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Using soft-collinear effective theory we describe at leading order in 1=mb all the semi-inclusive
hadronic B! XM decays near the endpoint, where an energetic light meson M recoils against an
inclusive jet X. Here we extend to the decays in which spectator quarks go into the jet X, and also include
the decays involving �, �0 mesons that receive additional contributions from gluonic operators. The
predicted branching ratios and CP asymmetries depend on fewer hadronic parameters than the corre-
sponding two-body B decays. This makes semi-inclusive hadronic B! XM decays a powerful probe of
the potential nonperturbative nature of charming penguins as well as a useful probe of new physics effects
in electroweak flavor changing transitions. A comparison with B! KX data from BABAR points to an
enhanced charming penguin, albeit with large experimental errors.
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I. INTRODUCTION

Recently BABAR made the first measurement of semi-
inclusive B! KX branching ratios using fully recon-
structed B decays [1]
 

Br�B�= �B0 ! K�X� � �196�37�31
�34�30� � 10�6;

Br�B�= �B0 ! �K0X� � �154�55�55
�48�41� � 10�6;

(1)

where a lower cut on the kaon momentum p��K�>
2:34 GeV in the B rest frame was imposed. This opens
up the road for experimental explorations in hadronic semi-
inclusive B decays, where for almost a decade the only
observable probe has been Br�B! �0X�, first determined
by CLEO [2]. Averaging over the most recent measure-
ments from BABAR [3] and CLEO [4] gives this branching
ratio

 Br �B! �0Xs� � �420� 94� � 10�6 (2)

for a lower cut on �0 energy of E�0 > 2:218 GeV.
From the theoretical side semi-inclusive hadronic de-

cays are very interesting since they are simpler, yet can still
probe many of the questions that have been raised in the
context of two-body B decays such as the perturbative and
nonperturbative nature of charming penguins [5] and the
search for new physics signals [6]. Theoretical simplifica-
tion occurs in the endpoint region, where the energy of the
light meson M is relatively close to the maximal energy, so
that the isolated energetic meson M and the inclusive col-

linear hadronic jet X go in opposite directions. Incidentally,
this is also the part of phase space that is most readily
probed experimentally.

First predictions for the semi-inclusive hadronic decays
B! XM in the endpoint region were given in Refs. [5,6]
using the soft-collinear effective theory (SCET) [7–10]
(for earlier works on semi-inclusive decays using different
theoretical approaches see [11–18]). In the present work
we go beyond Ref. [5] in several ways. First, because of the
new experimental data on B! KX branching ratios in
Eq. (1), we are able to discuss the size of charming pen-
guins and include it in perturbative predictions. Second,
contrary to Ref. [5] in which only decays where the spec-
tator quark is part of the inclusive jet were considered, we
extend the discussion to all semi-inclusive decays, includ-
ing decays to �, �0. This is simplified by the fact that
contributions where the spectator quark becomes part of
the exclusive final state meson M are 1=m2

b suppressed and
can be neglected in our leading-order calculations. These
contributions are schematically shown in Fig. 1(b) to be
compared with the leading-order contributions in Fig. 1(a)
(additional gluonic contributions are present for decays
into �, �0).

This means that the nonperturbative parameters �BM,
�BMJ , connected to the B! M form factors, do not enter
in the leading-order B! XM predictions, making them
simpler than the predictions for the corresponding hadronic
two-body B decays [19–25]. The presence of an inclusive
collinear jet in the final state is described by a convolution
of a nonperturbative shape function with a jet function. The
latter arises in the matching of the full theory onto SCETI

at the scale p2
X 	mb�QCD. At leading order this convolu-

tion is the same as in B! Xs� decays, so that many
hadronic uncertainties cancel by taking ratios.
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The paper is organized as follows. In Sec. II we show the
SCET power counting for the different possible decay
contributions. This will allow us to include decays where
the spectator could end up in the meson. We also discuss in
this section the extra gluonic operators which contribute
when the outgoing meson is an isosinglet meson. In Sec. III
we briefly review the results of [5] and present the hard
kernels for all semi-inclusive hadronic decays. In Sec. IV
we discuss the production of � and �0 mesons, where new
gluonic operators are present at leading order in the power
counting. In Sec. V we compare the predictions with data
and then conclude in Sec. VI.

II. POWER COUNTING

We work at leading order in 1=mb as in Ref. [5]. At this
order it is fairly easy to modify the results of Ref. [5] to
include the semi-inclusive decays in which the spectator
can go to either the jet or the light meson. In particular
contributions where the spectator quark is boosted to be-
come part of the exclusive final state meson M are 1=m2

b
suppressed and can be neglected.

To show this we first explicitly power count different
leading and subleading graphs in SCETI, where the expan-
sion parameter is � �

�������������
�=mb

p
. Order of the graph, ��, is

given simply by power counting the different vertices
appearing in the graph [26]

 � � 4�
X
k

�k� 4�Vk; (3)

where Vk is the number of vertices that scale as �k (the
above equation already assumes that there are no purely
ultrasoft diagrams). Now consider the contribution where
the spectator ends up in the jet as shown in Fig. 1(a). For
this graph V6 � 2 which gives a scaling

 �jet � 4� �6� 4� � 2 � 8: (4)

After SCETI ! SCETII matching there is an additional

suppression of � for each external collinear line, which
results in a final power counting of �12 � ��QCD=mb�

6.
This is the leading-order term for semi-inclusive hadronic
B decays.

Next consider the contribution where the spectator ends
up in the meson. A typical diagram is shown in Fig. 1(b)
with V4 � 2, V5 � 2, and V6 � 2, leading to

 

�spect � 4� �4� 4� � 2� �5� 4� � 2� �6� 4� � 2

� 10: (5)

In addition to the usual � suppression for each external
collinear line in the matching SCETI ! SCETII, however,
this diagram is further suppressed due to the p? occurring
in each of the �4 collinear vertices. Lowering p? to the
SCETII scaling gives an extra power of � for both vertices.
This is exactly the same suppression that makes the soft-
overlap and the hard-scattering contributions in heavy-to-
light decays of the same order as discussed in Ref. [27].
The diagram in Fig. 1(b) therefore scales as �16 �

��QCD=mb�
8 and thus is 1=m2

b suppressed compared to
the leading contribution and can be neglected in the
leading-order analysis. Other possible diagrams in which
the spectator ends up in the final meson give the same
suppression and can also be neglected. Note that this does
not mean that all spectator interactions are 1=m2

b sup-
pressed. In particular, annihilation contributions where
the spectator quark annihilates with a collinear quark in
the jet arise already at 1=mb order as in B! X� [28].

The decays into isosinglet mesons �, �0 have additional
contributions from gluonic operators such as the one
shown in Fig. 2, for which V5 � 4 and therefore

 �iso � 4� �5� 4� � 4 � 8; (6)

which is the same power suppression as the diagram in
Fig. 1(a). After matching onto SCETII this diagram then
contributes at leading power, ��QCD=mb�

6. Thus, to ana-
lyze isosinglet meson production, we must include new
contributions, complicating the analysis. Isosinglet meson
production will be discussed in Sec. IV.

III. THE FORMALISM

In this section we briefly review the results obtained in
[5] while extending them to the full set of semi-inclusive

λ5

λ5

λ5

λ5

FIG. 2. Diagram that contributes to isosinglet meson produc-
tion, which is of the same order as the leading diagram.

FIG. 1. Time-ordered products of the effective weak operators
for the decay widths: (a) the leading-order contributions, (b) a
subset of subleading spectator interactions discussed in Sec. II.
The heavy quark fields are denoted by double lines, collinear
quarks (gluons) by solid lines (overlaid with wiggly line), and
soft quarks by dashed lines. The n hard-collinear quarks con-
necting the weak vertices and the �n hard-collinear gluons [boost-
ing the spectator in (b)] carry p2 	�mb and are integrated out.
The scaling of vertices is in � �

�������������
�=mb

p
, cf. Sec. II.
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decays. Additional contributions that arise for decays with
� or�0 in the final state will be included in the next section.
Barring those contributions, the decay rates of semi-
inclusive B decays are obtained from the forward scatter-
ing amplitude of the time-ordered product of the heavy-to-
light currents, as shown in Fig. 3. Because of disparate
scales in the problem, a series of matchings on appropriate
effective theories is performed. First, at the scale �	mb
the standard effective weak Hamiltonian in full QCD for
hadronic B decays [29] is matched onto the effective
Hamiltonian in SCETI by integrating out degrees of free-
dom of order mb [19–21]. In the next step SCETI is
matched onto SCETII by integrating out the degrees of
freedom with p2 	mb� [5]. As a result, the jet function
is obtained, the discontinuity of which contributes to the
semi-inclusive hadronic B decay rates. This jet function is
the same as in B! Xs� and will cancel once the ratio of
decay rates is taken. The predictions for B! XM branch-
ing ratios normalized to Br�B! Xs�� and for direct CP
asymmetries in B! XM will thus depend only on pertur-
batively calculable hard kernels obtained from matching
on SCETI at �	mb, and on the remaining nonperturba-
tive parameters—light cone distribution amplitudes
(LCDA) and the parameters describing nonperturbative
charming penguins.

The hard kernels will depend on the Wilson coefficients
Cpi of the SCETI weak Hamiltonian that is at leading order
(LO) in 1=mb given by [19–21]

 HI �
2GF���

2
p

X
p�u;c

��q�p
X6;g
i�1

Cpi 
Oi; (7)

where 
 denotes the convolution over collinear momenta
fractions, while ��q�p � VpbV

�
pq is the Cabibbo-Kobayashi-

Maskawa (CKM) factor with q � s, d for �S � 1, 0
transitions. The Wilson coefficients Cpi are shown at lead-
ing order in Appendix A, and were calculated at next-to-
leading order (NLO) in �s�mb� first in Refs. [23], and then
in Ref. [19]. In our notation, the NLO Wilson coefficients
can be found in Appendix A of Ref. [5]. The sum is over
four-quark operators

 

O1 � � �un 6 �nPLY
y
n bv�� �q �n 6nPLu �n�u;

O2;3 � � �qn 6 �nPLY
y
n bv�� �u �n 6nPL;Ru �n�u;

O4 �
X
q0
� �q0n 6 �nPLY

y
n bv�� �q �n 6nPLq0�n�u;

O5;6 �
X
q0
� �qn 6 �nPLY

y
n bv�� �q0�n 6nPL;Rq

0
�n�u;

(8)

and the gluonic operators are (the trace is over color
indices)

 

O1g � �
mb

4�2 � �qnY
y
n Y �n 6 �nn  PigB6

?
�n PRY

y
�n bv�;

O2g �
g2mb

4�2 � �qn 6 �nPLY
y
n bv�Tr�B?��n B?	�n �ui
?�	;

(9)

where the purely gluonic field B?��n is related to the � �n;?�
component of the gluon field strength using the usual
bracket prescription [20]

 igB?��n �
1

n  P
�Wy�n �in D �n; iD

�
�n?�W �n�: (10)

The operators O1g;2g contribute only to the decays with �,
�0 in the final state. We list the operator O2g for complete-
ness, in order to have expressions valid to LO in 1=mb but
to all order in �s�mb�. When we discuss the phenomenol-
ogy in Sec. V, we work atO��s�mb��. At this order O2g has
a vanishing matching coefficient [21] and thus does not
contribute to the order that we are working.

The summation over q0 in Eq. (8) includes u, d, and
s quarks and PL;R � �1� �5�=2. The notation is the same
as the one used in [5]. Thus � �q �n 6nPLq �n�u � � �q �n��u�
nP y
2EM
�6nPLq �n�, while gauge-invariant n and �n collinear quark

fields qn � Wyn �
�q�
n and q �n � Wy�n �

�q�
�n already contain the

collinear Wilson lines. The ultrasoft (usoft) Wilson line in
the n direction, Yn, arises after the redefinition of the
collinear fields to decouple collinear and usoft degrees of
freedom [10].

This decoupling implies that the operators in Eqs. (8)
and (9) factorize into currents JC � � �q �n 6n�q0�n� and JH �
� �qn 6 �nPLY

y
n bv� which do not exchange soft gluons. The

FIG. 3. Time-ordered products of Oi effective weak operators giving the decay widths through use of the optical theorem. The n
collinear quarks connecting the weak vertices carry p2 	�mb and are integrated out. The gluonic contributions (b) (with an additional
mirror image not shown) and (c) contribute only to B! ��

0�X decays.
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matrix elements of �n currents hMjJCj0i are expressed in
terms of LCDA, while the time-ordered product of heavy-
to-light currents,

 T�EM� �
i
mB

Z
d4ze�ipMzhBjTJyH�z�JH�0�jBi; (11)

leads to a convolution of shape, f�l��, and jet functions,
JP, [5]

 

1

�
ImT�EM� � 2

Z ��

�mb�2EM
dl�f�l��

�

�
�

1

�
Im JP�mb � 2EM � l� � i
�

�

�
2

mb
S�EM;�0�; (12)

where l� � n  l is the soft momentum conjugate to the �n 
z � z� spatial component. Using the optical theorem this
is then related to the B! XM decay rate giving

 

d�

dEM
�B! XM� �

G2
F

8�
m2
bx

3
MS�xM;�0�jh

�q�
M j

2 �    ;

(13)

where xM � 2EM=mb ’ 1. The ellipses represent nonper-
turbative charming penguin contributions given explicitly
below, while h�q�M is the convolution of the hard kernel and
the LCDA

 h�q�M � fM
Z 1

0
du�M�u���

�q�
u T

�q�
M;u�u� � �

�q�
c T

�q�
M;c�u��: (14)

Here �M�u� is the light meson LCDA, fM the decay
constant, ��q�p � VpbV

�
pq the CKM elements, while the

perturbatively calculable hard kernels T�q�M;p are given in
Tables I and II for �S � 1, 0 (q � s, d), respectively.

The nonperturbative function S denoting the convolu-
tion of shape and jet functions is exactly the same as the
one appearing in the prediction for the B! Xs� rate in the
endpoint region at LO in 1=mb. In the ratio with ��B!
Xs�� it thus cancels out, giving

 

d�� �B! MX�=dEM
d�� �B! Xs��=dE�

�
2�3

�m2
b

�jh�q�M j
2 � 2Re���q�c cccp

M
cc�h

�q�
M �
�� � j��q�c cccj

2PM
cc�

j��s�t C��ceff
9 � 1=2ceff

12 �j
2

; (15)

TABLE II. Hard kernels T �d�
M;p with p � u; c for �S � 0 semi-inclusive B�= �B0= �B0

s ! XM
decays. The summation over p � u; c is implied. The NLO Wilson coefficients Cpi are given in
Appendix A of [5]. For the additional gluonic contributions to decays with �q;s see Sec. IV.

B� ! MX �B0 ! MX �B0
s ! MX T�d�M;p

��X0
u �u, �X0

u �u ��X�
u �d

, �X�
u �d

��X�u �s, 
�X�u �s Cp1 � Cp4

�0X�d �u, 0X�d �u �0X0
d �d

, 0X0
d �d

�0X0
d �s, 

0X0
d �s �Cp2 � Cp4 � C3�=

���
2
p

K���0X�s �u K���0X0
s �d

K���0X0
s �s Cp4

!X�d �u !X0
d �d

!X0
d �s �Cp2 � Cp4 � C3 � 2C5 � 2C6�=

���
2
p

�qX�d �u �qX
0
d �d

�qX
0
d �s �Cp2 � Cp4 � C3 � 2C5 � 2C6�=

���
2
p

�X�d �u �X0
d �d

�X0
d �s C5 � C6

�sX
�
d �u �sX

0
d �d

�sX
0
d �s C5 � C6

TABLE I. Hard kernels T �s�
M;p with p � u; c for �S � 1 semi-inclusive B�= �B0= �B0

s ! XM
decays. The NLO Wilson coefficients Cpi are given in Appendix A of [5]. For the additional
gluonic contributions to decays with �q;s see Sec. IV.

B� ! MX �B0 ! MX �B0
s ! MX T�s�M;p

K����X0
u �u K����X�

u �d
K����X�u�s Cp1 � Cp4

�K���0X�d �u
�K���0X0

d �d
�K���0X0

d �s Cp4
�X�s �u �X0

s �d
�X0

s�s Cp4 � C5 � C6

�sX
�
s �u �sX

0
s �d

�sX
0
s�s Cp4 � C5 � C6

!X�s �u !X0
s �d

!X0
s�s �Cp2 � C3 � 2C5 � 2C6�=

���
2
p

�qX
�
s �u �qX

0
s �d

�qX
0
s�s �Cp2 � C3 � 2C5 � 2C6�=

���
2
p

�0X�s �u, 0X�s �u �0X0
s �d

, 0X0
s �d

�0X0
s�s, 

0X0
s�s �Cp2 � C3�=

���
2
p
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where one sets E� � EM. The SCET Wilson coefficients
are ceff

9 � 1, ceff
12 � 0 at LO with the NLO calculated in [8],

while C� is given e.g. in Eq. (13) of [28].
The coefficients pMcc and PM

cc parametrize possible non-
perturbative charming penguin contributions.1 They de-
pend on the valence quark structure of both M and the jet
X, but we suppress this dependence in the notation. They
are zero if the charming penguin contributions are purely
perturbative. However, the uncalculated higher-order per-
turbative pieces can mimic their effect, making them differ
slightly from zero. The complex parameter pMcc describes
the interference of the nonperturbative charming penguin
with the perturbative hard kernels, shown in Fig. 4(a). The
positive real parameter PM

cc in Eq. (15) on the other hand
describes the square of the nonperturbative charming pen-
guin contributions shown in Fig. 4(c). If hard kernels
dominate the amplitudes, the term with pMcc in Eq. (15) is
subleading, while the PM

cc term is even more suppressed
and can be neglected as was done in [5]. It should be kept,
however, if nonperturbative charming penguins are sizable.
Since the present data are inconclusive we keep both terms
in Eq. (15). When estimating the size of the nonperturba-
tive contributions, as a rule of thumb we will take �pMcc�2 	
PM
cc. Further information on the structure of pMcc, PM

cc can
be obtained in the mc ! 1 limit [5]. Finally, the coeffi-
cient ccc multiplying the nonperturbative charming pen-
guin parameters in Eq. (15) is equal to the coefficient of Cc4
in Tables I and II (i.e., it is ccc � 1 for B� ! ��X0

u �u and
ccc � �1=

���
2
p

for B� ! �0X�d �u so that pMcc in both cases
equals p�cc).

In the phenomenological analysis of our results in Sec. V
we give numerical estimates for direct CP asymmetries

 ACP� �B! XM�

�
d�� �B! XM�=dEM � d��B! XM�=dEM
d�� �B! XM�=dEM � d��B! XM�=dEM

;

(16)

and CP averaged branching ratios. In terms of hard kernels
and nonperturbative charming penguin parameters the di-
rect CP asymmetry is

 ACP� �B! XM� �
�2 Im���q�u �

�q��
c �

jA� �B! XM�j2
Im�T�P� cccpMcc���;

(17)

and the CP averaged decay width normalized to B! Xs�
is

 

d�CP� �B! MX�=dEM
d�� �B! Xs��=dE�

�
2�3

�m2
b

jA� �B! XM�j2

j��s�t C��c
eff
9 � 1=2ceff

12 �j
2
;

(18)

where
 

jA� �B! XM�j2 � j��q�u j2jTj2 � 2 Re���q�u �
�q��
c �

� Re�T�P� cccp
M
cc�
��

� j��q�c j2�jPj2 � 2 Re�cccp
M
ccP

��

� c2
ccP

M
cc�: (19)

Above a shorthand notation for the perturbative ‘‘tree’’ and
‘‘penguin’’ contributions

 T �
Z 1

0
dufM�M�u�T

�q�
M;u�u�;

P �
Z 1

0
dufM�M�u�T

�q�
M;c�u�;

(20)

has been used, dropping in the notation the dependence on
�B! XM.

IV. THE DECAYS INVOLVING �, �0

In order to describe B! ��
0�X decays several modifica-

tions of the results in the previous section are needed:
(i) �� �0 mixing needs to be taken into account and
(ii) there are additional contributions from gluonic opera-
tors O1g;2g as shown in Figs. 3 and 5 [operators O1g;2g are
defined in Eq. (9)]. To describe matrix elements involving
gluonic operators we introduce the gluonic LCDA [30,31]

 i
?�	hP�p�jTr�B?��n B?	�n �uj0i �
i
4

�������
CF

p
f1
P

��g
P�u�; (21)

where the isosinglet decay constant is the same one that
appears in the matrix elements of quark bilinears

 hP�p�j� �q �n 6n�5T1;8q �n�uj0i � �2iEf1;8
P �1;8

P �u�; (22)

with T8 � �8=
���
2
p

, T1 � 1=
���
3
p

diagonal 3� 3 matrices in

FIG. 4. Charming penguin contributions: the contributions from (a) and (b) are proportional to pMcc and pM�cc , respectively, while the
contribution from (c) gives PM

cc. The blobs represent nonperturbative charming penguins.

1In [6] these were pMcc � fM �fcc and PM
cc � f2

M
�F cc.
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u, d, s flavor space. The flavor singlet LCDA �1
P�u� mixes

with the gluonic LCDA ��g
P�u� under RG running [32],

while �8
P�u� does not. For future reference we also quote

explicitly f1
�q �

��������
2=3

p
f�q , f

1
�s � f�s=

���
3
p

, while f1
P � 0

for other pseudoscalars that do not have flavor singlet
component. Here f�q and f�s are the decay constants

corresponding to �qq � � �uu� �dd�=
���
2
p

and �ss axial cur-
rents, respectively (and are equal in the SU(3) limit, cf.
also (25) below).

The parametrizations of matrix elements (21) and (22)
do not involve any assumptions; however they are too
general for the limited amount of data available at present.
To reduce the number of unknowns we use the Feldmann-
Kroll-Stech (FKS) mixing scheme [33] to describe �� �0

mixing in which the mass eigenstates �, �0 are related to
the flavor basis through

 � � �q cos’� �s sin’; �0 � �q sin’� �s cos’;

(23)

with ’ � �39:3� 1:0�� and �q � ��u � �d�=
���
2
p

. The
working assumptions of the FKS scheme are that LCDA
do not depend on the meson so that

 �1;8
P �u� � �1;8�u�; ��g

P�u� � ��g�u�; (24)

and that Okubo-Zweig-Iizuka (OZI) suppression is effec-
tive. This last requirement is most transparent in the �q,
�s, g basis instead of the 1, 8, g basis used above. In it we
have

 h�q�p�j
1���
2
p �� �u �n 6n�5u �n�u � � �d �n 6n�5d �n�u�j0i � �2iEf�q��q�u�; h�s�p�j� �s �n 6n�5s �n�uj0i � �2iEf�s��s�u�; (25)

with��s�u� � �2�
8�u� ��1�u��=3 and��q�u� � �2�

1�u� ��8�u��=3. The OZI suppressed matrix elements on the other
hand are

 h�s�p�j
1��
2
p �� �u �n 6n�5u �n�u � � �d �n 6n�5d �n�u�j0i � �2iEf�s�opp�u�; h�q�p�j� �s �n 6n�5s �n�uj0i � �2iEf�q�opp�u�; (26)

where �opp�u� �
���
2
p
��1�u� ��8�u��=3 and is negligible

as long as�1�u� ’ �8�u�. This relation is exact for asymp-
totic forms of LCDA, while it can only be approximate for
physical values of � since �1�u� and �8�u� have different
RG runnings, spoiling the relation for smaller values of �.
Phenomenologically, however, for � above 1 GeV the
relation is well obeyed at a percent level [30].

We are now ready to write down the results for contri-
butions to B! ���0�X decays corresponding to Figs. 3
and 4. These are described by Eq. (15) but with h�q�M and
charming penguin parameters as given below. Utilizing the
FKS scheme with Eq. (25) and setting the OZI suppressed
matrix elements Eq. (26) to zero, the h�q�M functions in
Eq. (15) are
 

h�q�� � cos’f�q��q 
 �
�q�
p T

�q�
�q;p � sin’f�s��s 
 �

�q�
p T

�q�
�s;p

� hg�; (27)

 

h�q��0 � sin’f�q��q 
 �
�q�
p T

�q�
�q;p � cos’f�s��s 
 �

�q�
p T

�q�
�s;p

� hg�0 ; (28)

where 
 denotes a convolution, while T�q��q;s;p are listed in
Tables I and II and the sum over p � u; c is understood.

The gluonic contributions hgM coming from the O2g opera-
tor insertions as shown in Figs. 3(b) and 3(c), are zero to
NLO in�s�mb�, i.e. to the order we are working. Explicitly,
they are

 hg�s;q � ��
�s�
t

�������
CF
p

2
f1
�s;q

��g
�s;q�u� 
 C2g�u�; (29)

for �S � 1 decays Bq0 ! �s;qXs �q0 , while for �S � 0 de-

cays Bq0 ! �s;qXd �q0 we need to replace ��s�t ! ��d�t . The
expressions for �, �0 final states are easily obtained using
(23). As already stated, C2g�u� � 0 at NLO in �s�mb�.

For the charming penguin parameters in Eq. (15), we
make the following replacements for �S � 1 transitions

 cccp
�
cc ! � sin’p�scc ; c2

ccP
�
cc ! sin2’P �s

cc ;

cccp
�0
cc ! cos’p�scc ; c2

ccP
�0
cc ! cos2’P �s

cc ;
(30)

and for �S � 0 transitions

 cccp
�
cc !

cos’���
2
p p

�q
cc ; c2

ccP
�
cc !

cos2’
2

P
�q
cc ;

cccp
�0
cc !

sin’���
2
p p

�q
cc ; c2

ccP
�0
cc !

sin2’
2

P
�q
cc :

(31)

FIG. 5. The contributions of O1g operator to B! MXq de-
cays. The mirror image of diagram (a) is not shown as well as not
the diagrams with L�1��n;�� replaced by L�1��n;cg, cf. Fig. 6.
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We next move to the contributions from the O1g opera-
tor, shown in Fig. 5. These contributions lead to a modified
factorization between n and �n degrees of freedom because
of the additional soft gluon that is emitted at a lightlike
separation from the weak vertex in the �n direction.
Relegating the details to Appendix B, we quote here only
the main results starting with the T products in Fig. 6

 G ���cg� � hMXji
Z
d4xTfO1g�0�;L

�1�
���cg��x�gjBi: (32)

Then G�� � Gcg describes the contribution of the operator
Og to the decay into a color-singlet state.

In the SCETI ! SCETII matching the intermediate
hard-collinear gluon carrying p2 	�mb is integrated out
leading, respectively, to the jet functions J1�u; k�� and
Jg�u; k�� for the diagrams in Figs. 6(a) and 6(b).
Following the usual redefinition of fields the �n collinear
quark (gluon) lines decouple from the soft fields [10] and
lead to quark (gluon) LCDA after taking the matrix ele-
ment. The soft Wilson lines Y �n arising from the field
redefinition and the soft gluon field emitted at x are taken
to be part of the heavy-to-light current

 

~J H�0; x�� � �qnY
y
n Y �n�0�6 �ngA6

?
us�x��PRY

y
�n bv�0�; (33)

where we define

 gA?�
us � �Y

y
�n iD

?�
us Y �n�: (34)

Note that the heavy-to-light current ~JH depends on x�,
since the soft gluon gets emitted away from the weak
vertex. The O1g contribution to the B! MX matrix ele-
ment then takes a form of a convolution over both the soft
momentum k� (conjugate to the position x�) and the hard
momentum fraction upM,
 

G�� � Gcg � �i
Z
du

Z dk�dx�
4�

e�ik�x�=2FM�k�; u�

� hXj~JH�0; x��jBi: (35)

The hard-collinear kernel multiplied by the LCDA is ex-
plicitly
 

FM�k�; u� �
�smb

4�

�
fM�M�u�

�
J1�u; k��

u
�
J1� �u;�k���

�u

�

�
�������
CF

p
f1
M

��g
M�u�Jg�u; k��

�
; (36)

and is in general both a function of the �n momentum
fraction u and the soft momentum k�. At tree level, how-
ever, it is a simple product of functions that depend only on
u and only on k�,

 FM�k�; u�jtree �
�smb

4�
fM�M�u�

�
1

u
�

1

�u

�
J1�k��

��������tree
;

(37)

since J1�u; k��jtree � J1�k��jtree � 1=�Nk�� and
Jg�u; k��jtree � 1=k� are independent of u. Furthermore,
since ��g

P�u� is antisymmetric, ��g
P�u� � � ��g

P� �u�, the con-
tribution from Jg�u; k�� vanishes at this order.

Therefore at least at leading order in �s�
����������
�mb

p
� the

additional gluonic contributions can be cast in the same
form as the expressions for the decay widths for noniso-
singlet final states, Eq. (13), by moving the u-dependent
part into the definition of hard kernels, while including the
dependence on k� in the definition of the modified heavy-
to-light current

 

~J �0� �
Z dk�dx�

4�
e�ik�x�=2 ~JH�0; x��J1�k��jtree: (38)

Because of this simplification we will show in this section
only the result for B! XM decay width at leading order
in �s�

����������
�mb

p
�, while the result valid to all orders in

�s�
����������
�mb

p
� is given in Appendix B.

As in Sec. III we relate the B! XM decay width to the
time-ordered product of heavy currents using the optical
theorem. We denote the T-product coming from a single
O1g insertion, shown in Fig. 5(a), as

 

~T g�EM� �
i
mb

Z
d4zhBjTJyH�z� ~J �0�jBi; (39)

where JH�z� � ei�~p�mbv�z� �qn 6 �nPLY
y
n bv��z�. For the contri-

bution coming from two insertions of O1g, shown in
Fig. 5(b), we similarly define

 

~T gg�EM� �
i
mb

Z
d4zhBjT ~J y�z� ~J �0�jBi: (40)

In evaluating the time-ordered product ~Tg�EM� we use
the fact that n collinear quark fields do not exchange any
soft gluons at LO in 1=mb with the other fields in the
T-product. Using the standard definition of the
n-collinear jet function,

FIG. 6. Time-ordered products between O1g and the sublead-
ing interaction terms in the SCET Lagrangian. The soft gluon
(curly line) is absorbed in a definition of new B meson shape
function fg. The intermediate hard-collinear gluon has off-
shellness 	mb� and is integrated out. At LO in �s�

�����������
�mb

p
�

diagram (b) does not contribute because of the antisymmetry of
gluonic LCDA.
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 h0jTqn�z� �qn�0�j0i � i
6n
2
��z���2�z?�

�
Z d��

2�
e�i��z�=2JP��� � i
�;

(41)

and a shape function that, unlike f�l�� in Eq. (12), depends
on two soft momenta because of the additional nonlocal
structure present in ~J due to Aus,

 

Z
dl�eil�z�=2

Z
dr�eir�x�=2fg�l�; r��

� hBvj �bvYn�z��Y
y
n Y �n�0�6 �ngA6 ?us�x��PRY

y
�n bv�0�jBvi;

(42)

the discontinuity of ~Tg�EM� with respect to the intermedi-
ate states is given by
 

Disc: ~Tg�EM� � 2
Z
dl�dr�

� Im
�
�

1

�
JP�l� �mb � 2EM � i
�

�

� fg�l�; r��J1�r��jtree

�
2

mb
Sg�EM;�0�: (43)

Note that the new shape function fg�l�; r�� can be in
general complex, hence Sg can also be complex.
However for decay rates, the complex conjugate should
be added and the decay rates become real.

Using the optical theorem the contribution to the decay
width from one insertion of O1g at LO in �s�

����������
�mb

p
�, with

the contribution of the mirror image of Fig. 5(a), is there-
fore
 �
d�

dEM

�
g

��������tree
�
G2
F

4�
m2
bx

2
Mf

2
M2Re

�
��M 
 �

�q�
p T

�q�
M;p�

�

�

�
�M 
 �

�q�
t C1g

�s
4�

�
1

u
�

1

�u

��

� Sg�EM;�0�

�
; (44)

where C1g is the Wilson coefficient of O1g, which is 1 at
leading order. This expression is similar to Eq. (13). The
hard kernels (convoluted with LCDA) in the curly brackets
do not depend on soft momenta k� and similarly the non-
perturbative ‘‘shape’’ function Sg does not depend on the
large momenta fractions u. This factorization of the u and
k� dependence is a consequence of a special form of FM at
leading order in �s�

����������
�mb

p
�, Eq. (37), and may not be

present at higher orders, cf. Eq. (36).
The contribution ~Tgg, Eq. (40), coming from two inser-

tions of O1g leads to a shape function that depends on three
soft momenta because of two soft gluon insertions

 Z
dl�e

il�z�=2
Z
dr�e

ir�x�=2
Z
ds�e

is�y�=2fgg�l�; r�; s��

� hBvj �bvY �n�z��gA6
?
us�y��Y

y
�n Yn�z��Y

y
n Y �n�0�6 �ngA6

?
us�x��

� PRY
y
�n bv�0�jBvi: (45)

This gives a new nonperturbative shape function by taking
the discontinuity
 

Disc: ~Tgg�EM� � 2
Z
dl�dr�ds�

� Im
�
�

1

�
JP�l� �mb � 2EM � i
�

�

� J1�r��J1�s���fgg�l�; r�; s��

�
2

mb
Sgg�EM;�0�; (46)

which then enters the prediction for the contribution of
double O1g insertion to the decay width

 

�
d�

dEM

�
gg

��������tree
�
G2
F

2�
m2
bxMf

2
MSgg�EM;�0�

�

����������q�t C1g

Z
du�M�u�

�s
4�

�
1

u
�

1

�u

���������
2
:

(47)

Note that fgg and Sgg are real in contrast to fg and Sg.
To recapitulate, the prediction for the B! ���0�X de-

cay widths at LO in 1=mb is given by

 

d�

dEM
�

�
d�

dEM

�
Eq: �13�

�

�
d�

dEM

�
g
�

�
d�

dEM

�
gg
; (48)

with the first term interpreted according to the replacement
rules given explicitly in Eqs. (27)–(31), while the last two
terms are given at leading order in �s�

����������
�mb

p
� in Eqs. (44)

and (47) and to all orders in Appendix B.

V. PHENOMENOLOGY

We are now ready to use the expressions for CP aver-
aged branching ratios and direct CP asymmetries derived
in the previous two sections for quantitative analysis. We
split the discussion into two parts, first focusing on the
decays to nonisosinglet pseudoscalar and to vector final
states and then moving to the predictions for the B! �X,
�0X decays.

While the first measurements of B! MX decays have
become available, one still lacks enough experimental
information to determine nonperturbative charming pen-
guin parameters from data (or to show decisively that they
are small and compatible with zero). Therefore we collect
in Tables III and IVonly purely perturbative predictions for
B! XM decay rates and direct CP asymmetries using
Eqs. (15) and (16), setting the nonperturbative charming
penguins parameters pMcc and PM

cc to zero. Comparison with
data then gives an insight about the importance of non-
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perturbative charming penguin contributions and/or on the
size of subleading terms as detailed below Eqs. (50) and
(51). To reduce the hadronic uncertainties, the predictions
for B! XM branching ratios are normalized to d��B!
X��=dE�. The predicted ratio of partial decay widths,
Eq. (15), depends on the light meson energy EM. In the
endpoint region, however, the dependence on xM �
2EM=mB � 1� �m2

M � p
2
X�=m

2
B is a subleading effect.2

We neglect this dependence and set xM � 1 in Tables III
and IV.

For the coefficients in the Gegenbauer polynomial ex-
pansion of the LCDAs

 �M�u;�� � 6u �u
�

1�
X1
n�1

aMn ���C
3=2
n �2u� 1�

�
; (49)

we take the same values as Ref. [5], except for the first
coefficient in the Gegenbauer expansion of �K�x� for
which we use the recent lattice QCD determination
aK1 �� � 2:0 GeV� � 0:055� 0:005 [34]. Explicitly, the
remaining coefficients are (at � � 2 GeV): aK2 � 0:23�
0:23 [35], aK

�

1 � 0:08� 0:13, [36], a�2 � 0:09� 0:15

[37], aK
�

2 � 0:07� 0:08, a2 � 0:14� 0:15, a�2 �
0:� 0:15 [36], and for lack of better information a

�q
2 �

a�s2 � a�2 and a!2 � 0:� 0:2, with the higher coefficients
in the expansion set to zero.

Direct CP asymmetries, Eq. (16), are nonzero only in
the presence of nonzero strong phases. These can be gen-
erated nonperturbatively or by integrating out on-shell
light quarks in a loop when matching full QCD to SCETI

at NLO in �s. As in Ref. [5] we therefore use the NLO
matching expressions for the Wilson coefficients Cpi at
� � mb, to have the leading contribution to the CP asym-
metries, while performing the evolution to the hard-
collinear scale �0 	

����������
�mb

p
at next-to-leading logarithm

(NLL). Note that this running cancels to a large extent in
the ratios of the decay rates (only the running of aMn ���,
n � 1 remains), giving in effect the Wilson coefficients
with NLO accuracy at the hard-collinear scale �0 [5]. We
choose �0 � 2 GeV for the perturbative predictions in
Tables III and IV.

The two errors quoted in Tables III and IV are an
estimate of subleading corrections and due to the errors
on the Gegenbauer polynomial coefficients in the LCDA
expansion (49). Since the predictions are made to NLO in
�s�mb� but only to LO in 1=mb, the largest corrections are
expected to arise from the 1=mb terms. These are estimated
by independently varying the magnitudes of the leading
terms proportional to ��q�u;c;t by 20% 	O��=mb� and the
strong phase by 5�. This latter variation estimates the error
on the strong phase arising from the uncalculated
�s�mb�=mb or �2

s�mb� terms. A 100% error is assigned to
predictions for branching ratios in color-suppressed tree
and QCD penguin-dominated �S � 0 decays where the
1=mb corrections are sizable compared to the leading
results due to the hierarchy of Wilson coefficients. No
prediction on CP asymmetries is given for these modes
or for the QCD penguin-dominated �S � 1 decays.

Next we confront the perturbative predictions with ex-
perimental data. Normalizing the BABAR results on semi-
inclusive B! KX branching ratios, Eq. (1), to Br�B!
Xs�� � �172� 21� � 10�6 with the same photon energy
cut E� > 2:34 GeV that was used for the kaon momentum
[38], one has

 

��B�= �B0 ! K�X�
��B! Xs��

� 1:13� 0:30; (50)

 

��B�= �B0 ! �K0X�
��B! Xs��

� 0:89� 0:42: (51)

TABLE IV. Predictions for decay rates and direct CP asym-
metries for charged B� ! MX �S � 0 semi-inclusive hadronic
decays, which are the same as for corresponding �B0 ! MX,
�B0
s ! MX given in Table II. The first errors are an estimate of the

1=mb corrections, while the second errors are due to errors on the
Gegenbauer coefficients in the expansion of the LCDA.

MX Br�B� ! MX�=Br�B! Xs�� ACP

��X0
u �u 0:67� 0:37� 0:14 �0:04� 0:02� 0:01

�0X�d �u �4:1� 2:1� 2:6� � 10�3 0:64� 0:10� 0:10
K0X�s �u �1:0� 0:5� 0:3� � 10�2 �0:15� 0:11� 0:01

�X0
u �u 1:76� 0:97� 0:38 �0:04� 0:02� 0:01

0X�d �u �1:3� 0:6� 0:7� � 10�2 0:63� 0:10� 0:10
K�0X�s �u �1:4� 0:8� 0:5� � 10�2 �0:17� 0:11� 0:03
�X�d �u �2:0� 1:1� 0:1� � 10�4 —
!X�d �u �3:8� 1:8� 1:1� � 10�3 �0:72� 0:13� 0:20

TABLE III. Predictions for decay rates and direct CP asym-
metries for charged B� ! MX �S � 1 semi-inclusive hadronic
decays, which are the same as for corresponding �B0 ! MX,
�B0
s ! MX given in Table I. The first errors are an estimate of the

1=mb corrections, while the second errors are due to errors on the
Gegenbauer coefficients in the expansion of the LCDA.

MX Br�B� ! MX�=Br�B! Xs�� ACP

K�X0
u �u 0:17� 0:09� 0:06 0:30� 0:16� 0:01

�K0X�d �u 0:20� 0:11� 0:06 �9:7� 4:8� 0:6� � 10�3

�0X�s �u �1:0� 0:6� 0:2� � 10�2 —

K��X0
u �u 0:28� 0:16� 0:06 0:32� 0:16� 0:02

�K0�X�d �u 0:34� 0:19� 0:07 �8:4� 4:6� 1:9� � 10�3

�X�s �u 0:22� 0:13� 0:03 �8:9� 5:0� 1:6� � 10�3

!X�s �u �2:8� 3:3� 0:7� � 10�3 0:49� 0:24� 0:33
0X�s �u �2:4� 1:4� 0:5� � 10�2 —

2For instance, the same p2
X cut corresponds to higher EM cut

for heavier mesons. For p2
X < �2 GeV�2 one has E� > 2:26 GeV

for B! �X, while E� > 2:36 GeV for B! �X (to be com-
pared with mB0=2 � 2:64 GeV). Thus mB=2� EM 	� with
1� xM 	O��=mB�.
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The central values of the measurements are substantially
higher than the perturbative predictions for B� ! K�X0

u �u
and B� ! �K0X�d �u modes,3 given in Table III. They are still
consistent within errors, with the discrepancies, respec-
tively, at 3� and 1:6� levels for K�X and K0X modes,
but do indicate that there might be substantial nonpertur-
bative charming penguin contributions (or very large 1=mb
corrections). Using isospin symmetry the charming pen-
guin parameters, pKcc and PK

cc, in the two modes are the
same. The three real parameters, jpKccj, arg�pKcc�, and PK

cc,
can then be determined from the four observables: the two
branching ratios (50) and (51) and the corresponding CP
asymmetries once these are measured. This would also
leave one observable as a consistency check.

Since the CP asymmetries are not measured yet, this
procedure is not possible at present without further approx-
imations. Quite generally one expects that roughly
jpKccj2 	 PK

cc. As a starting point we thus take this relation
to be exact and then extract jpKccj as a function of arg�pKcc�
from the K�X (K0X) decay width. This gives for the non-
perturbative charming penguin to be about a factor 4� 3
(4:5� 2) larger then the perturbative prediction, i.e. the
part of Cc4 containing the C1 Wilson coefficient.

Here the error is a sum of the experimental error and the
error due to the variation of arg�pKcc� 2 �0; 2��. Another
way of presenting this result is through the ratio of non-
perturbative and perturbative contributions to the decay
width

 

���������
�s�
c pKcc
h�s�K

���������
�

2:2� 1:1: K�X
2:0� 1:5: K0X;

(52)

that should be zero if the charming penguins are purely
perturbative. The error on the ratios mostly reflects the
variation due to a scan over the phase of pKcc. These values
are very sensitive on the assumed relation between jpKccj2

and PK
cc and should be taken as a rough guide only.

Nevertheless, they show that there is experimentally a
possible indication for sizable nonperturbative charming
penguin. Two ingredients would help to clarify the situ-
ation significantly. First, the inclusion of chirally enhanced
1=mb terms would show whether part of the discrepancy
can be attributed to those terms [22,23]. Second, the cut on
p��K� should be lowered experimentally below the rather
high value of 2.34 GeV used at present [1], so that one
would be sure that the measurement is in the endpoint
region, where our calculations are applicable, and away
from the resonance region.

Further tests are possible once more modes are mea-
sured. For instance, by using SU(3) flavor symmetry the
charming penguin parameters for different modes can be
related to only three real parameters, jpccj, arg�pcc�, and
P cc, making the framework even more predictive (at the
expense of some accuracy due to SU(3) breaking). Note
that in order to realize experimentally whether there are
nonperturbative charming penguins and/or large 1=mb
corrections one does not need any symmetry arguments,
just a comparison between our perturbative predictions and
the experiment. To distinguish between the two sources of
corrections, however, the flavor symmetries would most
likely be needed.

An interesting set of modes that could be used to settle
the question concerning large 1=mb corrections versus
nonperturbative charming penguin are the decays where
no charming penguins are present. These are the �S � 0
decay B! �X and the color-suppressed �S � 1 decays
B! !X, �0X. They are experimentally more challenging
since one would also need to measure the strangeness
content of the inclusive jet. Namely, the related decays,
the �S � 1 decay B! �X and the �S � 0 decays B!
!X, �0X, do contain charming penguins and should thus
be distinguished experimentally from the first set of modes
that does not contain charming penguins. Furthermore, the
decays that do not receive charming penguin contributions
might have substantial 1=mb corrections [5], so one may
need to go one higher order in the 1=mb expansion to have
a definite understanding of experimental results.

We next move to the decays involving � and �0 mesons.
The expressions for the decay widths in the endpoint
region have been derived in Sec. IV with the final result
given in Eq. (48). At LO in 1=mb, two new shape functions
appear that are specific to B! ��

0�X decays. At lowest
order in �s, Sg�EM;�0� and Sgg�EM;�0� defined in
Eqs. (43) and (46) (or FM

g and FM
gg in Eqs. (B17) and

(B20) to all orders in �s) describe gluonic contributions
coming from one and two O1g operator insertions, respec-
tively, cf. Fig. 5. Little is known about these new non-
perturbative functions, because of the lack of experimental
data. At present only the B! �0X partial decay width with
E�0 > 2:218 GeV cut has been measured [2–4].
Normalizing to the B! X� decay width with the same
E� cut gives4

 

��B! �0X�
��B! Xs��

� 1:76� 0:40: (53)

In B! ��
0�X decays there are 8 observables that are

independent at LO in 1=mb: the �S � 1 and �S � 0 B!
�0X, �X decay widths and direct CP asymmetries.
Working at LO in �s�

����������
�mb

p
� and neglecting the EM de-

3The measurements are an average over charge and neutral B
decays to K�X (or �K0X) final state, but these are the same to the
order we are working, see Table I. Decays to �K0X final state
include also an incoherent sum with �S � 0 decays into K0X�s �u,
which are, however, CKM suppressed and thus small, see
Table IV.

4If instead the same p�0 and p� cuts are used the decay widths
ratio is 1:34� 0:30. The difference compared to Eq. (53) reflects
the effect of the large m�0 mass.
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pendence of shape functions, one introduces only two new
nonperturbative parameters specific to these decays, Sg
and Sgg. With more data they could in principle be deter-
mined from experiment in the future. Note, in particular,
that the charming penguin parameters entering the predic-
tions can be fixed using SU(3) flavor symmetry from semi-
inclusive decays into nonisosinglets.

To have some future guidance on the size of the missing
components, we list in Table V the purely perturbative
predictions where we set both the charming penguin as
well as the new gluonic shape function contributions to
zero and neglect NLO corrections from O2g insertions.
One striking aspect of that calculation is that the prediction
for �S � 1 B! �0Xs decay falls remarkably short of the
large measured value. Furthermore in this incomplete per-
turbative prediction the hierarchy between �Xs and �0Xs
decays is exactly opposite to the one found in two-body
B! �0K, �K decays. While Br�B! �0K� � Br�B!
�K�, the hierarchy in the incomplete prediction for the
semi-inclusive decays is inverted. In the two-body decays
the hierarchy is well explained through the constructive
and destructive interference of B! �qK and B! �sK
contributions in B! �0K and B! �K amplitudes, re-
spectively, due to �� �0 mixing, if A�B! �qK� ’
A�B! �sK�. This is exactly what is found in the limit
of charming penguin dominance [21,39]. In the semi-
inclusive decay on the other hand there are no charming
penguin contributions to B! �qXs at LO in 1=mb,
cf. Eq. (30), so that with large charming penguins there
is no large hierarchy between B! �0Xs and B! �Xs
decays.

To be more quantitative, it is instructive to take three
formal limits: (i) dominating charming penguins,
(ii) dominating O2g contributions, and (iii) the incomplete
perturbative prediction with C2g ! 0. If the amplitudes are
dominated by charming penguins then (in the SU(3) sym-
metric limit)

 

Br�B� ! �X�s �u�

Br�B� ! �0X�s �u�
� tan2� � 0:67: (54)

Thus, as already argued above, in this limit there is no
hierarchy between the two decays since Lipkin’s argument
of destructive and constructive interferences does not work
for semi-inclusive decays. On the other hand, if O2g con-

tributions dominate then working at LO in �s�
����������
�mb

p
� we

have
 

Br�B� ! �X�s �u�

Br�B� ! �0X�s �u�

�
j�cos�f�q��q � sin�f�s��s� 
 �

1
u�

1
�u�j

2

j�cos�f�q��q � sin�f�s��s� 
 �
1
u�

1
�u�j

2
: (55)

Numerically this gives 1:2� 10�4 if asymptotic LCDA are
used, and 1:52� 10�2 if SU(3) breaking is estimated by
setting a�s2 � aK2 instead. In the limit of dominant O2g

contributions we thus have a similar large hierarchy be-
tween �Xs and �0Xs decays as in the two-body decays due
to the destructive interference as is apparent from Eq. (55).
Finally, if the incomplete perturbative calculation were a
valid approximation, then we would have an inverted
hierarchy between �Xs and �0Xs decays. This is due to a
cancellation that is found between different terms in the
B! �0Xs perturbative prediction. Because of small B!
�0Xs decay width, however, this limit is phenomenologi-
cally excluded.

In order to understand the relative size of charming
penguin and the O2g contributions it is important to have
a measurement of B! �Xs decays. The relative size
compared to the B! �0Xs decay width is clearly different
in the two extreme cases when only one of the two con-
tributions is important. Comparing further with the other
decays one should be able to determine all the nonpertur-
bative parameters. As an exercise we set P�s � jp�scc j2 and
take p�scc to be equal to pKcc obtained from B! K�X,
leading to a prediction for the normalized decay width
Br�B� ! �0X�s �u�=Br�B! Xs�� � 0:43� 0:25 with the
variation mainly due to the unknown strong phase of pKcc
(while for the �S � 0 decay we find Br�B� !
�0X�d �u�=Br�B! Xs�� � 0:02� 0:02). This is still smaller
then the measured value (53), not surprising given the
approximations made to arrive at it. Whether the difference
is partially explained also by O2g contributions should be
clarified once more data are available.

VI. CONCLUSIONS

In the framework of SCET we considered semi-
inclusive, hadronic decays B! XM in the endpoint re-
gion, where the light meson M and the inclusive jet X with
p2
X 	�mb are emitted back to back. This is an extension

of the analysis done in Ref. [5] where we limited consid-
eration to decays in which the spectator quark does not
enter into the meson M. The contributions in which the
spectator quark enters the meson M are power suppressed
by 1=m2

b in SCET. In this work we thus extend the SCET

TABLE V. Predictions for decay rates and direct CP asymme-
tries for charged B� ! �X�, �0X� decays �S � 1�0� semi-
inclusive hadronic decays given in the first (last) two rows. The
predictions equal also the corresponding �B0 ! �X, �0X, �B0

s !
�X, �0X decay as given in Table II. The first errors are an
estimate of the 1=mb corrections, while the second errors are due
to errors on the Gegenbauer coefficients in the expansion of the
LCDA.

MX Br�B� ! MX�=Br�B! Xs�) ACP

�X�s �u �5:6� 2:9� 0:6� � 10�2 ��7:1� 1:8� 2:8� � 10�2

�0X�s �u �1:0� 2:0� 0:3� � 10�2 0:19� 0:19� 0:08

�X�d �u �6:2� 3:2� 1:3� � 10�2 �0:38� 0:10� 0:10
�0X�d �u �2:4� 1:2� 0:7� � 10�2 �0:46� 0:12� 0:10
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predictions at LO in 1=mb to all decays where the spectator
can enter either the jet X or the meson M. In SCET the
four-quark operators factorize, which allows for a system-
atic theoretical treatment. After matching the full QCD
effective weak Hamiltonian onto SCETI, the weak interac-
tion four-quark operators factor into the heavy-to-light
current and the �n-collinear current. The forward scattering
amplitude of the heavy-to-light currents leads to a convo-
lution S of the jet function with the B-meson shape func-
tion, while the matrix element of �n-collinear currents gives
the LCDA for the meson M. The product of the two then
gives the factorized form for the decay rates. The two
nonperturbative functions, the convolution S and the
LCDA, are the only nonperturbative inputs in the predic-
tions for B! XM decay rates at leading order in 1=mb.
Furthermore, the same convolution S appears in B! Xs�
decay and drops out in the ratio of B! XM to the B!
Xs� rate and in the predictions for direct CP asymmetries.
Further work on higher-order corrections would be useful
in reducing the theoretical uncertainty.

Nonperturbative charming penguin contributions can be
included by the addition of one real and one complex
parameter in the SU(3) symmetry limit. These parameters,
which are zero if the charming penguins are purely pertur-
bative, can in principle be extracted from data. Thus by
investigating decays without charming penguins, we can
test whether the formalism is working. Then by looking at
modes where the charming penguin can contribute, we can
potentially see whether or not the charming penguin gives a
large contribution to the decays.

Decays where the light meson is an isosinglet � or�0 are
special in that they receive additional contributions from
gluonic operators. We consider these decays in detail, and
show that the decay rate still factorizes, but there are two
new shape functions which enter into the predicted rate.

Using the available data, we performed an analysis of
the semi-inclusive hadronic decays. While to date the data
is limited, our preliminary analysis seems to indicate either
large higher-order corrections or a large contribution from
nonperturbative charming penguins. With more data, it
may be possible to distinguish the two possibilities as
well as to extract the size of the nonperturbative charming
penguin contributions.
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APPENDIX A: TREE-LEVEL MATCHING

The matching of the effective weak Hamiltonian in full
QCD
 

HW �
GF���

2
p

� X
p�u;c

��q�p �C1O
p
1 � C2O

p
2 �

� ��q�t

�X10

i�3

CiOi � CgOg � C�O�

��
; (A1)

onto an SCETI one was calculated at NLO in �s�mb� first
in Refs. [23], and then in Ref. [19], giving the SCETI

effective weak Hamiltonian in Eq. (7). Here we list for
reader’s convenience the tree-level result of the matching
 

Cp1;2�v� � �up

�
C1;2 �

C2;1

N

�
�

3

2

�
C10;9 �

C9;10

N

�
;

Cp3 �v� �
3

2

�
C7 �

C8

N

�
;

Cp4;5�v� � C4;3 �
C3;4

N
�

1

2

�
C10;9 �

C9;10

N

�
;

Cp6 �v� � C5 �
C6

N
�

1

2

�
C7 �

C8

N

�
;

(A2)

while the NLO results in our notation can be found in
Appendix A of Ref. [5].

APPENDIX B: DERIVATION OF GLUONIC
CONTRIBUTIONS

In this appendix we provide details on the derivation of
G�0� in Eq. (35) and extend the results for �d�=dEM�g and
�d�=dEM�gg in Eqs. (44) and (47) to all orders in

�s�
����������
�mb

p
�. We start with the T-products

 G ���cg� � hMXji
Z
d4xTfO1g�0�;L

�1�
���cg��x�gjBi; (B1)

that were already defined in Eq. (32) and are also shown in
Fig. 6. The subleading SCET Lagrangians appearing in
Eq. (B1) are

 L �1�
�� � �q0�n�Y

y
�n i 6D

?
usY �n�

1

n  P
�Wy�n i 6D

?
�n W �n�

6n
2
q0�n

� �q0�n�W
y
�n i 6D

?
�n W �n��Y

y
�n i 6D

?
usY �n�

1

n  P
6n
2
q0�n; (B2)

where the sum over light quark flavors q0 is understood,
and [40]

 L �1�
cg �

2

g2 Trf�iD�
0 ; iD

?	
c ��iD0�;W �niD?us	W

y
�n �g; (B3)
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with iD�
0 � iD� � gA��n and iD� � �n�

2 P� P
�
? �

n�
2 i �n 

Dus.
For the calculation of G�� it is useful to rewrite

 

L�1��� � L�1���;a �L�1���;b

� �q0�ngA6
?
us

1

n  P
igB6 ?�n

6n
2
q0�n � �q0�nigB6

?
�n gA6

?
us

1

n  P

�
6n
2
q0�n � . . . ; (B4)

with A?�
us defined in Eq. (34), while the ellipses denote

additional terms containing P? that do not contribute in
our case. G�� is then also split accordingly into

 G ��;a�b� � hMXji
Z
d4xTfO1g�0�;L

�1�
��;a�b��x�gjBi: (B5)

In the SCETI to SCETII matching (where p2 	�mb inter-
mediate degrees of freedom are integrated out) we focus on
the �n fields in G��;a. The matching leads to two jet func-
tions once hard-collinear modes are integrated out, and we
obtain

 Tf�B?��n �
cd�0�; �� �q �n�

a���?B6
?
�n 6nq �n�

b�u�x�g

� i��x���2�x?�
1

mb

Z dk�
2�

e�ik�x�=2��TA�ba

��TA�cdJ1�u; k�� � �
ab�cdJ01�u; k���

� � �q �n��?�
�
?6nq �n�u �    ; (B6)

with k� � �n  k, x� � n  x. The ellipses are terms which
do not contribute to ��

0� states. Tree-level matching gives
for the jet functions J1�u; k�� � 1=�Nk�� and J01�u; k�� �
0. The J01 term does not contribute to G��;a since it leads to

Tr�gA?�
us � � 0. The remaining piece can be rearranged

using color identities into

 G ��;a �
�s
4�

Z dk�dx�
4�

e�ik�x�=2
Z
du
J1�u; k��

u

�hMXj� �qn 6 �n�
?
�PRY

y
n Y �ngA

?
us��x�Y

y
�n bv�

� � �q �n��?�
�
?6nq �n�ujBi: (B7)

The two terms in the square brackets are factorized in the
sense that there are no soft gluon exchanges between the
two terms—all the soft fields are in the first bracket. The
communication between the two is only through the k� and
u convolutions with the jet function J1�u; k��.

Using the definition of the LCDA

 hMj�q �n�
a
i �� �q �n�

b
j �uj0i � �

i
2
EMfM�M�u�

�ab

N

�
6 �n
2
�5

�
ij
;

(B8)

to evaluate the matrix element from the second square
bracket in (B7) we then have

 G ��;a � �
i�smb

4�

Z
dufM�M�u�

�
Z dk�dx�

4�
e�ik�x�=2 1

u
J1�u; k��

� hXj �qnY
y
n Y �n�0�6 �ngA6 ?us�x��PRY

y
�n bv�0�jBi:

(B9)

In simplifying the Dirac structure the identity

 
��? �6n; 6 �n��?�PR � 4i��?PR (B10)

was used, 
0123 � �1, and 
��? � 
���� �n�n�=2. For the

derivation of G��;b we notice that L�1���;b is a Hermitian

conjugate of L�1���;a. Using the Hermitian conjugate of (B6)
we finally have
 

G�� � �
i�smb

4�

Z
dufM�M�u�

Z dk�dx�
4�

e�ik�x�=2

�

�
1

u
J1�u; k�� �

1

�u
J1� �u;�k���

�

� hXj �qnY
y
n Y �n�0�6 �ngA6 ?us�x��PRY

y
�n bv�0�jBi: (B11)

Moving now to the calculation of Gcg, we first rewrite

L�1�cg in a more useful form

 L �1�
cg �

2

g2 Trf�igB�
�n?; igB

	
�n?��igB

?
�n�; gA

?
us	�g �    ;

(B12)

where the ellipses denote terms that do not contribute to
Gcg. The matching from SCETI to SCETII gives
 

Tfig�B�
�n?�

cd�0�;L�1�cg �x�g

� i
�	? g�A
?
us	�

cd�x���x���2�x?�
Z dk�

2�
e�ik�x�=2 1

mb

�
Z
duJg�u; k��


�0	0

? Tr�igB?�n�0igB
?
�n	0 �u �    ;

(B13)

where again the ellipses denote terms that do not contribute
for ��

0� final states either because the collinear gluons are
not in color-singlet combination or they have incorrect
parity. Using the definition of gluonic LCDA Eq. (21)
and the identity (B10), we then have
 

Gcg � �i
�������
CF

p �smb

4�

Z
duf1

P
��g
P�u�

�
Z dk�dx�

4�
e�ik�x�=2Jg�u; k��

� hXj �qnY
y
n Y �n�0�6 �ngA6 ?us�x��PRY

y
�n bv�0�jBi: (B14)

At tree level we have Jg�u; k�� � Jg�k��, independent of
u. Since ��g

P�u� is antisymmetric, ��g
P�u� � � ��g

P� �u�, the
matrix element Gcg vanishes at this order. The sum of the
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two contributions, G�� in Eq. (B11) and Gcg in Eq. (B14),
then gives the result for G�0� quoted in Eq. (35).

We next extend the results for �d�=dEM�g and
�d�=dEM�gg in Eqs. (44) and (47) to all orders in

�s�
����������
�mb

p
�. To do so, we redefine the heavy-to-light cur-

rent ~J in Eq. (38) to contain also the integration over hard
momenta fractions u [since in general one may not be able
to factor this dependence from the dependence on soft k�
momenta in the jet functions J1;g�u; k��],

 J M�0� �
Z
du

Z dk�dx�
4�

e�ik�x�=2FM�k�; u�~JH�0; x��:

(B15)

The heavy current ~JH is given in Eq. (33), while the hard-
collinear kernel multiplied by LCDA, FM�k�; u�, is given
in Eq. (36). Unlike the current ~J in Eq. (38), the current
JM in (B15) depends on the final state meson M through
LCDA that are part of the FM�k�; u� function.

The derivation of the B! XM decay width is now very
similar to the one given in Sec. IV. Starting from the T
product of heavy currents corresponding to one O1g in-
sertion,

 TMg �EM� �
i
mb

Z
d4zh �BjTJyH�z�J

M�0�j �Bi; (B16)

with JH�z� � ei�~p�mbv�z� �qn 6 �nPLY
y
n bv��z� and JM�0� given

in (B15), we use the factorization of n collinear quark
fields from the rest at LO in 1=mb to write
 

Disc:TMg �EM� � 2
Z
dl�dr�

Z
du

� Im
�
�1

�
JP�l� �mb � 2EM � i
�

�

� fg�l�; r��F
M�r�; u�

� 2FM
g �EM;�0�; (B17)

where the n-collinear jet function JP��� � i
�was defined

in Eq. (41), while the shape function fg�l�; r�� was de-
fined in Eq. (42). Using the optical theorem we now have
for the decay width contribution from single O1g insertion
 �
d�

dEM

�
g
�
G2
F

4�
m2
bx

2
MfM 2Re���q�t C1gF

M
g �EM;�0�

� ��M 
 �
�q�
p T

�q�
M;p�

��: (B18)

This extends Eq. (44) to all orders in �s�
����������
�mb

p
�. We

reiterate that the shape function FM
g �EM;�0� now contains

an integral over hard momenta fractions in the LCDA so
that it depends on the meson M.

Defining similarly for the double O1g insertion

 TMgg�EM� �
i
mb

Z
d4zh �BjTJMy�z�JM�0�j �Bi; (B19)

we have
 

Disc:TMgg�EM� � 2
Z
dl�dr�ds�

� Im
�
�

1

�
JP�l� �mb � 2EM � i
�

�

�
Z
duFM�r�; u�

Z
dvFM�s�; v�

�

� fgg�l�; r�; s��

� 2mbF
M
gg�EM;�0�; (B20)

where the shape function fgg�l�; r�; s�� that depends on
three soft momenta was defined in Eq. (45). For the double
O1g insertion contribution to the decay width we then have

 

�
d�

dEM

�
gg
�
G2
F

2�
m2
bxMF

M
gg�EM;�0�j�

�q�
t C1gj

2; (B21)

which extends Eq. (47) to all orders in �s�
����������
�mb

p
�, with the

shape function FM
gg�EM;�0� again depending on the me-

son M through the LCDA.
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