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We study the lowest-lying scalar mesons in the QCD sum rule by considering them as tetraquark states.
We find that there are five independent currents for each state with a certain flavor structure. By forming
linear combinations, we find that some mixed currents give reliable QCD sum rules. Among various
tetraquark currents, we consider those which are constructed by the diquarks having antisymmetric and
symmetric flavor structures. That the results of the QCD sum rule derived from the two types of currents
are similar suggests that the tetraquark states can have a large mixing between different flavor structures.
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I. INTRODUCTION

The light scalar mesons ��600�, ��800�, a0�980�, and
f0�980� compose a nonet with the mass below 1 GeV [1–
7]. Almost 30 years ago, Jaffe suggested that they can be
tetraquark candidates, which can explain the mass spec-
trum of the light scalar mesons and also their decay prop-
erties [8] (see also Ref. [9] for recent progress).

So far, several different pictures for the scalar mesons
have been proposed. In the conventional quark model, they
have a �qq configuration of 3P0 whose masses are expected
to be larger than 1 GeV due to the p-wave orbital excitation
[10]. Moveover, by a naively counting of the quark mass,
the mass ordering should be m� �ma0

<m� <mf0
. They

are regarded as chiral partners of the Nambu-Goldstone
bosons in chiral models ��;K; �; �0� [11], and their masses
are expected to be lower than those of the quark model due
to their collective nature. Yet another interesting picture is
that they are tetraquark states [12–20]. In contrast with the
�qq states, their masses are expected to be around 0.6–
1 GeV with the ordering of m� <m� < ma0;f0

, consistent
with the recent experimental observations [1–3]. The light-
ness of these states is expected to be explained by the
strong attractive quark correlation in the scalar and iso-
scalar channel. There are some lattice studies supporting
this [21,22]. Besides their masses, the decay properties are
also interesting and important and are studied in many
papers [23–27].

In our previous paper, we found that there are five
independent currents for the tetraquark ud �s �s of quantum
numbers JP � 0�, and we performed a QCD sum rule
analysis using both the single currents and the mixing
between two of them [28]. In this paper, we follow the
same procedure and perform the QCD sum rule analysis
for the light scalar mesons. We find once again that there
are five independent currents for each scalar tetraquark
state. We perform a reliable QCD sum rule by using mixed

currents and obtain the masses of the light scalar mesons.
The results are consistent with the experiments. The
present discussion is an extension of our recent work
shortly reported in Ref. [29].

Unlike �qq and qqq currents, tetraquark currents have
complicated structure due to multiquark degrees of free-
dom. In order to explain the essential point, it is sufficient
to adopt a diquark construction for tetraquark currents. An
alternative method of mesonic construction is completely
equivalent to the former [28]. The tetraquarks contain a
diquark and an antidiquark having either symmetric or
antisymmetric flavor structure. In the flavor SU�3� sym-
metric limit, they correspond to 6f or �3f. As we will discuss
in the next section in detail, both diquarks can be used to
construct independent tetraquark currents for scalar me-
sons. More generally, there are some independent currents
for a given spin with different flavor structures. This is very
much different from the ground state baryons, where dif-
ferent flavor representations 8 and 10 correspond to differ-
ent spins 1=2 and 3=2, which induce a mass splitting
between ��1232� and N�939�.

In this paper, first we construct the tetraquark currents
using diquark and antidiquark fields having the antisym-
metric flavor �3f � 3f, which is in accordance with the
expected light scalar nonet. Furthermore, we construct
another set of tetraquark currents by using diquark and
antidiquark fields having the symmetric flavor 6f � �6f. We
do not, however, consider other possibilities such as 6f �
�3f, since they cannot produce tetraquark currents having
the scalar quantum numbers (color singlet and JP � 0�).
Then as we have done previously [28], we show that there
are five independent currents for both constructions. We
will then search linear combinations of the currents that
optimize the QCD sum rule and reproduce the results
compatible with the expected light scalar mesons. While
performing a QCD sum rule analysis, we also find that the
results of the two constructions have some similarities. In
fact, if we work in the SU�3�f limit, we obtain identical
results for the operator product expansion (OPE).

Since the scalar mesons, especially �, decays strongly to
two pseudoscalar mesons, their effects should be signifi-
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cant for quantitative discussions. The contamination from
such two-meson decay should be removed when perform-
ing the QCD sum rule analysis, which is, however, a
difficult theoretical problem so far. Nevertheless we con-
sider a phenomenological method by adding another pa-
rameter corresponding to a decay width for the QCD sum
rule analysis.

This paper is organized as follows. In Sec. II, we estab-
lish five independent tetraquark currents of JP � 0� and
construct mixed currents for �, �, a0, and f0. In Sec. III,
we perform a QCD sum rule analysis by using single
currents. In Sec. IV, we perform a QCD sum rule analysis
by using mixed currents. In Sec. V, we consider the effect
of finite decay width, which is important for the cases of �
and �. In Sec. VI, we perform a QCD sum rule analysis for
conventional �qq scalar mesons and compare the result with
those of tetraquark sum rule. Section VII is devoted to a
summary. In the appendix, we study the relations between
�qq�� �q �q� and � �qq�� �qq� structures.

II. TETRAQUARK CURRENTS

There are many possibilities to construct tetraquark
currents. Let us classify them first by flavor quantum
numbers. In the SU�3� flavor limit, a diquark or an anti-
diquark carries the flavor

 3 f � 3f � �3f � 6f; or �3f � �3f � 3f � �6f:

We follow the method in our previous work [28], where
tetraquark currents are formed by a local product of di-
quark and antidiquark fields. In order to make a scalar
tetraquark current, the diquark and antidiquark fields
should have the same color, spin, and orbital symmetries.
Therefore, they must have the same flavor symmetry,
which is either antisymmetric (�3f � 3f) or symmetric (6f �
�6f). The possible flavor quantum numbers of the tetraquark
states are then

 

�3 f � 3f � 1f � 8f; 6f � �6f � 1f � 8f � 27f; (1)

where the corresponding weight diagrams are shown in
Fig. 1. The scalar nonet 1� 8 is therefore included in both
representations, independently. For �3f � 3f � 1f � 8f, �
and a0 are the members of 8f while � and f0 can be either
in 1f or in isospin I � 0 component of 8f. Or, they can also
mix and, in particular, the ideal mixing is achieved by

 

j�i �

���
1

3

s
j1fi 	

���
2

3

s
j8f; I � 0i;

jf0i �

���
2

3

s
j1fi �

���
1

3

s
j8f; I � 0i;

(2)

where only isospin symmetry is respected and the currents
are classified by the number of strange quarks. We can find
another set of linear combinations for the symmetric case.
Hence, denoting light u, d quarks by q, � currents are
constructed as qq �q �q , � currents by qs �q �q and a0 and f0

currents by qs �q �s . A naive additive quark counting for this
construction is consistent with the observed masses,
��600�, ��800�, a0�980�, and f0�980�. Also, in the QCD
sum rule we find that the ideal mixing is needed in order to
reproduce the expected mass pattern of �, �, a0, and f0.

Using the antisymmetric combination for diquark flavor
structure, we arrive at the following five independent cur-
rents:
 

S�3 � �u
T
aC�5db�� �ua�5C �dTb 	 �ub�5C �dTa �;

V�3 � �u
T
aC���5db�� �ua���5C �dTb 	 �ub���5C �dTa �;

T�6 � �u
T
aC���db�� �ua���C �dTb � �ub���C �dTa �;

A�6 � �u
T
aC��db�� �ua��C �dTb � �ub��C �dTa �;

P�3 � �u
T
aCdb�� �uaC �dTb 	 �ubC �dTa �:

(3)

where the sum over repeated indices (�, �; 
 
 
 for Dirac,
and a, b; 
 
 
 for color indices) is taken. Either plus or
minus sign in the second parentheses ensures that the
diquarks form the antisymmetric combination in the flavor
space. The currents S, V, T, A, and P are constructed by
scalar, vector, tensor, axial-vector, pseudoscalar diquark
and antidiquark fields, respectively. The subscripts 3 and
6 show that the diquarks (antidiquark) are combined into
the color representation �3c and 6c (3c or �6c), respectively.

We will perform the sum rule analysis using all currents
and their various linear combinations. We will find that the
results for single currents are not always reliable. In fact,
we will find a good sum rule by a linear combination of A�6
and V�3

 ��1 � cos�A�6 � sin�V�3 ; (4)

where � is the mixing angle. As we will discuss in Sec. IV,
the best choice of the mixing angle turns out to be cot� �
1=

���
2
p

. The mixed currents for �, a0 and f0 can be found in
a similar way
 

��1 � cos�A�6 � sin�V�3 ;

�a0
1 � cos�Aa0

6 � sin�Va0
3 ;

�f0
1 � cos�Af0

6 � sin�Vf0
3 ;

(5)

where the best choices are still cot� � 1=
���
2
p

.
The QCD sum rule results for a0 and f0 give the same

results. For simplicity, we will use the charged a0 current
FIG. 1. SU�3� weight diagrams for tetraquark states of anti-
symmetric and symmetric diquarks (antidiquarks).
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 �a0
1 � cos�Aa0�

6 � sin�Va0�
3

� cos��uTaC��sb�� �da��C�sTb � �db��C�sTa �

� sin��uTaC���5sb�� �da�
��5C�sTb 	 �db�

��5C�sTa �:

(6)

We can also construct the tetraquark currents of JP �
0� whose diquark and antidiquark have the symmetric
flavor structure. We use the same superscripts �, �, and
a0 because of the same quark contents. There are five
independent currents
 

S�6 � qTaC�5qb� �qa�5C �qTb � �qb�5C �qTa �;

V�6 � qTaC���5qb� �qa���5C �qTb � �qb���5C �qTa �;

T�3 � qTaC���qb� �qa���C �qTb 	 �qb���C �qTa �;

A�3 � qTaC��qb� �qa��C �qTb 	 �qb��C �qTa �;

P�6 � qTaCqb� �qaC �qTb � �qbC �qTa �:

(7)

The quark contents are 1��
6
p �fuugf �u �ug 	 2fudg�

f �u �dg � fddgf �d �dg� which compose an isoscalar tetraquark.
Either plus or minus sign in the second parentheses ensures
that the diquarks form the symmetric combination in the
flavor space. We construct the similar mixed currents for �,
a0, and f0

 

��2 � cos�A�3 � sin�V�6 ;

��2 � cos�A�3 � sin�V�6 ;

�a0
2 � cos�Aa0

3 � sin�Va0
6 ;

�f0
2 � cos�Af0

3 � sin�Vf0
6 :

(8)

Here the optimal choice of the mixing angle is cot� �
���
2
p

for ��2 and �a0
2 , but with a slightly different value for ��2 ,

which is 1.37.
The currents �1 and �2 have similar structure. We can

interchange them under the exchange of �� $ ���5. We
choose the mixing angle cot� � 1=

���
2
p

for �1, which cor-
responds to cot� �

���
2
p

for �2.
Concerning linear combinations, we have tested more

general cases by using all five currents. However, we could
not find significant improvements over the present results
of using the two currents.

In Table I, we show the diquark properties of ten single
currents. The parity can be obtained by using P � �	�L.

The structures of tetraquark currents are complicated. The
flavor symmetry is not subject to constraints due to the
color, spin, and orbital symmetries. If the diquark and
antidiquark have the antisymmetric flavor, they can have
both the antisymmetric color �3c � 3c (S�3 , V�3 , and P�3 ) and
the symmetric color 6c � �6c (T�6 and A�6 ); they can have
both the antisymmetric spin 0S � 0S (S�3 and V�3 ) and the
symmetric spin 1S � 1S (A�6 and P�3 ); they can have both
positive parity (S�3 and A�6 ) and negative parity (V�3 and
P�3 ).

The situation is the same for the color, spin, and orbital
symmetries. If the diquark and antidiquark have the anti-
symmetric color �3c � 3c, they can have both the antisym-
metric flavor (S�3 , V�3 , and P�3 ) and the symmetric flavor
(T�3 and A�3 ); they can have both the antisymmetric spin
0S � 0S (S�3 and V�3 ) and the symmetric spin 1S � 1S (A�3
and P�3 ); they can have both positive parity (S�3 and A�3 )
and negative parity (V�3 and P�3 ).

We can also construct � �qq�� �qq� currents. We find that
they are equivalent to the �qq�� �q �q� currents. We will
explain in detail the relations between �qq�� �q �q� and
� �qq�� �qq� structures in the appendix.

III. ANALYSIS OF SINGLE CURRENTS

In QCD sum rule, we can calculate matrix elements
from QCD (OPE) and relate them to observables by using
dispersion relations. Under suitable assumptions, the QCD
sum rule has proven to be a very powerful and successful
nonperturbative method for the past decades [30,31].
Recently, this method has been applied to study tetraquarks
by many authors [32–36]. In the QCD sum rule analyses,
we consider two-point correlation functions:

 ��q2� � i
Z
d4xeiqxh0jT��x��y�0�j0i; (9)

where � is an interpolating current for the tetraquark. We
compute ��q2� in the OPE of QCD up to certain order in
the expansion, which is then matched with a hadronic
parametrization to extract information of hadron proper-
ties. At the hadron level, we express the correlation func-
tion in the form of the dispersion relation with a spectral
function:

 ��p� �
Z 1

0

	�s�

s	 p2 	 i"
ds; (10)

TABLE I. Diquark properties of single currents.

(qq) S3 V3 T6 A6 P3 S6 V6 T3 A3 P6

Flavor (f) �3 �3 �3 �3 �3 6 6 6 6 6
Color (c) �3 �3 6 6 �3 6 6 �3 6 �3
Spin (S) 0 0 �0; 1� 1 1 0 0 �0; 1� 1 1
Orbit angular momentum (L) 0 1 �1; 0� 0 1 0 1 �1; 0� 0 1
Total spin (J � S�L) 0 1 1 1 0 0 1 1 1 0
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where

 	�s� �
X
n


�s	M2
n�h0j�jnihnj�

yj0i

� f2
X
�s	M

2
X� � higher states: (11)

For the second equation, as usual, we adopt a parametri-
zation of one pole dominance for the ground state X and a
continuum contribution. The sum rule analysis is then
performed after the Borel transformation of the two ex-
pressions of the correlation function, (9) and (10)

 ��all��M2
B� � BM2

B
��p2� �

Z 1
0
e	s=M

2
B	�s�ds: (12)

Assuming that the contribution from the continuum states
can be approximated well by the spectral density of OPE
above a threshold value s0 (duality), we arrive at the sum
rule equation

 ��M2
B� � f2

Xe
	M2

X=M
2
B �

Z s0

0
e	s=M

2
B	�s�ds: (13)

The use of the continuum function of OPE which is the
basic assumption of the duality greatly simplifies the actual
sum rule analyses. Although ambiguities coming from the
uncertainties in the continuum contribution exist [37], we
shall rely on that assumption as in most of the previous
studies. Differentiating Eq. (13) with respect to 1

M2
B

and

dividing it by Eq. (13), finally we obtain

 M2
X �

Rs0
0 e
	s=M2

Bs	�s�dsRs0
0 e
	s=M2

B	�s�ds
: (14)

In this section, we show the QCD sum rule analysis of �
using single currents S�3 , V�3 , T�6 , A�6 , and P�3 . The results
for �, a0, and f0 are quite similar. We have performed the
OPE calculation up to dimension eight by using
MATHEMATICA with FeynCalc [38]. The results are

 

	�S3�s� �
s4

61440�6
	

ms
2s3

3072�6
� �
hg2GGi

6144�6
	
msh �qqi

192�4 �
msh �ssi

384�4�s
2 �

�
	
m2
shg

2GGi

2048�6
	
mshg �q�Gqi

128�4 �
h �qqi2

24�2 �
h �qqih�ssi

24�2

�
s

	
m2
sh �qqi2

12�2 	
mshg2GGih �qqi

768�4 �
mshg2GGih�ssi

1536�4 �
h �qqihg �q�Gqi

24�2 �
h �ssihg �q�Gqi

48�2 �
h �qqihg �s�Gsi

48�2 ; (15)

 

	�V3�s� �
s4

15360�6
	
ms

2s3

768�6
�

�
hg2GGi

3072�6
�
msh �qqi

96�4 �
msh�ssi

96�4

�
s2 �

�
	
m2
shg

2GGi

1024�6
�
mshg �q�Gqi

128�4 	
h �qqi2

12�2 	
h �qqih�ssi

12�2

�
s

�
m2
sh �qqi

2

6�2 	
mshg

2GGih �qqi

384�4 �
mshg

2GGih�ssi

768�4 	
h �qqihg �q�Gqi

12�2 	
h �ssihg �q�Gqi

48�2 	
h �qqihg �s�Gsi

16�2 ; (16)

 	�T6�s� �
s4

1280�6
	
ms

2s3

64�6
�

�
11hg2GGi

768�6
�
msh �ssi

8�4

�
s2 	

11m2
shg2GGi

256�6
s�

11mshg2GGih�ssi

192�4 ; (17)

 

	�A6�s� �
s4

7680�6
	
ms

2s3

384�6
�

�
5hg2GGi

3072�6
	
msh �qqi

48�4 �
msh �ssi

48�4

�
s2 �

�
	

5m2
shg2GGi

1024�6
�
mshg �q�Gqi

128�4 �
h �qqi2

6�2 �
h �qqih�ssi

6�2

�
s

	
m2
sh �qqi

2

3�2 	
mshg

2GGih �qqi

384�4 �
5mshg

2GGih�ssi

768�4 �
h �qqihg �q�Gqi

6�2 	
h �ssihg �q�Gqi

48�2 �
3h �qqihg �s�Gsi

16�2 ; (18)

 

	�P3�s� �
s4

61440�6
	

ms
2s3

3072�6
�

�
hg2GGi

6144�6
�
msh �qqi

192�4 �
msh �ssi

384�4

�
s2 �

�
	
m2
shg2GGi

2048�6
�
mshg �q�Gqi

128�4 	
h �qqi2

24�2 	
h �qqih�ssi

24�2

�
s

�
m2
sh �qqi2

12�2 �
mshg2GGih �qqi

768�4 �
mshg2GGih�ssi

1536�4 	
h �qqihg �q�Gqi

24�2 	
h�ssihg �q�Gqi

48�2 	
h �qqihg �s�Gsi

48�2 : (19)

In these equations, q represents a u or d quark, and s represents an s quark. h �qqi and h �ssi are dimension D � 3 quark
condensates; hg2GGi is a D � 4 gluon condensate; hg �q�Gqi and hg �s�Gsi are D � 5 mixed condensates.

For numerical calculations, we use the following values of condensates [1,39–44]:
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h �qqi � 	�0:240 GeV�3;

h�ssi � 	�0:8� 0:1� � �0:240 GeV�3;

hg2
sGGi � �0:48� 0:14� GeV4;

mu � 5:3 MeV;

md � 9:4 MeV;

ms�1 GeV� � 125� 20 MeV;

hgs �q�Gqi � 	M2
0 � h �qqi;

M2
0 � �0:8� 0:2� GeV2:

(20)

As usual we assume the vacuum saturation for higher
dimensional operators such as h0j �qq �qqj0i � h0j �qqj0i�
h0j �qqj0i. There is a minus sign in the definition of the
mixed condensate hgs �q�Gqi, which is different than some
other QCD sum rule calculations. This is just because the
definition of coupling constant gs is different [39,45].

For each single current, we have tested the QCD sum
rule analysis, but the result is not good just as in our
previous paper [28]. The spectral densities are shown in
Fig. 2 as functions of the energy square s. Because of the
insufficient convergence of the OPE, the positivity of 	�s�

may not be realized. We find that two functions of S�3 and
A�6 currents show such a bad behavior that 	�s� becomes
negative in the region of s � 0� 1 GeV2, and the QCD
sum rule for these two single currents are not reliable.

The convergence of the OPE is another important issue.
We show the Borel transformed correlation functions for
positive case of V�3 , T�6 , and P�3 with numerical coeffi-
cients:

 ���all�
V3 � 1:6� 10	6M10

B 	 1:3� 10	7M8
B 	 3:5

� 10	6M6
B 	 2:8� 10	6M4

B � 2:4� 10	6M2
B;

���all�
T6 � 2:0� 10	5M10

B 	 1:5� 10	6M8
B � 1:1

� 10	5M6
B 	 3:3� 10	7M4

B 	 3:9� 10	7M2
B;

���all�
P3 � 4:1� 10	7M10

B 	 3:2� 10	8M8
B 	 9:8

� 10	8M6
B 	 1:4� 10	6M4

B � 1:2� 10	6M2
B:

(21)

From these expressions, we observe that the convergence
of the currents V�3 and P�3 is not very good at a typical
energy scale MB � 1 GeV. We have also calculated the
pole contribution which is defined as

FIG. 2. Spectral densities 	�s� for the currents S�3 , V�3 , T�6 , A�6 , and P�3 as functions of s, in units of GeV8.
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 Pole contribution �

Rs0
0 e
	s=M2

B	�s�dsR
1
0 e
	s=M2

B	�s�ds
: (22)

However, due to the negative part of the spectral densities,
the pole contribution is not well defined. Take the current
P�3 as an example, when we choose s0 � 1 GeV2 and
MB � 0:5 GeV, the pole contribution is 101%, which is
larger than 100%, and does not make sense. The pole
contribution is 26% for the current T�6 , when we choose
s0 � 1 GeV2 and MB � 0:6 GeV.

Summarizing the QCD sum rule analysis for the single
currents, including both the �qq�� �q �q� currents and � �qq��

� �qq�, we found that T�6 gives the best QCD sum rule,
which, however, is not yet good enough for quantitative
discussion. In order to improve the sum rule, we move on
to study their linear combinations, which are the mixed
currents.

IV. ANALYSIS OF MIXED CURRENTS

We have performed the OPE calculation for the mixed
currents �1 and �2 up to dimension eight, which contains
the four-quark condensates. The u and d quark masses are
considered in the case of the � meson, and neglected in
other cases.

 

	�1 �s� �
1

11520�6
s4 	

m2
u �m

2
d

288�6
s3 �

�
6
���
2
p
� 7

9216�6
hg2GGi �

�mu �md�h �qqi

36�4

�
s2

�

�
	

6
���
2
p
� 7

1536�6
�m2

u �m
2
d�hg

2GGi �
mumdhg2GGi

512�6
	
�m3

u � 4m2
umd � 4mum2

d �m
3
d�h �qqi

6�4

�
s

�
�5m2

u � 20mumd � 5m2
d�h �qqi

2

9�2 �
6
���
2
p
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shg
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p
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For �, terms containing u, d quark masses mq are small.
For instance, the term ofmqh �qqi of dimension four is about
10 times smaller than the other term of hg2GGi. For �, a0,
and f0, the terms containing strangle quark mass are
important but those containing u and d quark masses are
negligibly small. Therefore, we have ignored them in our
sum rule analysis.

To obtain a reliable QCD sum rule, the mixed currents
�1 and �2 are chosen with the following requirements:

(1) The OPE has a good convergence as going to terms
of higher dimensional operators. This can be exam-
ined by the following numerical Borel transformed
correlation functions, which have a good conver-
gence

 

���all�
1 �M2

B� � 2:2� 10	6M10
B 	 2:5� 10	9M8

B � 1:5� 10	6M6
B 	 4:4� 10	10M4

B 	 4:8� 10	9M2
B;

���all�
2 �M2

B� � 2:2� 10	6M10
B 	 2:5� 10	9M8

B � 1:5� 10	6M6
B 	 5:3� 10	10M4

B 	 1:5� 10	8M2
B;

���all�
1 �M2

B� � 2:2� 10	6M10
B 	 1:7� 10	7M8

B � 1:3� 10	6M6
B � 7:2� 10	8M4

B 	 2:3� 10	8M2
B;

���all�
2 �M2

B� � 2:2� 10	6M10
B 	 1:7� 10	7M8

B � 1:3� 10	6M6
B 	 2:8� 10	7M4

B � 3:4� 10	8M2
B;

�a0�all�
1 �M2

B� � 2:2� 10	6M10
B 	 3:4� 10	7M8

B � 8:8� 10	7M6
B 	 4:1� 10	8M4

B � 1:1� 10	7M2
B;

�a0�all�
2 �M2

B� � 2:2� 10	6M10
B 	 3:4� 10	7M8

B � 8:8� 10	7M6
B 	 4:1� 10	8M4

B � 2:3� 10	8M2
B:

It is interesting to observe that the correlation func-
tions of � have the most rapid convergence, justify-
ing the use of a smaller Borel massMB than the other
cases of �, a0, and f0.

(2) The spectral densities 	�s� become positive for al-
most all energy values, as shown in Fig. 3. This can
be examined for all the mixed currents except ��2 .
Therefore, we need to change the mixing angle of
��2 a little, which is from

���
2
p

to 1.37.
(3) Pole contribution is sufficiently large. By choosing

suitable Borel mass MB and threshold value s0, this
can be satisfied. The Borel transformed correlation
functions are written as power series of the Borel
massMB. Since the Borel transformation suppresses
the contributions from s >MB, smaller values are

preferred to suppress the continuum contributions
also. However, for smaller MB convergence of the
OPE becomes worse. Therefore, we should find an
optimal MB preferably in a small value region. We
have found that the minima of such a region are
0.5 GeV for �, 0.6 GeV for �, and 0.8 GeV for a0

and f0, where the pole contributions reach around
50% for �, a0, and f0, which is an acceptable
amount for �, as shown in Table II. The pole con-
tribution for the mixed current ��1 is improved as
compared with the single current T�6 .

In the SU�3�f limit, we could find that the differences
between 	1 and 	2 vanish:
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d�h �qqi

2
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umd 	mum2
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d�h �q�Gqi

18�4 ;
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64�4 s	
mshg

2GGih �qqi

192�4 	
h�ssih �q�Gqi

24�2 �
h �qqih�s�Gsi
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	a0
1 �s� 	 	
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2 �s� � 	

mshg
2GGih �qqi

96�4 :

(29)
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From Eqs. (23)–(28), we find that the gluon condensates
are quite important. In the chiral limit where all quark
masses vanish, the masses of the scalar mesons are dictated
only by the gluon condensate. Because of the small u and d
quark masses, the mass of the � is dominated by the gluon
condensate. For other masses, however, other condensates
withms also play a significant role. As quarks (in particular
strange quark) become massive, the degeneracy resolves.
We have also tested the case of the SU�3� limit but with the
average quark mass, mq � 50 MeV, and with average
condensates. Then the mass of the scalar mesons turns
out to be about 0.8–0.9 GeV.

If the location of a physical state is well separated from
the threshold s0, slight change in s0 should not affect much
on the observables (mass) of the state. Hence we have
searched the region where the tetraquark mass varies sig-
nificantly less than the change in

�����
s0
p

. We have found such
regions for s0 at around 1 GeV2 from the minimum for �
s0�min� � 0:5 GeV2, for � s0�min� � 1 GeV2 and for a0

and f0 s0�min� � 1:7 GeV2, and up to about 1 GeV2

higher.
After careful testing of the sum rule for a wide range of

parameter values ofMB and s0, we have found reliable sum
rules, which are shown in Table III. It is interesting to
observe that the masses appear roughly in the order of

the number of strange quarks with roughly equal splitting.
In Fig. 4, the masses of the ��600�, ��800�, a0�980�, and
f0�980� are shown as functions of the Borel mass MB. As
we see, the mass is very stable in a rather wide region of
Borel mass MB.

The current �1 has the antisymmetric flavor structure
and �2 has the symmetric flavor structure. By using these
currents with different flavor structures, we arrive at simi-
lar QCD sum rule results. This suggests that the tetraquarks
of different flavor structure may mix with each other, and
the tetraquark states can contain diquark and antidiquark
having the mixing of the symmetric flavor 6f � �6f and the
antisymmetric flavor �3f � 3f, just like they can have a
mixing of different color, spin, and orbital symmetries.
This is very much different from the ground baryon states,
where the different flavor representations 8 and 10 corre-
spond to different spins 1=2 and 3=2, which induces a mass
splitting between ��1232� and N�939�.

TABLE II. Pole contributions of various currents.

��1 ��2 ��1 ��2 �a0
1 �a0

2

MB (GeV) 0.5 0.5 0.6 0.6 0.8 0.8�����
s0
p

(GeV) 0.7 0.7 1 1 1.3 1.3
Pole (%) 28 21 45 36 40 32
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FIG. 3. Spectral densities 	�s� for ��1 , ��2 , ��1 , ��2 , �a0;f0
1 , and �a0;f0

2 , as functions of s, in units of GeV8.
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V. FINITE DECAY WIDTH

The scalar mesons have large decay widths, and it is
important to consider their effect. In this section, we use a
Gaussian distribution for the phenomenal spectral density,
instead of 
-function,

 	FDW�
���
s
p
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s
p
�
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h0j�jnihnj�yj0i
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p
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2
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 �2
X

�
d

���
s
p

� higher states; (30)

where as usual the lowest state denoted by X is isolated
from the rest of the higher states. The Gaussian width�X is
related to the Breit-Wigner decay width � by �X � �=2:4.

Again we assume the continuum contribution can be
approximated by the spectral density of OPE above a
threshold value s0, and we arrive at the sum rule equation
for state having a finite decay width

 �FDW�M2
B� �

Z �1
	1

e	s=M
2
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1�������
2�
p

�

� exp
�
	
�
���
s
p
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2

2�2
X
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���
s
p

�
Z s0

0
e	s=M

2
B	�s�ds: (31)

For a given �, the mass can be obtained by solving the
equation
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	1 e
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Bs exp�	 �
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s
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	MX�
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���
s
p
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X
�d

���
s
p e �

Rs0
0 e
	s=M2

Bs	�s�dsRs0
0 e
	s=M2

B	�s�ds
:

(32)

In Fig. 5, the masses of the ��600�, ��800�, a0�980�, and
f0�980� are shown as functions of the Borel mass MB, by
setting � � 0, 100, 200 and 400 MeV, respectively. We find
that after considering the finite decay width by using the
Gaussian distribution, the predicted masses do not change
significantly as far as the Borel mass is within a reasonable
range, where we can still reproduce the experimental data.
However, the question of finite decay width is very impor-
tant, and we do not consider that our attempt to use the
Gaussian form is the final. We need further investigations,
which we would like to put as a future important work.

0.5 1 1.5 2
Borel Mass [GeV]

0

0.5

1

1.5

M
as

s
[G

eV
]

a ,f (s =1.7)

0

0

0 0

0.5 1 1.5 2
Borel Mass [GeV]

0

1

1.5

M
as

s
[G

eV
]

0.5

a ,f (s =1.7)

0

0

0 0

FIG. 5. Masses of the �, �, a0, and f0 as tetraquark states calculated by the mixed currents �1 (left) and �2 (right), as functions of
the Borel mass MB. For � and �, the solid, short-dashed, and long-dashed curves are obtained by setting � � 0, 200 and 400 MeV,
respectively. For a0 and f0, the solid, short-dashed, and long-dashed curves are obtained by setting � � 0, 100 and 200 MeV,
respectively.
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FIG. 4. Masses of the �, �, a0, and f0 as tetraquark states
calculated by the mixed currents �1 (solid line) and �2 (dashed
line), as functions of the Borel mass MB.

TABLE III. Masses of scalar nonet.

Mass (MeV) ��600� ��800� a0�980� f0�980�

Experiments (PDG) 400� 1200 841� 30�81
	73 984:7� 1:2 980� 10

QCD sum rule 600� 100 800� 100 1000� 100 1000� 100
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VI. CONVENTIONAL �qq MESONS

For comparison, we have also performed the QCD sum rule analysis using the �qq current within the present framework.
The QCD sum rule analyses of conventional �qq mesons have been performed in Refs. [46– 49]. The sum rules using the
current j � �q1q2 are
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(33)

The masses of � and a0 are predicted to be around
1.2 GeV, while the masses of � and f0 are larger due to
the strange quark content. Here again we have tested other
values of MB and s0 and confirmed that the result shown is
optimal. These results are consistent with the previous
work [46–49].

VII. SUMMARY

We have performed the QCD sum rule analysis with
tetraquark currents and found the masses of scalar mesons
in the region of 600–1000 MeV with the ordering, m� <
m� < mf0;a0

. We have also used the conventional �qq cur-
rents and verified their masses around 1.2 GeV. We have
tested all possible independent tetraquark currents as well
as their linear combinations and considered the effect of
finite decay width. Our conclusions are, therefore, rather
robust.

The scalar tetraquark currents can have either the anti-
symmetric flavor or the symmetric flavor structures. We
found that there are five independent currents for each
state. We investigated Borel mass MB and threshold value
s0 dependences, which are quite stable. The convergence
of the OPE is also good, the positivity (of spectral density)
is maintained, and the pole contribution is sufficiently
large. Therefore, we have achieved a QCD sum rule which
is the best reliable within the present calculation of OPE.

Our calculation supports a tetraquark structure for low-
lying scalar mesons. We find that the gluon condensate is
quite large in the OPE of the mixed currents, which is
related to the question of the origin of the mass generation
of hadrons [50]. We obtain similar results by using the
currents having both the antisymmetric flavor structure and
the symmetric flavor structure. This suggests that the tet-
raquark can have a mixing of different flavor symmetries,
as well as different color, spin, and orbital symmetries.
There is a mass splitting due to the different flavor, color,
spin, and orbital structures. If this mass spitting is large
enough to be observed in experiments, the tetraquark spec-
trum would become much more complicated; If the mass
splitting is too small to be observed in experiments, a broad
decay width would be observed. Such a tetraquark struc-

ture will open an alternative path toward the understanding
of exotic multiquark dynamics which one does not expe-
rience in the conventional hadrons.
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APPENDIX: RELATIONS BETWEEN �qq�� �q �q� AND
� �qq�� �qq� STRUCTURES

In this appendix, we study the relations between �qq��
� �q �q� and � �qq�� �qq� currents. We work under SU�3�c �
SU�3�f � SO�1; 3�L, where the quark field qAa� has the
color index a, flavor index A, and Lorentz index �. First,
we consider the color and flavor structures. The inter-
change of both color and flavor does not need to be anti-
symmetric, due to the extra orbital and spin degrees of
freedom. Therefore we cannot use the Pauli principle such
as qAaqBb � 	q

B
bq

A
a within the color and flavor spaces.

Altogether there are four types of diquark (qq) and four
types of quark-antiquark ( �qq). They are shown in Table IV,
where the sum over repeated indices (a, b; 
 
 
 for color
indices, A, B; 
 
 
 for flavor indices) is taken.

To construct a tetraquark by using �qq�� �q �q�, the color is
either �3 � 3� � ��3 � �3� ! �3 � 3! 1 or �3 � 3� � ��3 �
�3� ! 6 � �6! 1; the flavor is �3� 3� � ��3� �3� � ��3� 6� �
�3� �6� � 1� 8� 8� 10� 8� 10� 1� 8� 27. To con-
struct a tetraquark by using � �qq�� �qq�, the color is either
��3 � 3� � ��3 � 3� ! 1 � 1! 1 or ��3 � 3� � ��3 � 3� ! 8 �
�8! 1, with the same flavor structure as before. In Table V,
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we show all possible color and flavor structures of tetra-
quark currents TF1�F2�

C . Here F1 denotes the flavor repre-
sentation of tetraquark; F2 and C show the intermediate
flavor and color representations of either diquark (antidi-
quark) or quark-antiquark. SABCD is the totally symmetric
matrix. Because we want to make a scalar tetraquark state,
the diquark and antidiquark fields should have the same
color, spin, and orbital symmetries. Therefore, they must
have the same flavor symmetry, which is either symmetric
(6f � �6f) or antisymmetric (�3f � 3f).

If the orbital and spin structure between the two quarks
(two antiquarks) are symmetric, then the color-flavor struc-
ture of diquark (antidiquark) should be antisymmetric,
which means qAaqBb � 	q

B
bq

A
a ( �qAa �qBb � 	 �qBb �qAa ). In this

case, we can verify

 

T1�3�
3 � T8�3�

3 � T8�3;6�
3 � T10�3;6�

3 � T8�6;3�
6 � T10�6;3�

6

� T1�6�
6 � T8�6�

6 � T27�6�
6 � 0; (A1)

If the orbital and spin structure between two quarks (two
antiquarks) are antisymmetric, then the color-flavor struc-
ture of diquark (antidiquark) should be symmetric, which
means qAaqBb � qBbq

A
a ( �qAa �qBb � �qBb �qAa ). Then we can verify

 

T1�3�
6 � T8�3�

6 � T8�3;6�
6 � T10�3;6�

6 � T8�6;3�
3 � T10�6;3�

3

� T1�6�
3 � T8�6�

3 � T27�6�
3 � 0: (A2)

Now let us discuss the Fierz rearrangement in order to
relate �qq�� �q �q� and � �qq�� �qq� structures. First we perform it
in the color and flavor spaces. To do this, it is convenient to
consider the interchange of color indices:

TABLE V. Color and flavor structures of tetraquark currents.

�qq�� �q �q� �3 � 3� � ��3 � �3� ! �3 � 3! 1c �3 � 3� � ��3 � �3� ! 6 � �6! 1c

�3 � 3� � ��3 � �3�
! �3 � 3! 1f

�abe�cde�ABE�CDE�q
A
aq

B
b �� �q

C
c �qDd � � T1�3�
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aq

B
b � q
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B
a �� �q
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a �qDb � �qCb �qDa �

� 2�ABE�CDE�q
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aq

B
b �� �q
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6

! �3 � 3! 8f �abe�cde
EFN �ABE�CDF�q
A
aq

B
b �� �q

C
c �qDd � � T8�3�

3 
EFN �ABE�CDF�q
A
aq

B
b �� �q

C
a �qDb � �qCb �qDa � � T8�3�

6

! �3 � �6! 8f �abe�cde
DFN �ABE�CEF�q
A
aq

B
b �� �q

C
c �qDd � � T8�3;6�

3 
DFN �ABE�CEF�q
A
aq

B
b �� �q

C
a �qDb � �qCb �qDa � � T8�3;6�

6

! �3 � �6! 10f �abe�cdeSCDE�ABE�q
A
aq

B
b �� �q

C
c �qDd � � T10�3;6�

3 SCDE�ABE�q
A
aq

B
b �� �q

C
a �qDb � �qCb �qDa � � T10�3;6�

6

! 6 � 3! 8f �abe�cde
BFN �AEF�CDE�q
A
aq

B
b �� �q

C
c �qDd � � T8�6;3�

3 
BFN �AEF�CDE�q
A
aq

B
b �� �q

C
a �qDb � �qCb �qDa � � T8�6;3�

6

! 6 � 3! 10f �abe�cdeSABE�CDE�q
A
aq

B
b �� �q

C
c �qDd � � T10�6;3�

3 SABE�CDE�q
A
aq

B
b �� �q

C
a �qDb � �qCb �qDa � � T10�6;3�

6

! 6 � �6! 1f �abe�cde�qAaq
B
b � q

B
aq

A
b �� �q

A
c �qBd � �qBc �qAd �

� 2�abe�cde�qAaq
B
b �� �q

A
c �qBd � �qBc �qAd � � 2T1�6�

3

�qAaq
B
b � q

B
aq

A
b �� �q

A
a �qBb � �qBa �qAb � �a$ b��

� 2�qAaq
B
b �� �q

A
a �qBb � �qBa �qAb � �a$ b�� � 2T1�6�

6

! 6 � �6! 8f 
NBC�
abe�cde�qAaq

B
b � q

B
aq

A
b �� �q

A
c �qCd � �qCc �qAd � � T8�6�

3 
NBC�q
A
aq

B
b � q

B
aq

A
b �� �q

A
a �qCb � �qCa �qAb � �a$ b�� � T8�6�

6

! 6 � �6! 27f SABCD�
abe�cde�qAaq

B
b �� �q

C
c �qDd � � T27�6�

3 SABCD�q
A
aq

B
b �� �q

C
a �qDb � �qCb �qDa � � T27�6�

6

� �qq�� �qq� ��3 � 3� � ��3 � 3� ! 1 � 1! 1c ��3 � 3� � ��3 � 3� ! 8 � 8! 1c

��3 � 3� � ��3 � 3� ! 1 � 1! 1f � �qAaq
A
a �� �q

B
bq

B
b � � T1�1�

1 � �qAa

ab
n q

A
b �� �q

B
c 


cd
n q

B
d � � T1�1�

8

! 1 � 8! 8f 
NBC� �q
A
aq

A
a �� �q

B
bq

C
b � � T8�1;8�

1 
NBC� �q
A
a


ab
n q

A
b �� �q

B
c 


cd
n q

C
d � � T8�1;8�

8

! 8 � 1! 8f 
NBC� �q
B
aq

C
a �� �q

A
bq

A
b � � T8�8;1�

1 
NBC� �q
B
a


ab
n q

C
b �� �q

A
c


cd
n q

A
d � � T8�8;1�

8

! 8 � 8! 1f � �qAa

N
ABq

B
a �� �q

C
b


N
CDq

D
b � � T1�8�

1 � �qAa

ab
n 


N
ABq

B
b �� �q

C
c 


cd
n 


N
CDq

D
d � � T1�8�

8

! 8 � 8! 8f 
FEN �ACE�BDF� �q
A
aq

B
a �� �q

C
bq

D
b � � T8�8�

1 
FEN �ACE�BDF� �q
A
a


ab
n q

B
b �� �q

C
c 


cd
n q

D
d � � T8�8�

8

! 8 � 8! 80f 
BFN �ACE�DEF� �q
A
aq

B
a �� �q

C
bq

D
b � � T80�8�

1 
BFN �ACE�DEF� �q
A
a


ab
n q

B
b �� �q

C
c 


cd
n q

D
d � � T80 �8�

8

! 8 � 8! 10f �ACESBDE� �q
A
aq

B
a �� �q

C
bq

D
b � � T10�8�

1 �ACESBDE� �q
A
a


ab
n q

B
b �� �q

C
c 


cd
n q

D
d � � T10�8�

8

! 8 � 8! 100f �BDESACE� �q
A
aq

B
a �� �q

C
bq

D
b � � T100�8�

1 �BDESACE� �q
A
a


ab
n q

B
b �� �q

C
c 


cd
n q

D
d � � T100 �8�

8

! 8 � 8! 27f SABCD� �q
A
aq

B
a �� �q

C
bq

D
b � � T27�8�

1 SABCD� �q
A
a


ab
n q

B
b �� �q

C
c 


cd
n q

D
d � � T27�8�

8

TABLE IV. Color and flavor structures of qq and �qq.

(Color, flavor) ��3c; �3f� ��3c; 6f� �6c; �3f� �6c; 6f�

Diquark (qq) �abc�ABC�q
A
aq

B
b � �abc�qAaq

B
b � q

B
aq

A
b � �ABC�q

A
aq

B
b � q

A
bq

B
a � �qAaq

B
b � q

B
aq

A
b � � �a$ b�

(Color, flavor) �1c; 1f� �1c; 8f� �8c; 1f� �8c; 8f�

Quark-antiquark ( �qq) � �qAaq
A
a � 
NAB� �q

A
aq

B
a � 
abn � �q

A
aq

A
b � 
NAB


ab
n � �q

A
aq

B
b �
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�qAaq
B
b �qCa �qDb � �

1
3�q

A
aq

B
b �qCb �qDa � �

1
2


ab
n 


cd
n �q

A
aq

B
c �qCd �qDb �;


abn 
cdn �qAaqBc �qCb �qDd � �
16
9 �q

A
aqBb �qCb �qDa � 	

1
3


ab
n 
cdn �qAaqBc �qCd �qDb �:

(A3)

We can obtain the same result for flavor structure.
Let us take T1�3�

3 as an example, and perform the simultaneous interchange of both color and flavor indices
 

T1�3�
3 � �abe�cde�ABE�CDE�qAaqBb �� �q

C
c �qDd �

� �qAaqBb �� �q
A
a �qBb � 	 �q

A
aqBb �� �q

A
b �qBa � 	 �qAaqBb �� �q

B
a �qAb � � �q

A
aqBb �� �q

B
b �qAa �

� �qAaq
B
b �� �q

A
a �qBb � 	

�
1

3
�qAaq

B
b �� �q

A
a �qBb � �

1

2

abn 


cd
n �q

A
aq

B
c �� �q

A
b �qBd �

�
	 �qAaq

B
b �� �q

B
a �qAb �

�

�
1

3
�qAaqBb �� �q

B
a �qAb � �

1

2

abn 
cdn �qAaqBc �� �qBb �qAd �

�

�
2

3
�qAaq

B
b �� �q

A
a �qBb � 	

1

2

abn 


cd
n �q

A
aq

B
c �� �q

A
b �qBd � 	

2

3

�
1

3
�qAaq

B
b �� �q

A
a �qBb � �

1

2

NAB


N
CD�q

A
aq

C
b �� �q

B
a �qDb �

�

�
1

2

�
1

3

abn 
cdn �qAaqBc �� �qAb �qBd � �

1

2

NAB


N
CD


ab
n 
cdn �qAaqCc �� �qBb �qDd �

�

�
4

9
�qAaq

B
b �� �q

A
a �qBb � 	

1

3

abn 


cd
n �q

A
aq

B
c �� �q

A
b �qBd � 	

1

3

NAB


N
CD�q

A
aq

C
b �� �q

B
a �qDb � �

1

4

NAB


N
CD


ab
n 


cd
n �q

A
aq

C
c �� �q

B
b �qDd �:

Because we only consider the color and flavor structures, by changing the ordering of the second quark and third quark, we
arrive at the result:

 � 4
9� �q

A
aqAa �� �qBbq

B
b � 	

1
3


ab
n 
cdn � �qAbq

A
a �� �qBdq

B
c � 	

1
3


N
AB


N
CD� �q

B
aqAa �� �qDb q

C
b � �

1
4


N
AB


N
CD


ab
n 
cdn � �qBbq

A
a �� �qDd q

C
c �:

� 4
9T

1�1�
1 	 1

3T
1�1�
8 	 1

3T
1�8�
1 � 1

4T
1�8�
8 : (A4)

Next we perform the Fierz rearrangement in the Lorentz indices. The formula is

 �1����1��
 � 1
4�1��
�1��� �

1
4�����
��

���� �
1
8������
��

����� 	
1
4����5��
��

��5��� �
1
4��5��
��5���: (A5)

By using this equation, we can obtain various relations such as

 ��qAa �TCqBb �� �q
C
c C� �qDd �

T� � 	1
4��q

A
a �
TCC� �qDd �

T�� �qCc qBb � 	
1
4��q

A
a �
TC��C� �qDd �

T�� �qCc ��qBb � 	
1
8��q

A
a �
TC���C� �qDd �

T�

� � �qCc �
��qBb � �

1
4��q

A
a �
TC���5C� �q

D
d �
T�� �qCc �

��5q
B
b � 	

1
4��q

A
a �
TC�5C� �q

D
d �
T�� �qCc �5q

B
b �

� 	1
4� �q

D
d q

A
a �� �qCc qBb � �

1
4� �q

D
d ��q

A
a �� �qCc ��qBb � �

1
8� �q

D
d ���q

A
a �� �qCc ���qBb � �

1
4� �q

D
d ���5qAa �

� � �qCc �
��5q

B
b � 	

1
4� �q

D
d �5q

A
a �� �q

C
c �5q

B
b �: (A6)

In order to label the Lorentz structure for a scalar tetraquark field, we introduce S, V, T, A, and P instead of T:

 

S for �qTC�5q�� �q�5C �qT� and � �qq�� �qq�;

V for �qTC���5q�� �q�
��5C �qT� and � �q��q�� �q�

�q�;

T for �qTC���q�� �q�
��C �qT� and � �q���q�� �q�

��q�;

A for �qTC��q�� �q�
�C �qT� and � �q���5q�� �q�

��5q�;

P for �qTCq�� �qC �qT� and � �q�5q�� �q�5q�:

For example,
 

S27�6�
6 � SABCD�q

AT
a C�5q

B
b �� �q

C
a�5C �qDTb � �qCb�5C �qDTa �;

V27�8�
1 � SABCD� �qAa��qBa �� �q

C
b�

�qDb �: (A7)

Diquarks belonging to T and A have a symmetric
Lorentz structure [see Eq. (A1)]

 �C����� � �C�����; �C������ � �C������;

(A8)
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so they have an antisymmetric color-flavor structure.
Therefore, currents having the symmetric color-flavor
structure vanish, such as
 

A1�3�
3 � �abe�cde�ABE�CDE��qAa �TC��qBb �� �q

C
c ��C� �qDd �

T�

� 0: (A9)

Similarly, diquarks belonging to S, V, and P have an
antisymmetric Lorentz structure [see Eq. (A2)]
 

�C��� � 	�C���;

�C���5��� � 	�C���5���;

�C�5��� � 	�C�5���;

(A10)

and so they have a symmetric color-flavor structure.
By now, we have known the flavor, color, and Lorentz

structures of scalar tetraquark fields, for both �qq�� �q �q� and
� �qq�� �qq� structures and are ready to derive some relations.

1. Specifying the flavor structure

In order to establish the relations, we need to specify the
flavor quantum numbers of the tetraquark currents. As we
are considering in this work, let us choose the flavor octet
states �3 � 3� � ��3 � �3� ! �3 � 3! 8f for the illustration.

In this case, diquarks and antidiquarks have an antisym-
metric flavor structure, and we can verify

 S8�3�
6 � V8�3�

6 � T8�3�
3 � A8�3�

3 � P8�3�
6 � 0: (A11)

Therefore, there are five types of �qq�� �q �q� fields which are
nonzero and independent:

 S8�3�
3 ; V8�3�

3 ; T8�3�
6 ; A8�3�

6 ; P8�3�
3 ;

while all ten types remain for the � �qq�� �qq� fields:

 S8�8�
1 ; V8�8�

1 ; T8�8�
1 ; A8�8�

1 ; P8�8�
1 ; S8�8�

8 ; V8�8�
8 ; T8�8�

8 ; A8�8�
8 ; P8�8�

8 ;

Among these ten � �qq�� �qq� fields, only five are indepen-
dent. We can derive the following five equations by apply-
ing the Fierz transformation for the � �qq�� �qq� fields:
 

S8�8�
8 � 	1

6S
8�8�
1 � 1

2V
8�8�
1 � 1

4T
8�8�
1 	 1

2A
8�8�
1 	 1

2P
8�8�
1 ;

V8�8�
8 � 2S8�8�

1 	 5
3V

8�8�
1 	 A8�8�

1 	 2P8�8�
1 ;

T8�8�
8 � 6S8�8�

1 	 5
3T

8�8�
1 � 6P8�8�

1 ;

A8�8�
8 � 	2S8�8�

1 	 V8�8�
1 	 5

3A
8�8�
1 � 2P8�8�

1 ;

P8�8�
8 � 1

2S
8�8�
1 	 1

2V
8�8�
1 � 1

4T
8�8�
1 � 1

2A
8�8�
1 	 1

6P
8�8�
1 :

(A12)

Employing the five currents on the left-hand sides of
Eqs. (A12) as independent ones, and applying the Fierz
transformation, we can establish the following relations
among the five �qq�� �q �q� and five � �qq�� �qq� structures:

 

S8�3�
3 � 	1

2S
8�8�
1 	 1

2V
8�8�
1 � 1

4T
8�8�
1 	 1

2A
8�8�
1 	 1

2P
8�8�
1 ;

V8�3�
3 � 2S8�8�

1 	 V8�8�
1 � A8�8�

1 	 2P8�8�
1 ;

T8�3�
6 � 6S8�8�

1 � T8�8�
1 � 6P8�8�

1 ;

A8�3�
6 � 2S8�8�

1 � V8�8�
1 	 A8�8�

1 	 2P8�8�
1 ;

P8�3�
3 � 	1

2S
8�8�
1 � 1

2V
8�8�
1 � 1

4T
8�8�
1 � 1

2A
8�8�
1 	 1

2P
8�8�
1 :

(A13)

2. Specifying the color structure

For completeness of mathematical structure, one can
specify the color quantum numbers for the currents rather
than the flavor ones. For illustration, let us consider the
color structure �3 � 3� � ��3 � �3� ! �3 � 3! 1c. In order to
establish the relations between �qq�� �q �q� and � �qq�� �qq�
currents, we find that we need two flavor structures: �3f �
3f� � ��3f � �3f� ! �3f � 3f ! 1f and �3f � 3f� � ��3f �
�3f� ! 6f � �6f ! 1f.

In this case, diquarks and antidiquarks have an antisym-
metric color structure. By using the Pauli principle, we can
verify

 S1�6�
3 � V1�6�

3 � T1�3�
3 � A1�3�

3 � P1�6�
3 � 0: (A14)

Therefore, there are five types of �qq�� �q �q� fields, which are
nonzero and independent:

 S1�3�
3 ; V1�3�

3 ; T1�6�
3 ; A1�6�

3 ; P1�3�
3 :

The single � �qq�� �qq� fields cannot have an antisymmetric
color structure. Therefore, we need to use their combina-
tions. By using Eq. (A3), � �qq�� �qq� fields can be combined
to have an antisymmetric color structure:

 

� �qAaqAa �� �qBbq
B
b � 	 � �q

A
aqAb �� �q

B
bq

B
a �

� � �qAaq
A
a �� �q

B
bq

B
b � 	

1
3� �q

A
aq

A
a �� �q

B
bq

B
b �

	 1
2


ab
n 


cd
n � �q

A
aq

A
b �� �q

B
c q

B
d �

� 2
3S

1�1�
1 	 1

2S
1�1�
8 � S1�1�

3 ; (A15)

Altogether there are ten types of nonvanishing � �qq�� �qq�
currents:

 S1�1�
3 ; V1�1�

3 ; T1�1�
3 ; A1�1�

3 ; P1�1�
3 ; S1�8�

3 ; V1�8�
3 ; T1�8�

3 ; A1�8�
3 ; P1�8�

3 :

Once again, among them only five are independent
 

S1�8�
3 � 	1

6S
1�1�
3 � 1

2V
1�1�
3 � 1

4T
1�1�
3 	 1

2A
1�1�
3 	 1

2P
1�1�
3 ; V1�8�

3

� 2S1�1�
3 	 5

3V
1�1�
3 	 A1�1�

3 	 2P1�1�
3 ; T1�8�

3

� 6S1�1�
3 	 5

3T
1�1�
3 � 6P1�1�

3 ; A1�8�
3

� 	2S1�1�
3 	 V1�1�

3 	 5
3A

1�1�
3 � 2P1�1�

3 ; P1�8�
3

� 1
2S

1�1�
3 	 1

2V
1�1�
3 � 1

4T
1�1�
3 � 1

2A
1�1�
3 	 1

6P
1�1�
3 : (A16)

The relations between �qq�� �q �q� and � �qq�� �qq� structures
are
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S1�3�
3 � 	1

2S
1�1�
3 	 1

2V
1�1�
3 � 1

4T
1�1�
3 	 1

2A
1�1�
3 	 1

2P
1�1�
3 ;

V1�3�
3 � 2S1�1�

3 	 V1�1�
3 � A1�1�

3 	 2P1�1�
3 ;

T1�6�
3 � 6S1�1�

3 � T1�1�
3 � 6P1�1�

3 ;

A1�6�
3 � 2S1�1�

3 � V1�1�
3 	 A1�1�

3 	 2P1�1�
3 ;

P1�3�
3 � 	1

2S
1�1�
3 � 1

2V
1�1�
3 � 1

4T
1�1�
3 � 1

2A
1�1�
3 	 1

2P
1�1�
3 :

(A17)

3. Specifying the Lorentz structure

Finally, let us consider the case where the Lorentz
structure is specified. As an illustration, let us consider a
tetraquark current �qTC�5q�� �q�5C �qT�. Possible color
structures are �3 � 3� � ��3 � �3� ! �3 � 3! 1c and �3 �
3� � ��3 � �3� ! 6 � �6! 1c; and possible flavor structures
are �3 � 3� � ��3 � �3� ! �3 � 3! 1f and �3 � 3� � ��3 �
�3� ! 6 � �6! 1f.

By using the Pauli principle, we can verify

 S1�6�
3 � S1�3�

6 � 0: (A18)

Therefore, there are two currents which are nonzero and
independent:

 S1�3�
3 � �abe�cde�ABE�CDE�q

A
aC�5q

B
b �� �q

C
c �5C �qDd �;

S1�6�
6 � �qAaC�5q

B
b �� �q

A
a�5C �qBb � �qBa�5C �qAb � �a$ b��;

Now from the combination of quark and antiquark, pos-

sible color structures are ��3 � 3� � ��3 and ��3 � 3� � ��3 �
3� ! 8 � 8! 1c; and possible flavor structures are ��3 �
3� � ��3 � 3� ! 1 � 1! 1f and ��3 � 3� � ��3 � 3� !
8 � 8! 1f. Therefore, there are four nonvanishing cur-
rents:

 P01�1�1 � �qAaC�5qBb �� �q
A
a�5C �qBb �;

P01�1�8 � 
abn 
cdn �qAaC�5qBc �� �qAb�5C �qBd �;

P01�8�1 � 
NAB

N
CD�q

A
aC�5q

C
b �� �q

B
a�5C �qDb �;

P01�8�8 � 
NAB

N
CD


ab
n 
cdn �qAaC�5qCc �� �qBb�5C �qDd �:

The Lorentz structure is still specified to be �qTC�5q��
� �q�5C �qT�. However, if we interchange the second quark
and third antiquark as done in Eq. (A4) within the color and
flavor spaces structures, they are now ‘‘� �qq�� �qq�’’ currents.
Among them, only two are independent, through the fol-
lowing relations:

 P01�8�1 � P01�1�8 ; P01�8�8 � 32
9P
01�1�
1 	 4

3P
01�1�
8 : (A19)

Finally, relations between the �qq�� �q �q� and ‘‘� �qq�� �qq�’’
currents are

 S1�3�
3 � 4

3P
01�1�
1 	 P01�1�8 ; S1�6�

6 � 8
3P
01�1�
1 � P01�1�8 :

(A20)
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