��������������
2i
 1
p

to take this into account. The
theta networks from (A23) contribute a sign of

��1�
P

6
k�1

2ik , where the ik label the edges incident on the
vertex. Since each edge is shared by two vertices, the
vertex signs also cancel. The final answer is that the vertex
amplitude (A23) becomes a product of five Wigner-Racah
6j symbols multiplied by a product of six factors of the
form

��������������
2i
 1
p

.
We observe that in this form the tetrahedral recoupling is

equivalent to the dual amplitude formula first proposed by
Anishetty et al. [22,27] and later used by Diakonov and
Petrov [23]. The same formula was used in the computa-
tional work of Dass [7–9]. It should be emphasized that
previous derivations of this formula did not make use of the
spin foam formalism. As such, the identification of extra
labels (those not coming from original plaquettes) with

intertwiners was not explicit. We found this distinction
between plaquette and intertwiner labels to be a crucial
one in constructing our algorithm.

3. Compatible intertwiner moves

As mentioned in Definition 2.4, when a (single) spin
foam cube move is applied, the 12 intertwiner labels of the
selected cube have to be adjusted to ensure the result is an
admissible spin foam. In general, admissible intertwiner
changes depend on plaquette and edge labels of the cube.
However, we will show next that this dependence takes on
a simple form determined by the edge splittings.

For this discussion, we consider the case where the
edges are split according to the ladder recoupling of the
18j symbol (see Fig. 4), as the translation invariance of this
recoupling simplifies the analysis. From the point of view
of a cube move, edge splittings come in two kinds, see
Fig. 6(a). In one case, octahedral edges corresponding to
adjacent cube plaquettes remain adjacent after the inter-
twiner edge is introduced (type A). In the other, octahedral
edges corresponding to adjacent cube plaquettes become
bridged by the new intertwiner edge (type B). The pattern
of type A and type B edges for a cube is shown in Fig. 6(b).

The main constraint on the admissibility of intertwiner
changes is parity, cf. Definition 2.2. For type A splittings,
the two adjacent plaquette spins change by� 1

2 , forcing the
corresponding intertwiner label to change by an integer.
For type B splittings, the intertwiner, now bridging the two
adjacent plaquettes, must change by a half-integer instead.
A minimal set of admissible intertwiner changes now
consists of 1, 0 or �1 for a type A edge, and 1

2 or � 1
2 for

a type B edge. Note that negative and positive changes
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should be proposed with equal probability, to satisfy de-
tailed balance.

In summary a spin foam cube move consists of the
following:

(1) Choose a cube in the lattice.
(2) For each plaquette in the cube, adjust the spin

independently by 
 1
2 or � 1

2 .
(3) For each type A edge in the cube, adjust the spin

independently by 1, 0 or �1.
(4) For each type B edge in the cube, adjust the spin

independently by 
 1
2 or � 1

2 .
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