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Improved actions and asymptotic scaling in lattice Yang-Mills theory
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Improved actions in SU(2) and SU(3) lattice gauge theories are investigated with an emphasis on
asymptotic scaling. A new scheme for tadpole improvement is proposed. The standard but heuristic
tadpole improvement emerges from a mean field approximation from the new approach. Scaling is
investigated by means of the large distance static quark potential. Both the generic and the new tadpole
scheme yield significant improvements on asymptotic scaling when compared with loop improved
actions. A study of the rotational symmetry breaking terms, however, reveals that only the new
improvement scheme efficiently eliminates the leading irrelevant term from the action.
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L. INTRODUCTION

At the beginning of lattice gauge theories, Wilson
pointed out that it is important to maintain exact gauge
invariance for finite lattice spacings a thus enforcing gauge
invariance in the critical limit of the lattice model. The
minimal choice for an action which satisfies this criterion is
nowadays known as the Wilson action [1]. Relying on the
concept of universality, any lattice action which incorpo-
rates the correct symmetries in the continuum limit should
work in principle. However, some lattice actions do give
better approximations for continuum results for coarser
lattices. This issue is central for computer simulations
and has led to a continuous development of the so-called
improved and perfect actions [2—16]. The basic idea is to
add terms to the action which are irrelevant in the contin-
uum limit, but which give better approximations at finite
lattice spacing [2,3]. Different proposals have been made
for such actions on the basis of perturbation theory [4—6]
or using renormalization group techniques [11-14,16]. It is
widely accepted that the so-called tadpole improvement is
important for good properties of these actions [9,10]. To
our knowledge, however, a systematic study of different
implementations of tadpole improvement has not yet been
carried out.

In the context of computer simulations, an extrapolation
of data to the limit of vanishing lattice spacing is necessary.
Such extrapolations can be made very trustworthy if a
relation to an ab initio continuum calculation can be estab-
lished. If we use the string tension o as the fundamental
energy scale of Yang-Mills theory, the perturbative treat-
ment of continuum SU(N,) Yang-Mills theory predicts the
dependence of the lattice spacing on 8 = 2N, /g? (with g
the bare gauge coupling) to be
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There, the 1-loop and 2-loop coefficients
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are universal. The dimensionless parameter ¢, depends on
the observable and must be determined by nonperturbative
methods such as lattice simulations: any physical mass
scale (call it m) in units of the reference scale is indepen-
dent of the lattice spacing for sufficiently large B and is
obtained from

m(’";)

Let N denote the number of lattice points in one direction
of the lattice. In actual lattice simulations, 8 cannot be
chosen too large if we wish to work with reasonable lattice
sizes, N a(B). Using the Wilson lattice action, it turns out
that these values of (3 are still too small to observe pertur-
bative scaling; for moderate S values, large corrections to
the scaling function (1) are observed. Note, however, that
the ratio m?>a?/oa* is almost independent of the lattice
spacing at these (3 values which let us reliably calculate
low energy observables. This property, called ““scaling” in
the literature, must not be confused with ‘“‘asymptotic
scaling,” i.e. perturbative scaling, which is the focal point
of the present paper.

In this paper, a new tadpole improved action is proposed.
The construction of this action offers a new understanding
of the otherwise heuristic ‘““derivation” of the standard
tadpole action commonly used in simulations nowadays.
We will find that tadpole improvement is highly important
for the approach to asymptotic scaling for reasonably sized
lattices. Finally, a thorough study of rotational symmetry
breaking effects obtained from the static quark potential
will reveal that the standard tadpole action does not cancel
the leading order irrelevant terms of the action. The nu-
merical data suggest that a complete cancellation might be
achieved by means of our new action.

In[m*a*(B)] = In[oa*(B)]
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II. ACTION AND IMPROVEMENT

A. Standard tadpole improvement

Because of the nonlinear relation between the link field
U, (x) and the continuum gauge potential, lattice perturba-
tion theory suffers from large tadpole contributions which,
however, must cancel for an extrapolation to the continuum
limit. That these tadpole contributions are indeed large can
be easily anticipated from the expectation value of the link
in Landau gauge, U f} (x). A naive expansion with respect to
the lattice spacing, i.e.,

1 1
<E¢ﬂmm>=@—éM
=1+ 0(d?), 4)

trAZ (x)a® + . >

implies that this expectation value should be of order 1.
Actual simulations show, however, that the latter expecta-
tion value is at most of order 0.8 although oa? is as small as
0.05. In order to improve the approach to the continuum
limit, one considers the ratio between the link and its
expectation value. One assumes that the deviation from
unity now provides a better definition of the (continuum)
gauge field A , (x):

Uﬁ(x)/%(trUﬁ(x)) =1+iA,(x)a— ... 5)

Since Landau gauge fixing is problematic because of the
Gribov problem, an ad hoc description for tadpole im-
provement has become standard: defining

0;},()6) = UM(.X)/M(), (6)

where u, is the fourth root of the plaquette expectation
value, each link field in a lattice operator should be re-
placed by U ,(x). Note that this procedure is heuristic, and
that many other choices for tadpole improvement exist; one
could also choose for u, the eighth root of the expectation
value of the 2 X 2 planar Wilson loop. Nevertheless, the
prescription outlined above has become standard.

B. Motivation of the new action

Let us consider a quadratic (planar) Wilson loop of side
length s with an orientation specified by u, v located at site
x. A naive expansion of this operator yields (see e.g. (2) of

[10D):

1 1 IR R
N—c RCtI'W,uV(X) =1- ﬁc Retr|:§ 048 - ﬁO@Y + :|,

(7)

04()() = F/,LVF,u,V(x)! (8)
Oé(x) = (D/J,Fp,y)z(x) + (DVF/,LV)Z(-X)'

The subscripts w, » at O4 ¢ have been suppressed. Already
terms of order O(s®) break rotational symmetry. Choosing
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the minimal length s = a, W coincides with the (minimal)
plaquette, which is the only term in the Wilson action.

As outlined in the previous subsection, numerically the
expansion (7) converges badly for reasonable lattice sizes.
Without any simulation, this fact can be also understood
from continuum perturbation theory; although manifestly
gauge invariant, in lattice regularization the high energy
modes are cut off at a momentum scale Ayy = 7/a. It is
well known that in cutoff regularizations expectation val-
ues such as O, and Og in (8) diverge with the cutoff:

<04> x A%IV x 6174, <O6> x A%V o« a”o,
The origin of these divergences are quantum fluctuation of
the order of the cutoff scale. Obviously, these fluctuations
invalidate the expansion (7) (choose s = a for the mo-
ment). However, they do not spoil the calculation of physi-
cal observables well below the cutoff scale (as will be
detailed below). Note, however, that if the desired goal is
to match with asymptotic scaling provided by continuum
Yang-Mills theory, an expansion such as (7) should cover
high energy modes too.

One choice for such an action is obtained by replacing
all operators O,, of the action by

O_n = On - <On> (9)

Only the deviation of the gauge invariant operator from its
(potentially) divergent expectation value contributes to the
action. In practice, this construction can be realized by
considering the ratio between the Wilson loop and its
expectation value. Using (7), one can show to all orders
that in this case the operators O, only appear in the
combination (9).

Without resorting to the naive expansion anymore, we
now assume that the above ratio has a sensible expansion
with respect to s:

RetrW,,(x)/(RetrW,,,(x))
— 1 - L Reuf Lot — L 0t + (10)
NC ( |:2 48 24 65 i|
Note that the term O, gives rise to the continuum action
proportional to F2. The subject of improvement is to
remove terms of higher order in s from the action.

A popular choice (Symanzik improvement) is to use a
rectangular 1 X 2 loop. This scheme invokes yet another
expansion, i.e., of the rectangular loop with respect to s
similar to the one in (10), and relies on a matching of the
expansion coefficients to eliminate the irrelevant terms.
Here, we are going to use a 2 X 2 quadratic loop which
is a scale transform of the plaquette. The motivation for
this choice is that we need to invoke only one type of
expansion evaluated at two values for the scale parameter.
The hope is that, because of the scale relation between the
1 X 1 and 2 X 2 loops, the cancellation of irrelevant terms
is more complete at finite values of the lattice spacing
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where the naive Taylor expansion (such as (10)) appears
unjustified.

Assuming that the expansion (10) is valid at least for
s = 2a, we use the expansion for s = a (plaquette) and
s =2a (2 X2 Wilson loop) to get rid of the irrelevant
terms. Defining

P, (x) = RetrW 5 (x) /(Re rW [ S (x)),

_ 11
P2)(x) = Re trW232(x) /(Re trW232(x), (b
we choose for the action
S=8 [P, + Kk PLx)] (12)

u>v,x

Using the expansion (10) for s = a and s = 2a, we are led
to

Kl + 16K2 == 1, (13)

K| + 64k, = 0. (14)

This first line ensures compatibility with continuum Yang-
Mills theory whereas the choice of the second line elimi-
nates the order a® terms. The solution of the latter set of
equations is given by

—4 = 1
K1 =3 Ky = 735

5)

The present improvement scheme eliminates from the
action contributions from tadpole loops. The main purpose
for this elimination is that these loops are absent in the ab
initio continuum formulation of Yang-Mills theory. The
impact of these loops is therefore to spoil proper scaling
which is familiar from continuum perturbation theory. I
point out that, once the tadpole contribution was elimi-
nated, further improvements might be achieved by invok-
ing the standard perturbative improvement scheme. We
leave such an investigation to future work. Here, we will
justify by numerical calculations that the new action (with-
out further perturbative improvements) already gives rise
to much better scaling properties.

C. Comparison with the standard tadpole improved
action

Let us assume that we are dealing with an action which
features the plaquette and the 2 X 2 Wilson loop. In the
case of standard tadpole improvement, the rule (6) implies
that

_ 1
P,,(x) = N Re trW, ;! (x)/u
= RetrtW};! (x)/(Re rtW 5 (x)),
_ 1
P2 (x) = v Re W25 (x)/ uf.
c

While for our new action the numerical burden is a self-
consistent calculation of the expectation values

PHYSICAL REVIEW D 76, 094502 (2007)
(Re trW . s1 (x)), (Re trWZ52(x)),

standard tadpole improvement appears as an approxima-
tion to this numerical problem. There, only

(RetrW 51 (x))

is calculated self-consistently, and the expectation value of
the 2 X 2 Wilson loop is obtained with the help of the mean
field approximation (in Landau gauge):

1
<ﬁ Re trw,a,§2(x)> ~ ub = (uly?
c

! 1x10\

~ <F RetrW,; (x)> .

c
Having identified the standard approach as an approxima-
tion to the present scheme, the crucial question is whether
the properties of our action fully justify the higher level of
numerical sophistication. The remaining two sections will
answer this question.

III. NUMERICAL SIMULATION SETUP

A. Thermalization
The dynamical degrees of freedom are the SU(N,) ma-
trices U, (x) which are associated with the links of an N*
cubic lattice. The partition function is given by

Z- [ DU, exp{SLUTw11, wa)} (16)

4
S , — R 1>;l
(U101, w2) ﬁﬂzw[?,w”(ﬁ) cu Wy ()

1
————— RetrW?25%(x) |, 17
48wy (B) M (X)} 4"
where the action S depends on the expectation values:
wii(B) = (RetautW 5! (x)), wxn(B) = (RetrWi?(x)).
(18)
Expanding the expectation values of the latter equations in
terms of their functional integrals, we arrive at a set of two
nonlinear equations which determine the two unknown
parameters w;(8) and wy,(B):
1
wi(B) = [ DU, RewW L @) explSLUI0v1, w)h

19)

1
wn(B) =5 [ DU, RewWE2 (@) explSTUI0v1, w))
(20)

Before we can start to accumulate statistically independent
lattice configurations {U,} for each 8, we must solve the
latter set of equations for w;,(8) and w,,(83), and we must
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generate a ‘‘statistically important”
means of thermalization.

While the reader is invited to develop their own meth-
odology for this task, we here briefly outline our approach
which serves the purpose. It appears to be quite natural to
solve the set of Egs. (19) and (20) and to generate the
thermalized configuration within one process. We here

configuration by

used a simple iterative procedure: denoting WE:')(,B), i=
1, 2, by the approximate solutions to w;;(8) of the nth
iteration, better approximations are generated by

WrD(g) = / DU, Re W5 (x) exp{S[U]

X (Wi, wi, 1)

Wi(g) — f DU, Re trW22(x) exp{S[U]

X (wif, Wi} (22)

As starting points for the iteration we chose the naive tree-
level values

wlB) =1, wlB) =1 (23)

In order to monitor the convergence of the above iteration,
we introduce the error

et = w5 (B) = Wi (Bl (24)

It turns out that measuring sz) (B) is sufficient for moni-
toring convergence. In practice, the integrals in (21) and
(22) are not calculated exactly. Only Monte Carlo esti-
mates w(”)(ﬁ) with statistical errors cr (ﬁ) are available.
At the beginning of the iteration, it does not make sense to
obtain a high precision estimate for an anyhow uncon-
verged value of w(”)(,B). We therefore adopted the follow-
ing procedure: at the start of the iteration, only 10 iterations
are used to obtain the estimates w(”)(,B) and their statistical
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FIG. 1 (color online).
(left) and SU(3) (right).
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errors o'(")( B). As soon as the error of convergence reaches
the order of the statistical error, i.e.

e =~ o) (), (25)

the number of iterations which are used for the estimators
is increased by 10. The iteration stops when €™ (and

therefore also (7(2’5)(,8)) drops below a certain number
which specifies the precision to be achieved for the pa-
rameters. Figure 1 shows the “‘thermalization history” of

the parameters w\")(8)/N, and w{”(8)/N, as a function of
the total number lattice sweeps performed. Data are shown
for B = 1.25 (SU(2)) and B = 3.10 (SU(3)), which will
turn out to correspond to a rather coarse lattice, and for
B = 1.55 (SU(2)) and B = 3.5 (SU(3)), which are in the
scaling regime. After an initial oscillation, the estimators
rapidly converge. Note that the spacing between two data
points in Fig. 1 shows the number of lattice sweeps which
were needed to estimate the integrals (21) and (22).

In particular for small values of 3, several solutions of
the nonlinear equations (19) and (20) might exist. If one
chooses to perform simulations in this regime of parameter
space, a sensible choice would be to pick the solution with
least rotational symmetry breaking (see Sec. V).

B. Static quark potential

To investigate scaling, we will express the lattice spac-
ing in units of the string tension ¢ in order to calculate
a(B). The static quark potential V(r) is so obtained from
planar Wilson loops. These loops are of size r X ¢, and the
spatial links have been smeared to enhance the overlap
with the quark antiquark ground state. For the smearing
procedure, we consider the spatial hypercube for a given
time #: spatial links belonging to this cube are then cooled
with respect to the 3-dimensional Wilson action. Cooling is
performed by visiting each link of the lattice and replacing
it with the (normalized) sum of the adjacent staples.

0.4
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BEEEBEB B8 B B B B
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O w22, B=3.100|

wll, B=3.500
4 w22, B=3.500| A
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number of lattice sweeps

-0.2

Convergence of the action parameters w;; and wy, as a function of the number of Monte Carlo sweeps: SU(2)
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Instead of the Wilson action, one could use the 3-
dimensional version of the present action rather than
Wilson’s action. It turns out, however, that this choice is
more time consuming and does not produce better over-
laps. Ten cooling sweeps through the lattice are performed
to obtain one set of smeared links. Timelike links are
unaffected by smearing. The advantages of this smearing
procedure are that it is easy to implement, it is fast com-
pared with other smearing techniques, and it is known to
yield excellent overlap for SU(2) and SU(3) gauge theories
[17] and even for more exotic gauge theories such as for
G(2) [18].

In practice, the Wilson loops are fitted to a straight line:

— In(Re trW};;’) = V(r)t + const, (26)

where only data with ¢ = #,,,, are included. This suppresses
the contribution from excited states. Because of the overlap
enhancement, choosing f,,, = 2a is sufficient: the linear
t-fit represents the data with a y?/dof = 2 or better for the
B ranges explored in the present paper. Using values as
high as #,, = 4a, we checked that larger values #,,,, yield
the same potential.

In order to explore rotational symmetry breaking effects
by the underlying lattice, ‘“‘off-axis’ distances for the quark
antiquark pair are considered as well. Potentials corre-
sponding to crystallographic directions

(100) (on-axis), (110) (111)

are taken into account. Our final result for the static poten-
tial is shown in Fig. 2. A fit of the on-axis data to

V(r) = Vo — % +or @7)

is shown as well. The results of the fit for SU(2) and SU(3)
are summarized in the table below:

:8 N, conf

SU2) 1.45 400
SU@3) 330 800

x?/dof

0.527(2) 0.267(1) 0.0695(6) 1.1
0.631(1) 0317(1) 0.0666(3) 1.2

Voa a od®

SU(2) B=1.45

V(r) a
R

0.5+

# — on-axis fit
O (100)data| —

L (110) data 4
% & (111) data
025 —

r/a

FIG. 2 (color online).
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Here, N.,,¢ denotes the number of independent lattice
configurations used to estimate the Wilson loop expecta-
tion values. Priority has been given to the SU(3) simula-
tions because of their relevance for QCD. Because we are
using an improved action with very good rotational sym-
metry (see Sec. V), the point r = a can be included in the
potential fit without hampering the value for y?/dof.

A lattice sweep consists out of a Cabbibo-Marinari
update followed by 4 reflections (for SU(2)) and 5 (for
SU(3)), respectively. Each reflection replaces the actual
configuration by another one which possess the same ac-
tion. We observe that this process enhances the ergodicity
of the algorithm: autocorrelations are reduced and a
speedup of thermalization is observed. Twenty “dummy”
lattice sweeps are performed until the configuration is used
for measurements. Especially for small 8 values, a smaller
number of dummy sweeps might be sufficient. There is
room for a further fine-tuning of the algorithm. Note that
these sweeps are carried out for fixed « , in (12) the values
of which were determined during the initial stage of
thermalization.

IV. ASYMPTOTIC SCALING WITH IMPROVED
ACTIONS

A. The Wilson action—a case study

The Wilson action has been widely studied and is widely
used even nowadays. It has been known, however, for a
long time that large deviations of the lattice spacing a(3)
from the perturbative scaling (1) are common with this
type of action. The purpose of the present subsection is to
quantify this statement.

The partition function employing Wilson action is given
by

zZ- f DU, exp{SualUT, 28)

1
Swil[U] = ,8 Z F RetrW}f,il(x).

u<vx-'C

(29)

[ T T T LI I B B
L5l / a
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3
125+ -
/
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I — on-axis fit
05+ O (100)data|

L (110) data

< (111) data
025+ -

0 | | | | | | | |

r/a

Static quark antiquark potential using the present improved action for SU(2) (left) and SU(3) (right).
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TABLE I. Measured scaling function oa?(8) for a 16* lattice

using the Wilson action for SU(2) and SU(3) gauge theories.

SUQR) B oa® SUQB) B oa®
2.20 0.28(1) 5.60 0.278(6)
2.25 0.194(4) 5.65 0.219(4)
2.30 0.145(2) 5.70 0.171(2)
2.35 0.1022(9) 5.75 0.133(1)
2.40 0.0738(5) 5.80 0.1051(7)
245 0.0523(3) 5.85 0.0854(5)
2.50 0.0390(2) 5.90 0.0731(4)
2.55 0.0281(2) 5095 0.0601(3)
2.60 0.0211(2) 6.00 0.0517(2)

6.05 0.0447(2)
6.10 0.0387(2)

Using the techniques outlined in the previous section, we
calculated the static quark potential and the scaling func-
tion oa?(B). The results, obtained from N, = 800 inde-
pendent configurations on a 16 lattice, are summarized in
Table 1. Finite size effects are expected at the 1% level if
the side length of the lattice exceeds 1.5 fm [19]. For a 16*
lattice, finite size effects therefore play a minor role as long
as oa’ > 0.04.

Figure 3 visualizes the data of Table I. In order to bring
out any onset of asymptotic scaling, these data are com-
pared with the perturbative scaling function at the 1-loop
and 2-loop level (see (1) and (2)):

In[oa®(B) liym” = — 4;)2[/3 = Bret] + In[0a®(Brer)]
(30)
100 4772 2
ln[aaz(ﬂ)]gs;mp = - B—:[ﬁ - Bref] + ’Bi(z)l lnﬁif
+ ln[a-az(lgref)]- (31)

The perturbative scaling functions are normalized to re-
produce the measured data for 8 = B, In Fig. 3, the
highest considered value S is chosen for SB,. It is remark-
able that both for SU(2) and SU(3), the 2-loop scaling
function (31) does not yield an improvement on the agree-
ment of the data with the 1-loop formula (30).

B. Improved action

Employing the procedure discussed in subsection IIT A,
we generated well “thermalized”” configurations (as well
as the simulation parameters w;;(8) and w,,(B)), see (18),
for a range of § values which give reasonably sized lattice
spacings for the present 16* lattice. The simulation pa-
rameters as well as the calculated value of the lattice
spacing a in units of the string tension o are summarized
in Table II for the SU(2) gauge theory and in Table III for
the SU(3) case. The calculated scaling functions oa®(8)

PHYSICAL REVIEW D 76, 094502 (2007)

SU(2) Wilson action
L7 T I T I T I T I ]
0.25— ¢ —
r O data b
0.125} ]
Sy 006251 .
b = -
0.03125 —
0.015625— —
1 1 1 1 1 1 1 1 1 1 1
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SU(3) Wilson action
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i o O data ]
025 e
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i ® ]
~ 0.125— —
< L 4
b = 4
0.0625 —
0.03125 — 1 1 1 1 1 1 1 1 1 1 1 1 1

55 56 57 58 59 6 6.1 62

B

FIG. 3 (color online). Scaling function oa?(8) for a 16* lattice
using Wilson action for SU(2) (top) and for SU(3) (bottom)
gauge theories. Asymptotic scaling according to (30) and (31) is
shown as well.

are shown in Figs. 4 and 5, respectively. As with the Wilson
action, a comparison with the asymptotic scaling functions
(30) and (31) is made. A satisfactory agreement with
asymptotic scaling on coarse lattices with oa? as large as
oa®> = 0.1 is observed for both gauge groups. In both
cases, the agreement with the 2-loop formula seems to be
better than with the 1-loop result for oa®> < 0.06.

C. Comparison with other actions

In this subsection, the more important case of an SU(3)
gauge group is investigated. Two popular actions which do
not involve tadpole improvement, but invoke a renormal-
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TABLE II. Simulation parameters of the improved action (17)
and the calculated scaling function oa?(8); SU(2) gauge theory,
16* lattice, N, independent configurations.

2

B wi1(B)/2 wn(B)/2 Neont oa
1.250 0.62455(3) 0.13499(6) 400 0.279(2)
1275 0.634163)  0.15944(6) 400  0215(5)
1.300 0.64197(3) 0.17723(6) 400 0.175(3)
1.325 0.648 85(3) 0.19211(6) 400 0.1473(7)
1.350 0.65526(3) 0.205 84(6) 400 0.1244(7)
1.375 0.66123(3) 0.218 18(6) 400 0.1068(9)
1.400 0.66690(3) 0.229 86(6) 400 0.0922(7)
1.425 0.67231(3) 0.24121(6) 400 0.0787(5)
1.450 0.67744(3) 0.25169(6) 400 0.0695(6)
1.475 0.68229(3) 0.26143(6) 400 0.0599(3)
1.500 0.68697(2) 0.27076(6) 400 0.0528(3)
1.525 0.69141(2) 0.279 64(6) 800 0.0452(8)
1.550 0.69572(2) 0.288 09(6) 800 0.0400(3)
1.575 0.699 88(2) 0.296 38(6) 800 0.0351(4)
1.600 0.703 88(2) 0.30427(6) 800 0.0311(2)

ization group (RG) investigation, are the RG-Iwasaki ac-
tion [7,8] and the DBW2 [16]. These actions are of the type

1
S[Ul=p Z [coﬁc Re trw; ! (x)
n<v,x
1
+ ¢ N Re trW 5% (x) } (32)
and differ by the choice of ¢, (note that ¢y = 1 — 8¢, fora

proper definition of the bare gauge coupling):

¢, ~ —0.331
¢, ~ —1.4088

(RG-Iwasaki),
(DBW2).

A detailed investigation of the scaling properties of these
actions can be found in [20]. We will here focus on their
properties concerning asymptotic scaling.

TABLE III. Simulation parameters of the improved action (17)
and the calculated scaling function oa?(8); SU(3) gauge theory,
16* lattice, N, independent configurations.

B wi1(8)/3 wxn(B)/3 Neont oa
2.90 0.58567(2) 0.11424(3) 800 0.231(4)
3.00 0.60135(2) 0.14553(3) 800 0.151(2)
3.10 0.61378(2) 0.16726(3) 800 0.1122(7)
3.15 0.61923(2) 0.176 67(3) 800 0.0985(5)
3.20 0.624 50(2) 0.18560(3) 800 0.0851(4)
3.25 0.629 50(2) 0.19403(3) 800 0.0765(4)
3.30 0.63429(2) 0.202 15(3) 800 0.0666(3)
3.35 0.638 83(2) 0.20959(3) 800 0.0589(3)
3.40 0.64330(2) 0.21711(3) 800 0.0532(2)
3.45 0.647 64(2) 0.22432(3) 800 0.0482(2)
3.50 0.65173(2) 0.23108(3) 800 0.0424(2)
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SU(2) improved action

[ T N T N T N T N T ]

0ask ° o dum |
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0.03125— =) —
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1.2 1.3 1.4 1.5 1.6

B

FIG. 4 (color online). Scaling function oa?(8) for a 16* lattice
using the present improved action for SU(2). Asymptotic scaling
according to (30) and (31) is shown as well.

We will need the lattice spacing a in units of the string
tension. For the case of the RG-Iwasaki action and the
DBW?2 action, data for a/r, with the Sommer parameter r
are taken from the work by Necco [20]. Using ry = 0.5 fm
and /o = 440 MeV, a factor

a'r% ~ 1.21

is used to convert a?/r3 to a’o.

SU(3) improved action

025 T é T I T T T T T T T T T T T

0.125

ca

0.0625

003 125 — | 1 | 1 |

1 1 | 1 1 1 -
28 29 3 31 32 33 34 35 36

B

| | |

FIG. 5 (color online).  Scaling function oa?(8) for a 16* lattice
using the present improved action for SU(3). Asymptotic scaling
according to (30) and (31) is shown as well.
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In order to study whether the present improved action
(see Egs. (16)—(18)) is superior to an action with standard
tadpole improvement, we here also study the 2 X 2”
action with tree-level coefficients and standard tadpole
removal:

SLU(wy,y) = B Z

4
———— RetrW/$(x)
’u,<1/,x[3wll(ﬁ) "

B 2%2
187 (B) Re trW; (x)} (33)

where w;; must be self-consistently calculated from

wi(B) = % fDUM Re trW 5! (x) exp{S[U](w1,)}. (34)

This action was used in [21] to study thermodynamics.
There it was observed that tadpole improvement largely
reduces the cutoff effects which hamper the calculation of
the pressure and the thermal energy density in the SU(3)
high temperature phase. Our findings for wy;(3) and for
the scaling function oa?(8) are summarized in Table IV.

For a more quantitative investigation of asymptotic scal-
ing, the deviation from asymptotic scaling is measured by
the ratio

a*(B)

R(B) = :
a%syrn(lg)

(35)

where the lattice spacing squared a? is either provided in
units of the string tension or in units of the Sommer
parameter ry (as e.g. done in [20]). The function az;,,,(8)
is provided at 2-loop level by (31). Because the definition
of agsym(B) involves an arbitrary normalization, the abso-
lute value of R in (35) is meaningless. The data are nor-
malized such that R = 1 is attained for the smallest lattice
spacing considered. Asymptotic scaling will from (35) be
signalled by the function R(8) becoming flat for suffi-
ciently large values of B. Since the absolute size of the
bare gauge coupling g (and therefore of 8 = 6/g%) de-
pends on the details of the regularization scheme and the
action, we will study R as a function of the lattice spacing
squared in physical units.

TABLE IV. Simulation parameter of the standard tadpole im-
proved action (33) and the calculated scaling function oa?(B8);
SU(3) gauge theory, 16* lattice, N,,; independent configura-
tions.

PHYSICAL REVIEW D 76, 094502 (2007)

B 3Wll (B) Nconf 0.a2
2.60 0.57313(3) 600 0.115(1)
2.70 0.58559(2) 600 0.0875(6)
2.80 0.59715(2) 600 0.0683(4)
290 0.607 83(2) 600 0.0520(3)
3.00 0.617 84(2) 600 0.0431(3)

3 T [ T [ T [ / [ T [ T
2.75 o present action
o Wilson action
25 RG-Iwasaki (fit from Necco)
L — DBW?2 (fit from Necco) j
225+ standard tadpole _
g 2F . -
> L |
&
“s 175 " ~
~ L i
“s 15+ _
1251 M -
1~ _
0.75— —
i 1 l 1 l 1 l 1 l 1 l 1 ]
0'50 0.05 0.1 0.15 0.2 0.25
2
oa

FIG. 6 (color online).
several actions.

Approaching asymptotic scaling using

The results are shown in Fig. 6 for the actions under
investigation. It turns out that any sort of tadpole improve-
ment largely improves scaling along the lines of the
asymptotic formula. The Wilson action, but also the
DBW?2 and Iwasaki actions, show large deviations from
asymptotic scaling. In contrast, both the standard and our
new tadpole improved action, seem to perform equally
well. A possible explanation could be that both actions
remove the Og irrelevant terms such that asymptotic scal-
ing sets in for rather coarse lattice spacings. The next
section will, however, reveal that this interpretation is
only justified for the new action proposed in this paper.

V. ROTATIONAL SYMMETRY BREAKING

The irrelevant terms of Og in (8) are built up from
expressions which explicitly violate rotational symmetry.
Hence, the absence of the O4 terms can be checked by
calculating the amount [22] of rotational symmetry break-
ing as a function of the lattice spacing a.

The present improvement scheme belongs to the class of
tree-level improvements; it relies on the expansion (10) of
the action in powers of the lattice spacing a. A cancellation
of the O¢ terms can be hampered by terms which depend
logarithmically on a. The cancellation can still be made
complete if loop corrections are considered as well as
tadpole improvement. At the present stage, there are two
crucial questions: Are loop corrections still large for the
present range of lattice spacings? Is the new improvement
scheme superior to the standard approach so that the addi-
tional complexity of the new scheme is justified?

For an answer to these question, we need to quantify the
amount of rotational symmetry breaking. For this purpose,

094502-8
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we invoke the method introduced by the QCD-Taro col-
laboration in [16]. Let V,,(r) denote the “on-axis™ static
quark potential obtained from quarks positioned along the
main crystallographic direction previously called the (100)
direction. Data for which r is not an integer multiple of a
are made available by means of the fit (27). Furthermore,
call V(r) all data arising from quarks positioned along the
(110) and (111) directions. These data are called the ““off-
axis” data. 8V (r) denotes their statistical errors. With these
definitions, the measure of rotational symmetry breaking is
given by

_ [V(l") - von(r):l2 1
%= 2 e / (Off 6v2<r>)’

where the sum extends over all ““off-axis’’ data.

Figure 7 shows 6, as a function of the lattice spacing
squared. For the case of the Wilson action, we observe a
linear scaling of &, with a:

(36)

8, « oa* + 8,(0), (Wilson action).

In the case of the action employing standard tadpole im-
provement, the symmetry breaking effects are significantly
reduced, but, still, §,, rises linearly with a?. Using the new
action proposed in this paper, we find an additional drastic
reduction of rotational symmetry breaking effects.
Moreover, it seems that this time the functional depen-
dence of &, on a” seems to change qualitatively. The data
now indicate that &, is of higher order in a?:

0.06 — 11— : —

§ O Wilson action o |

| O improved action n
0.05 ¢ standard tadpole

L () a
0.04 o —

-]
L 0o ® i
w0 0.03F oo :
|- m —
&

L 'S _
0.02 5 ®

|- m -
0.01+ @ SU@3) m

L mm i

0 1 1 l 1 l 1 l 1 l 1
0 0.05 0.1 0.15 0.2 0.25
2
Oa

FIG. 7 (color online). The measure 6, of rotational symmetry
breaking as a function of the scaling function oa® for SU(3)
gauge theory with different actions.
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8, * o’a, (SU(3) imroved action).

However, further numerical investigations are necessary to
support this claim. If it is supported by numerical simula-
tions, it would imply that only the present action can
completely remove the irrelevant Og contributions. It is
already clear that the standard tadpole improved action
certainly fails this task.

Note also that the data suggest that the Wilson and
standard tadpole data approach a small but finite value at
oa®> = 0. The size of this value clearly depends on the
amount of tadpole contributions. Our preliminary interpre-
tation of this finding is as follows: contributions of tadpole
loops solely arise in lattice regularization and, therefore,
add substantially to the amount of rotational symmetry
breaking present in the static potential. In addition, tadpole
loops are generically UV divergent. This might lead to a
small, but finite value of &, even for very small values of
the lattice spacing. An alternative interpretation is that &,
is quite sensitive to the finite volume leaving the offsets &,
as artifacts of the analyzing procedure. Further investiga-
tions are clearly needed to settle this question.

VI. CONCLUSIONS

The properties of improved actions with respect to
asymptotic scaling have been thoroughly investigated in
this paper. A focal point of the present study is tadpole
improved tree-level actions. A new scheme for tadpole
improvement has been proposed and it has been contrasted
to the heuristic tadpole approach, which is standard in the
literature. It has been shown that the standard tadpole
scheme is a mean field approximation to the scheme pro-
posed here.

The numerical results for the scaling function oa?(8)
reveal that both types of tadpole improved actions yield
results of equal quality as far as asymptotic scaling is
concerned. By contrast, loop improved actions (which do
not make use of tadpole improvement) produce much big-
ger deviations from asymptotic scaling.

The amount §, of rotational symmetry breaking (see
(36)) in the static quark potential was used to compare the
quality of both tadpole improvement schemes. Although
the function &, (a) is much smaller for the standard tadpole
action than for the Wilson action, the functional depen-
dence on the lattice spacing a is the same in both cases. In
contrast, we have seen first numerical evidence that §,, is of
higher order in a? if the new tadpole improved action is
used. We here argue that the generic tadpole scheme fails
to eliminate the leading order irrelevant terms of the action.
The data indicate that the new action cancels these terms
from the action for the range of lattice spacings considered
without taking into account loop corrections.

Our approach to tadpole improvement can in principle
be extended to kill off the next-to-leading order irrelevant
terms as well. The question whether loop corrections must
be considered then is left to future work.
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