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Nonleptonic two-body B decays including axial-vector mesons in the final state
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We present a systematic study of exclusive charmless nonleptonic two-body B decays including axial-
vector mesons in the final state. We calculate branching ratios of B — PA, VA, and AA decays, where A,
V, and P denote an axial vector, a vector, and a pseudoscalar meson, respectively. We assume a naive
factorization hypothesis and use the improved version of the nonrelativistic Isgur-Scora-Grinstein-Wise
quark model for form factors in B — A transitions. We include contributions that arise from the effective
AB =1 weak Hamiltonian H.;. The respective factorized amplitudes of these decays are explicitly
shown and their penguin contributions are classified. We find that decays B~ — a?w‘, B0 — arm*,
B~ —a; K%, B —afK~, B°—> fK°, B~ — f1K~, B~ — K;(1400)n", B~ — b; K°, and B’ —
b{ 7~ (K~) have branching ratios of the order of 107>. We also study the dependence of branching
ratios for B — K, P(V, A) decays [K; = K,(1270), K,(1400)] with respect to the mixing angle between

KlA and KlB'
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I. INTRODUCTION

Recent experimental results for B— a;7 and B —
K,(1270)y decays obtained by BABAR, Belle, and CLEO
[1] have opened an interesting area of research about
production of axial-vector mesons in B decays. Two-
body B decays have been considered one of the premier
places to understand the interplay of QCD and electroweak
interactions, to look for CP violation, and overconstrain
the Cabibbo-Kobayashi-Maskawa (CKM) parameters in
the standard model. Indeed, exclusive modes B — PP,
PV, and VV, which have been extensively discussed in
the literature, have committed such expectations.

In search of alternative modes to those traditionally
studied, we consider processes which include an axial-
vector meson in the final state. It is expected that some
of these decay channels have large branching ratios [2] and
can be within the reach of future experiments. Moreover,
they are an additional scenario for understanding QCD and
electroweak penguin effects in the standard model. These
modes give additional and complementary information
about exclusive nonleptonic weak decays of B mesons.

The two most important penguin contributions corre-
spond to a4 and ag QCD coefficients. These coefficients
have different sign in the amplitude M (B — V P), making
their contribution small. For B — AP decays they have
equal sign, thus we have a bigger contribution in the
penguin sector. Branching ratios of these decays are good
candidates to be measured.

Our purpose is to present a systematic analysis about
charmless modes B — AP, B— AV, and B — AA, similar
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in completeness to previous studies about channels B —
PP, B— PV, and B — VV which have been extensively
considered in the literature [3,4].

There are two types of axial-vector mesons [5]. In
spectroscopic notation 2*1L , these p-wave mesons are
3P, and 'P,, with JP€=1"" and 1%, respectively.
Under SU(3) flavor symmetry, the P, -nonet is composed
by a;(1260), f,(1285), f,(1420), and K;4, and the
P -nonet is integrated by b,;(1235), h,(1170), h,(1380),
and K. However, physical strange axial-vector mesons
K(1270) and K,(1400) are a mixture of K;4 and K g:

K,(1270) = K, sinf + K,z cosf

1
K,(1400) = K4 cosf — K, sinf, M
where 6 is the mixing angle.

At the theoretical level, some authors have worked with
production of axial-vector mesons in nonleptonic B de-
cays. Katoch-Verma [6] studied B — PA decays at tree
level using the factorization hypothesis and the nonrelativ-
istic Isgur-Scora-Grinstein-Wise (ISGW) quark model [7].
Nardulli-Pham in Ref. [2] did an analysis of two-body B
decays with an axial-vector meson in the final state using
factorization and the B — K; form factors obtained from
measured radiative decays. They calculated the branching
ratio for B — J/¢K, and derived some predictions for a
few nonleptonic decay channels involving light strange or
nonstrange axial-vector mesons in the final state using
naive factorization and relations from heavy quark effec-
tive theory. Recently, Laporta-Nardulli-Pham [8] presented
an analysis about some charmless B — PA decays includ-
ing contributions of the effective weak Hamiltonian H. g,
assuming factorization approach and employing as inputs a
limited number of experimental data. They did not use
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predictions from theoretical models for form factors. In
Ref. [9], the authors investigated B — K;¢ decays em-
ploying the generalized factorization hypothesis and light-
front approach for form factors.

Cheng in Ref. [10] studied Cabibbo-allowed hadronic B
decays at tree level containing an even-parity charmed
meson in the final state. In this work, the author predicted
branching ratios for some decays of type B — AP(V)
where A is, in this case, a charmed axial-vector meson.
Calculation was performed within the framework of gen-
eralized factorization. Form factors for B — A transition
were calculated with the improved version of the Isgur-
Scora-Grinstein-Wise quark model, called ISGW2 [11].
For B — P and B — V form factors, the author used the
Melikhov-Stech model [12]. Recently, Cheng-Chua [13]
continue studying even-parity charmed meson production
in B decays, calculating B — D** (D™ denotes a p-wave
charmed meson) form factors within the covariant light-
front quark model.

Other authors have been interested in radiative B — K|
decays (see, for example, Ref. [2]). Recently, Lee [14]
revisited the B — K; form factors in the light-cone sum
rules, and reduced the discrepancy between theoretical
prediction and experimental data reported by the Belle
Collaboration [1] for B — K;vy. Lee claims that more
information is necessary about the mixing angle between
K4 and Kp to reduce theoretical uncertainties. In fact,
this mixing angle has been estimated by some different
methods [15]. However, there is not yet a consensus about
its value [16].

CP violation effects have also been investigated in non-
leptonic B decays with axial-vector mesons in the final
state. For example, in Ref. [17], time-dependent CP asym-
metries in B® — D*~a; are studied in order to learn about
the linear combination of weak phases (28 + y). More
recently (see Ref. [18]), in an analysis of B’ — ai 7"
modes, they determined the phase a.g, which include the
weak phase a and effects due to penguin contribution.
Moreover, applying SU(3) symmetry to these decays and
to B — a;K and B — K, they obtained bounds on (a —
Qefp)-

In this paper we are interested in studying exclusive
charmless nonleptonic two-body B decays including
axial-vector mesons in the final state. We present an over-
view and a systematic study about these types of processes.
For this, we compute branching ratios for exclusive chan-
nels B— AP, AV, AA that are allowed by the CKM
factors, including contributions of the effective weak
Hamiltonian Hy (tree and penguin), assuming the naive
factorization hypothesis and using the improved version of
the ISGW [11] quark model for calculating the respective
form factors related with B — A transitions. Form factors
for B— P and B — V transitions have been taken from the
relativistic Wirbel-Stech-Bauer (WSB) quark model [19]
and from light-cone sum rules (LCSR) [20].
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This paper is organized as follows: In Sec. II we discuss
the effective weak Hamiltonian, effective Wilson coeffi-
cients, and naive factorization hypothesis. Input parame-
ters and mixing schemes are discussed in Sec. III. In
Sec. IV we present form factors for B — P(V) transitions
taken from the WSB model and the LCSR approach, and
B — A transitions calculated in the ISGW2 model. In
Sec. Vis discussed the amplitudes and manner to calculate
branching ratios for processes considered. Numerical re-
sults for branching ratios are presented in Sec. VI. We
conclude in Sec. VII with a summary. Amplitudes for all
charmless B— AP, AV, and AA processes are given ex-
plicitly in the appendices.

II. EFFECTIVE HAMILTONIAN AND
FACTORIZATION

The basis for the study of two-body charmless hadronic
B-decays is the effective weak Hamiltonian H.g [21]. For
AB = 1 transitions it can be written as

Hy — %[vubvzqwl(mom Oy (w)04(w)
+ Ve Vig (Ci () Of (1) + Co(u) O5(1))

10

- v,bv,t,(; Ci(mw)0,(w) + cgm)ogm)ﬂ

+ He, 2

where G, is the Fermi constant and C;(u) are the Wilson
coefficients evaluated at the renormalization scale w. Local
operators O;(u) are given below for b — ¢ transitions:

Of = qavy"Lu, - ugy,Lbg
03 = qoy"Lug - ugy,Lb,
Oi‘ = qa’}/MLCa . EﬁyMLb,B
05 = qa’}/'u'LC'B : C_‘,B’Y,LLLba

O35) = Ga¥"Lbo - > 37 L(R)q)
q/

Ou6) = Gay"Lbg - Z%YML(R)CI'C« 3)
q,

O79) =

[\SRRON]

Ga¥*Lby Y eqdpy R(L)q]
q/

w

Og(10) = 5%7’%55 : Zeq'%Y,LR(L)CIQ
q/

Og = (gs/gﬂz)mbgaO-#VR(/\QB/Z)bBGﬁw
where ¢ can be the quarks d or s. L and R stand for left and
right projectors defined as (1 — y5) and (1 + vys), respec-
tively. The symbols « and B are SU(3) color indices and
)\g‘(ﬁ (A =1,...,8) are the Gell-Mann matrices. The sums
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run over active quarks at the scale u = O(m,), i.e. ¢’ runs
with the quarks u, d, s, and c.

We use the next to leading order Wilson coefficients for
AB =1 transitions obtained in the naive dimensional
regularization scheme at the energy scale u = my(my),
A% = 225 MeV, and m, = 170 GeV. These values are
c; = 1082, ¢, =—0.185, c3; =0.014, c4= —0.035,
cs = 0.009, cs= —0.041, c;/a= —0.002, cg/a=
0.054, cy/a = —1.292, and c¢,p/a = 0.263, where « is
the fine structure constant, see Table XXII in Ref. [21].

In order to calculate the amplitude for a nonleptonic
two-body B — MM, decay, we use the effective weak
Hamiltonian H g,

M(B — M M,) = (M M,|H_|B)

=%qummmwm.m

Hadronic matrix elements (O;(u)) = (M M,|0;(x)|B)
can be evaluated under factorization hypothesis, which
approximates the hadronic matrix element by a product
of two matrix elements of singlet currents. These currents
are parametrized by decay constants and form factors. It is
necessary to point out that these matrix elements as prod-
ucts of conserved currents are AM—S, m scale, and renor-
malization scheme independent [22,23]. The suggested
energy scale to apply factorization for B decays is u; =
O(m,;). Besides this simple approximation, it is well estab-
lished that nonfactorizable contributions must be present in
the matrix elements in order to cancel the scale w and
renormalization scheme dependence of C;(u).

To solve the issue of scale p dependence, but not the
renormalization scheme dependence [24], it is proposed in
Refs. [3,4] to isolate from the matrix element (O,(w)) the
p dependence, and link with the p dependence in the
Wilson coefficients C;(u) to form ¢, effective Wilson
coefficients independent of p. Matrix elements (O, ). and
effective ¢t Wilson coefficients are scale u independent,
so is the amplitude. Thus, we can write

XC,(,LLXO,(M)) = Zci(ﬂ)gi(ﬂ)<0i>tree

= Zc?ff<0i>tree' (5)

The formula for effective Wilson coefficients and their
numerical values have been given explicitly in Ref. [4].
These values depend on quark masses, CKM parameters,
and renormalization scheme. In this article we recalculate
the effective Wilson coefficient ¢, because there have
been some changes in the CKM parameters since the
authors of Ref. [4] calculated them. We choose a naive
dimensional regularization scheme to calculate. We
present the effective Wilson coefficients ¢¢f in Table 1,
for b — d and b — s transitions evaluated at the factoriza-
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TABLE 1. Effective Wilson coefficients ¢¢ for b — d and
b — s transitions, evaluated at u, = m,, and k*> = m} /2, where
we use the Wolfenstein parameters A = 0.2272, A = 0.818, p =

0.227, and 1 = 0.349, see Sec. III.

ot b—d b—s

st 1.1680 1.1680

st —0.3652 —0.3652

cstt 0.0233 +10.0036 0.0233 +10.0043
cstt —0.0481 —10.0109 —0.0482 —i0.0129
it 0.0140 +10.0036 0.0140 +10.0043
et —0.0503 —10.0109 —0.0504 —10.0129
S/ a —0.0310 —10.0317 —0.0312 —i0.0357
S/ a 0.0551 0.0551

s/ a —1.4275 —10.0317 —1.4277 —10.0357
S/ a 0.4804 0.4804
TABLE II. Effective coefficients a; for b—d and b — s
transitions (in units of 107 for as, .. ., ag).

a; b—d b—s

a; 1.046 1.046

a, 0.024 0.024

as 72 72

ay —403 —197 —404 —il115
as —28 —28

ag —456 — 197 —457 —ill15
a; —0.92 —i2.31 —0.94 —i2.61
ag 3.26 —10.77 3.26 —10.87
ag —92.5—i2.31 —92.5—1i261
aj 0.33 —i0.77 0.33 —10.87

tion scale u; = m,,, averaged momentum transfer k> =
m?2 /2, and current CKM parameters, see Sec. IIL.
The effective Wilson coefficients appear in decay am-

plitudes as linear combinations.

This allows one to define

a; coefficients, which encode dynamics of the decay, by

1
a; = s + ﬁcﬁff] (i = odd)
1° (6)
a; =" + ch?if] (i = even),
where index i = 1, ..., 10 and N, = 3 is the color number.

In Table II, we give the a; values for b — d and b — s
transitions calculated with the effective Wilson coefficients
¢S, given in Table 1.

III. INPUT PARAMETERS

We parametrize the CKM matrix in terms of the
Wolfenstein parameters A, A, p, and 7 [25],

1-1x2 A AN (p —in)
—A 1—4A2 AN? )
AN —p—in) —AX 1
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with p = p(1 — A?/2) and % = n(1 — A?/2), including
O(X°) corrections [26].

By a global fit that uses all available measurements and
that imposes unitary constraints, the Wolfenstein parame-
ters are precisely determined. There exist two ways to
combining experimental data, the frequentist statistics
[27] and the Bayesian approach [28], providing similar
results. Thus, we take for the Wolfenstein parameters the
central values A = 0.2272, A = 0.818, p = 0.221, and
7 = 0.340 [5].

The running quark masses are necessary in calculation
of penguin terms in the amplitude where appear scalar and
pseudoscalar matrix elements which are reduced by the use
of the Dirac equation of motion. Running quark masses are
given at the scale w = my, since energy released in B
decays is of order m,. We use m,(m,) = 3.2 MeV,
my(my,) = 6.4 MeV, m,(m,) = 127 MeV, m.(m,) =
0.95 GeV, and m;,(m;) = 4.34 GeV, see Ref. [29].

Decay constants of pseudoscalar and vector mesons are
well determined experimentally. We use the following
values [5]: f, = 130.7 MeV, fx =160 MeV, f,=
216 MeV, f, =195 MeV, fg~ =221 MeV, and f, =
237 MeV.

The w — ¢, p° — w,n — ', and K|, — K, mixing are
introduced through mixing in decay constants and form
factors. We consider ideal mixing for the system (w, ¢),
ie. w = 1/v/2(uii + dd) and ¢ = s5. In the next section
we will discuss mixing in form factors. In the following we
describe mixing in decay constants.

For the n — 1’ mixing we use the two-mixing angle
formalism proposed in [30,31], which define physical
states i and 7’ in terms of flavor octet and singlet, 7g
and 7, respectively:

|1) = cosbg|ng) — sinfyln), ®)
|n') = sinfg|ng) + cosfy|no).

We introduce decay constants for 7g and 7, by
©lAL 1" (p)) = ifS ) pu and COlALIN"(p)) = if p.
Considering that ng and 7 in terms of quarks are

1

| = —|au + dd — 25s),
7’8> \/6 >
| 9
M0y = —=lau + dd + 5s),
T’O> \/g >

induce a two-mixing angle in decay constants f’ ?7(,), defined

by 01y, vsaln™(p)) = if Ly Py

fs . fo
f‘;], = = sinflg + —= cos#f,
V6 V3
(10)
f‘;’, = —2% sinfg + % cosf

and
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s fo .
U == cosfg — ~——= sinf,
ik Joo ot B
7 7 a1
s = =228 cosfg — L2 cosb,.
I NN R
From a complete phenomenological fit of the n — 1’
mixing parameters in Ref. [31] we have 63 = —21.1°,

6y = —9.2°, 0= —154°, fg=165MeV, and f,=
153 MeV. Replacing values in Eqgs. (10) and (11), the
decay constants are f’j}, = 61.8 MeV, f%, = 138 MeV,
Sy =762 MeV, and f5 = —110.5 MeV. To include in
the mixing scheme the 7, in the calculation we use decay
constants defined by <0|67#y5c|17(’)> = ile(,,p# as are
obtained in Ref. [31]: f5, = —(2.4 = 0.2) MeV and Iy =
—(6.3 = 0.6) MeV.

In evaluating hadron matrix elements of scalar and
pseudoscalar densities in some penguin terms, the anomaly
must be included in order to ensure a correct chiral behav-
ior for those matrix elements. The expressions are [32]

(niysul0)y = (nldysd|0) = r_o(n"I5yssl0),

n, (12)
. S — u
2ms (fn(/) f.,](/) )’

(nV]5yssl0y = —i

where the ratios r,, and r,, are defined by

n

\lzfé — f3 cosf + (1/+/2) sind

ng _ f(z) cosf — \/§s1n0

2f(% = fs  cosf — +/2sinf

1
) /2f§ s cosf + (1/+/2) sinf’

the numerical values obtained are r,y = 0.462 and r, =
—0.689.

The physical states K;(1270) and K;(1400) result from
the mixing of K4 and K, *P; and ' P, mesons, respec-
tively, see Eq. (1). From experimental data on masses and
partial ratios of K;(1270) and K;(1400), two solutions are
found for the mixing angle with a two-fold ambiguity, 8 =
+32° and § = *58°. The masses for the states K, and
Kp are mg,, = 1367 MeV and mg = 1310 MeV, re-
spectively. From 7 decays, the decay constants of the
physical states are determined. The values obtained are
fk1(1270) = 171 MeV and fg;(1400) = 126 MeV [2],
using data from Ref. [5].

Thus, we have experimental information to determine
decay constants for strange axial-vector mesons. That is
not the case for nonstrange axial-vector mesons. Using the
mixing angle of the system K;4, — K5 and SU(3) symme-
try it is derived the decay constant f,, = 215 MeV for 6 =
32° and f, = 223 MeV for 6 = 58°, see Ref. [2]. In the
case of the ! P,-nonet, with J’¢ = 1%, the axial-vector
mesons by, h;, and K,z have even G-parity. The axial

v, =

(13)

r., =
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current which produces a b; or a /; has odd G-parity. Thus,
G-parity conservation does not allow the transition
(0l@y, ysd|b,), in consequence f), = 0. Since, f, is in
the same nonet that a;, by SU(3) symmetry we consider
the equal decay constant. In the calculations of branching
ratios we use the values f, = f; =215 MeV and f;,, =
fhl = (0 MeV.

Matrix elements for B — K transitions are calculated in
the flavor base K|, — K. In the calculation of amplitude
involving a final physical state as K;(1270) or K,;(1400),
we transform matrix elements from the flavor base to the
physical base using Eq. (1).

We use for B meson lifetime 75- = (1.638 = 0.011) X
1072s and 7m0 = (1.530 £0.009) X 10"2s, see
Ref. [5], necessary to calculate branching ratios.

IV. FORM FACTORS

As was stated in Sec. II, hadronic matrix elements
(O)yee are given in the factorization hypothesis in terms
of decay constants and form factors. Unfortunately, due to
the nonperturbative nature of these matrix elements, there
are no complete reliable calculations and only model de-
pendent evaluations are used for them.

We use the WSB model and LCSR approach to deter-
mine form factors for B — P and B — V transitions. In the
WSB model and LCSR approach, the form factors for B —
A transitions have not been calculated. Thus we calculate
form factors for B — A transitions in the ISGW2 model
[11]. In the following subsections, we give relevant infor-
mation to calculate form factors in the respective models.

|

<V(pV’ E)l(vp, - Aﬂ)lB(PB» = _Eluvaﬁey*pgp

(= m)
- <(PB + v — %4/

where ¢’ = (pp — py) and € is the polarization vector of
V. In order to cancel the poles at g> = 0, we must impose
restrictions over form factors

F1(0) = Fy(0),
2myAy(0) = (mg + my)A;(0) — (mg — my)A,(0).  (17)

In Table III form factors are given for transitions re-
quired in calculations: form factors for B— 7, B— K,
B—n, B—n',B—p, B— K, and B— w are eval-
uated at the ¢g> = 0 momentum transfer. With respect to
B — 7 and B — 7’ transitions, the WSB model does not
include the n — ' mixing effect. We better consider
SU(3) symmetry and use the relations F57(0) =
VB3FBM(0) = \/6FB75(0), calculating physical form fac-

s 2V(g"?)
Y (mp + my)
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A. Form factors for B — P(V) in the WSB model and
LCSR approach

In the WSB quark model meson-meson matrix elements
of currents are evaluated from the overlap integrals of
corresponding wave functions, which are solutions of a
relativistic harmonic oscillator potential. For momentum
transfer squared > dependence of form factors in the
region where ¢” is not too large, we shall use a single
pole dominance ansatz, namely

0
(1= g*/m3)’
where m., is the pole mass and f(0) the form factor at zero
momentum transfer given in Ref. [19]. Note that the origi-
nal WSB quark model assumes a monopole behavior for all
form factors.

The WSB model has been quite successful in accom-
modating data in an important number of exclusive semi-
leptonic and nonleptonic two-body decays of D and B
mesons.

Form factors for B — P transitions are defined as fol-
lows:

(P(pp)IV,|B(py) = [@B ——

2 2
mg — m

P 2
-5 4 F1(6] )
q* ”}

@) = (14)

m2 — m2
| auFola) a5)

where g = (pg — pp), as well as form factors for B — V
transitions by

. * 6* : q/ / 2
- l[(% - TCI,L)(’”B + my)A,(q°)

(€ - q') As(q?) 2my(€" - q')
M) 1 (mg + my) q"

q,LAo(q'z)} (16)

[

tors from

FBn1 = FBns cos9 — FB™ sing,

(18)

FB1 = FB7s sing + FB™ cosé,

for FB7(0) = 0.333 and the mixing angle 6§ = —15.4°
[31], we obtain the values F57(0) = 0.181 and F57(0) =
0.148.

The p° — w mixing and isospin breaking effects are
introduced in hadronic matrix elements B — p°, following
Ref. [33]. In the limit of isospin symmetry isospin eigen-
states p’ and w! expressed in the flavor basis are p! =
(uii — dd)/~2 and ' = (uii + dd)/~/2. The physical
states p® and w are expressed in term of p’ and w’ by
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TABLE III. Form factors at zero momentum transfer for B— P and B — V transitions, evaluated in the WSB quark model [19] and
LCSR [20].

Transition F,=F, \%4 A A, A3 = A
B— 0.333 [0.258]

B—K 0.379 [0.331]

B—n 0.168 [0.275]

B— 7 0114 [---]

B—p 0.329 [0.323] 0.283 [0.242] 0.283 [0.221] 0.281 [0.303]
B—ow 0.232 [0.311] 0.199 [0.233] 0.199 [0.181] 0.198 [0.363]
B— K* 0.369 [0.293] 0.328 [0.219] 0.331 [0.198] 0.321 [0.281]

1p%) = 1p') + €l

_ %(1 + )iy + \15(—1 + €)ldd)
(19)
lw) = |w!) — €|p!)

_ %(1 — €)|ui) + %(1 + €')|dd),

where the numerical values for mixing parameters are (1 +
€) = (0.092 + 0.016i) and (1 — €') = (1.011 + 0.030i).
The hadronic matrix elements for the B — p° and B —
o transitions including isospin effects change by the factor
(1+ €) and (1 — €'), respectively. The effect in B — w
transitions is negligible and it is not included in branching
ratio predictions.

In the LCSR approach form factors for B decays are
given in terms of the correlation function of the weak
current and the current with quantum numbers of B meson,
evaluated between the vacuum and a pseudoscalar or a
vector meson. The like cone expansion allows one to
calculate in the large virtualities of these currents. In the
short virtualities regime, the LCSR approach depends on
the factorization of the correlation function into nonper-
turbative and universal hadron function amplitudes which
are convoluted with process dependent amplitudes.

In Ref. [20] form factors for B— P and B — V tran-
sitions are calculated in the LCSR approach. In Table III
form factor values at zero momentum transfer are shown,
for the set 2 of parameters, taken from Ref. [20]. For the ¢>
dependency of the form factors we use the fit parametriza-
tion done in Ref. [20], valid for the full kinematic regime.

B. Form factors for B — A in the ISGW2 model

The ISGW2 model is based in a nonrelativistic constitu-
ent quark representation. In the original ISGW model [7]
form factors only depend on the maximum momentum
transfer, g> = ¢2,. In this model form factor dependence
is proportional to exp[—(g2% — ¢*)]; consequently, the
form factors diminish exponentially as a function of (g2, —
g%). This behavior has been improved in the ISGW2 model
[11] by expressing the g> dependence as a polynomial term
which must be multiplied by a factor which depends on the

hyperfine mass. In addition, the improved model incorpo-
rates constraints imposed by heavy quark symmetry, hy-
perfine distortions of wave functions, and a more real high
recoil behavior.

We have made use of the ISGW2 model [11] to deter-
mine form factors for B — A transitions. The vector and
axial parts of the matrix element for these transitions are
parametrized as

(A(pa, OV, —A)IB(pp))y=le, + (e ppllc (P + Pa)y
+c-(pp—Pa)yl
—iq€,,0ap€" (P + pa)®
X (pg—pa)®, (20)

where A(py, €) is a 3P, axial-vector meson. For the 'P,
axial-vector meson we change in the above matrix element
l,ci,c_,and g by r, s, s_, and v, respectively.

Considering B — A transitions, at quark level b — ¢,
axial-vector meson A has the quark content g,g,, being g,
the spectator quark. Thus, form factors defined in the
ISGW2 model have the following expressions:

1 fig(@ — 1
= _7713,33[— n mzmA(CZU )
K- B
X<5+a”)_ 1 TzﬁfﬂF?
om, 2p- 1y Bya

cy e = m2~ﬁ7A ( _ n;leZ B—§>F20++C)
2mymgPBg 2y - Bsa
cy —Cc_ = — elill!
i - 2mimgBp
% 67)+2_ rr~zlm2 B_% FgC+_C_)
3 g By
my 5 + @ (q)
= — - _\F 21
1=, (6 ) @b

for the 3P1 axial-vector meson and
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mBBB[ mzmA (@ - 2} (r)
1)? |F
V2 Lms 3miBj :
my my = m ﬁ%}) (s, +5)
sy ts.=———(1——+ — |F5
i \/iﬁ’lB,BB< nmy 24 B%A >
P <4_5’ mmy BB) Flsems)
N =
\/iml,BB 3 2mAlu’+ ﬁBA
mpPp (@—1) my } ()
v= F 22
|:4\/§mbm1n~1,4 672 1Bl (22

for the lP1 axial-vector meson. The ng) factors in the
above expressions are defined by

1/2 1/2
o nfe) ()

{2 (e

(@) — plv) _
qu—FSU

F(c++c )y F(s++s ) <@> 3/2<mA>1/2,
mpg
F(C+—C—) — F(S+—S—) — @ ]/2 71/2’ (23)
5 5 g

and the F, function by

e T e

where

-3
(rm—r)} Q4

a3 3m3 1 16
dmym;  2mgm, B3, mBmA<33—2nf>

x 1{%’%)} (25)

The parameters m, and m, are masses of quarks ¢g; and
g, m is the hyperfine averaged mass, 7 is the sum of the
masses of constituent quarks, t, = (mg — my)?* is the
maximum momentum transferred, n; is the number of
active flavors at the b scale, and a;(u) is the QCD coupling
at the u scale. The parameters g, B4 are obtained from
the model, see Ref. [11]. Moreover, we use the definitions

Grem) @
Me=|—F— © =
mp myp
and B3, = 1/2(B3 + B3).

In Table IV, we list values of form factors at momentum
transferred t = mZ. Form factors are functions of momen-

tum transferred t = (pg — pa)>, see Egs. (21) and (22). In

general, form factors vary from m2 to m%l (1400)> I just only

4%. In addition, values for the form factors depend
strongly on the parameters Sz = 0.43 and 8 = 0.28 cal-
culated in the model.

We calculate form factors for B— K;4 and B — K
transitions in SU(3) base. Branching ratios are calculated
with physical form factors, which are obtained from the
mixing, see Eq. (1).

ty —t
2,

+1 (26)
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TABLE IV. Form factors at momentum transfer t = m2 for
B — A transitions, evaluated in the ISGW2 model [11].

Transition q l cy c_
B — a —0.0417 —1.7469  —0.0101 —0.0012
B— f, —0.0427  —1.7603 —0.0103 —0.0012
B— K, —0.0593  —1.8567  —0.0155 —0.0011
v r Sy S_
B— b, 0.0319 0.9404 0.0177 —0.0082
B — h 0.0324 0.9214 0.0134 —0.0051
B— Kp 0.0323 0.8956 0.0275 —0.0124

TABLE V. Form factors V;,3 and A at momentum transfer
t= m%T for B — A transitions, evaluated in the ISGW2 model

[11].

Transition A Vi V, Vi=V
B— a 0.271 —0.268 0.068 —0.818
B — f, 0.280 —0.268 0.068 —0.792
B— Ky, 0.389 —0.283 0.102 —0.890
B— b, —0.208 0.145 —0.115 0.572
B—h —0.209 0.143 —0.086 0.546
B—K,;;  —0216 0.134  —0.184 0.573

To compare form factor values for B — A transitions
with those of B — V transitions, we can define B — A
transitions in the same basis as used in the WSB model,
see Eq. (17). We change the symbols for the form factors V
and Ay, by A and V| ,, respectively. These form factors
are related to form factors in the ISGW2 model by

A(g") = —(mg + my)q(q"),
1(g")

(mg + my)’

Vz(qlz) = _(mB + mA)C+(CI/2)

Vo(g"?) = [l(q’z) + (my —

Vi(g?) =

my)e+(q"?) + ¢”c-(g?)]

(27)

In Table V, we show form factor values for B— A
transitions at momentum transferred t = m2, which corre-
spond to those of Table IV.

V. AMPLITUDES AND BRANCHING RATIOS

Let us present a comparison between B — V and B — A
transitions, which seems straightforward. First, we can see,
from Secs. 2, 4, and 6 in Appendix B of Ref. [7], that
parametrizations of (V|J,,|B) and (A|J ,| B) are only differ-
ent by a global sign, with the substitution of the form
factors f < [, r, ar < c+, s+, g < ¢, v. This is because
behavior of currents V,, and A, is interchanged. Moreover,
this implies that expressions for decay amplitudes and
decay rates, at tree level, for the processes B— VP, VV
and B — AP, AV, and AA, respectively, are identical.
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On the other hand, the situation is different when tree
and penguin contributions are considered. The expressions
of decay amplitudes for processes B — AP (see
Appendix A) and B— VP (see Appendices in
Refs. [3,4]) are equal when only QCD parameters as, ay,
ag, and a;q contribute. When QCD parameters aq and ag
contribute then the linear combination (zae + yag) is af-
fected by a global sign and 1/(m;, — m,), which is a factor
of this linear combination, changes by 1/(m;, + m,).
Relevant contributions in penguin sector are coefficients
a4 and a¢ (see Appendix A); in B — A transitions a, and
a4 have the same sign. This fact implies that these terms
are summed so their contribution increases. In B — V
transitions, these terms have different sign thus their con-
tribution decreases. The contributions corresponding to as
and a; change sign when the axial-vector or the vector
meson arises from vacuum, but they are not affected if the
pseudoscalar meson is produced from vacuum.

Now we are going to compare penguin contributions to
decay amplitudes M (B — AV) (see Appendix B) with the
ones M(B— VV) (shown in Appendices F and G of
Ref. [4]): (i) in both cases the contribution of parameters
ag and ag does not appear; (ii) the sign of contribution
given by parameters as and a; changes when one goes
from B—V, A to B—V, V; (iii) in modes B—V,
yeharged and B — v, Achareed always appears the contribu-
tion (a4 + ajgp).

In Table VI, we have summarized penguin contributions
to decay amplitudes for modes B — AP displayed in
Appendix A, without including P = 5. These decay
amplitudes can be classified in two groups from these
contributions. The first group is integrated by decays where
a charged meson in the final state is produced from vacuum
and penguin contribution is given by the linear combina-
tion (a4 + ajg) + alag + ag)R, i.e., parameters deqye, only
contribute to this group. Additionally, in this group we find
two cases with &« = 0 and « = 1, which correspond to
modes B — P, A®haeed and B — A, peharzed | regpectively.
Here the notation B — M|, M, means that meson M, can
be factorized out under the factorization approximation.

TABLE VI

PHYSICAL REVIEW D 76, 094019 (2007)

The second group is integrated by decays where a neu-
tral meson is factorized out under factorization approxi-
mation independently if it is pseudoscalar or axial vector.
Penguin contribution is given by the linear combination
ay(ay — ay/2) + ay(ag — ag/2)R + az(a; — ay) +
ay(ay — as). Pure penguin contributions belong to this
group and have contributions of a.,.,. They arise when
the axial-vector meson or the pseudoscalar meson is a
neutral strange meson and, of course, it is produced from
vacuum. QCD parameters ay, dg, dg, and a;o contribute
when the pseudoscalar K° meson is factorized out under
factorization approximation, a4 and a;, when the axial-
vector K’ ? meson arises from vacuum. Note, that in general,
decays B — P, A do not have contributions from a4 and ag.

In Table VII, we have classified penguin contributions to
decay amplitudes M(B — AV) which are shown in
Appendix B. There are two types: in one of them the linear
combination «,(ay + a;y) + ay(a; = ag) contributes. It
occurs when decays B — A, Vehareed o B — 7 Acharged
are produced, i.e., when a charged meson in the final state
arises from vacuum; in the other case, a neutral meson is
factorized out under factorization approximation and the
linear combination B;(as — a,0/2) + Bs(a; * as) +
Bis(a; * ay) contributes. Pure penguin contributions be-
long to it. Parameters a,4q contribute to the decay ampli-
tude of pure penguin modes B® — alf; and B® — al¢.
Like decays B — P, A, in general, decays B — AV do not
have contributions from ag and ag.

Penguin contributions of decay amplitudes M(B —
AA) (see Appendix C) can be classified in a similar way.
There are two groups. In one of them a charged meson is
factorized out under a factorization scheme and only ay
and a,o parameters contribute by means of the linear
combination (a4 + a;q). In the other group a neutral meson
is produced from vacuum. In this case the linear combina-
tion {\(ay — ay0/2) + {r(az — as) + {3(a; — ay) contrib-
utes. In Table VIII, we display the respective coefficients
{;. Again, pure penguin decays are in this group.

In the appendices we give explicitly the amplitudes to
the processes studied in terms of form factors for B — P,

Coefficients of the linear combinations (a4 + a;) + a(ag + ag)R and a;(ay — a,0/2) + ay(ag — ag/2)R + az(a; —

aq) + ay(a; — as) corresponding to penguin contribution of decay amplitudes M (B — AP) without P = 7('). The coefficient R is

given by R = 2m%/(m; + m,)(m;, — mj3).

Decays a ay a; a3 ay
B— 7wt ar;B- —7%a;; B> 7t K B~ — 7% K[ 0

B —af, 7B —a), 7 ;B—>af, K ;B —d)K ;B — f, 7 ;B — fl,K~ 1

B> @ fi; B~ — 7, f 1 0 -1/2 2
Bo—wz(l), 9 B_—>al_,77'0; B'— £, @° *1 *1 +3/2 0
B— 7% al; B~ — 7,4} -1 0 -3/2 0
B— K% fi; B~ — K, f 0 0 -1/2 2
B— f,K% B~ —a;, K% B*—a), K% B° - K, K% B~ — K|, K" | 1 0 0
B*—K%a% B~ — K ,d% B~ — K|, 7% B®— KO, 7° 0 0 -3/2 0
B'— 79K}, B~ —> 7, K9 B — KO K); B~ — K, K) 1 0 0 0
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Coefficients of the linear combinations «(as + a;g) + 2(a; = ag) and B (as — ay0/2) + Balaz * as) + Bs(a; * ag)

corresponding to penguin contribution of decay amplitudes M(B — AV).

Decays

ag ay Bi B B3

B — p* a7 (K7 ); B —af, p~; B°(B™) — a; (a%), K*;
B~ — w,a; (K{); B~ — f,p (K"); B~ — p° K

B~ —ay,p% B™ — p,a%K)); B* = a% K, B~ — a;, K™ B — £1(KY)), K*0; B — w, KY

B — al, p% B — p° aY; B — w, al; B® = f,, p°
BY — K0, a(l); B~ — K", a(]); B — K(]), p% B~ — Ky, p°

BO—>(I(1), w; B™ —a], w; B = p0 fliB = p , f:B"— fl,o

l?o—>a(1’,¢;[?0—>fl,¢ _ _
B> K fi;B”— K", f; B°— K}, w; B~ = K[, 0
B> K% ¢; B~ — K, ¢

I+

0
+3/2
—3/2
+1/2
-1/2
-1/2
-1/2

—_—0 O = O = =

EO - w, fl

— N =N OO

TABLE VIII. Coefficients of the linear combination ;(as —
ap/2) + &las — as) + Gla; — ag) corresponding to penguin
contribution of decay amplitudes M (B — A, Arevtral),

Decays a4 o 4

BY— a9, 4% B — f1,a" -1 0 -3/2
B —a fi; B~ —aj, f 1 2 —1/2
B*—a% K% B~ —ay, K% B— f,KY 1 0 0

B*— K% a% B~ —K;,d) 0 0 -3/2
B =K\, fi; B — K, fi 0 2 -1/2

B — V and B — A transitions. In Appendix A we have a
common factor (€ - pg) which is not included in the
expressions to simplify. We use the symbol K to indicate
the axial-vector mesons K,;(1270) or K;(1400). In the
appendices we have the factor Gr/+/2 common to all
amplitudes.

It is straightforward to calculate the branching ratios
from amplitudes and input parameters. However, here we
give general expressions which are useful in decay rate
estimations. The decay rate formula for B — AX decays is,
in general, given by

['(B — AX) =

Pe \mB—ax)P, @8
8mmy

where p. = A'/2(m}, m%, m})/2my is the momentum of
the decay particle in the rest frame of the B meson and X
canbe P, V,or A and A(a, b, ¢) = a*> + b* + ¢* — 2(ab +
ac + bc).

For branching ratios of B — AP decays, we note that
amplitude M (B — AP) is proportional to (€} - pp). Thus
amplitude squared is proportional to |(g% - pp)|*, which is
easily calculated. The general decay rate formula for B —
AV decays is more involved, because the amplitude
M(B — AV) includes an interfering term.

VI. NUMERICAL RESULTS

In this section we present our numerical results. In
Tables IX, X, XI, XII, XIII, and XIV, we display branching
ratios of B— AP, B— AV, and B — AA decays, respec-
tively, using the improved version of the ISGW quark

model [11] for calculating form factors for B — A
transitions.

Branching ratios for B — AP decays, where A is a 3P1
nonstrange axial-vector meson (see Table IX), are bigger
than ones where A is a ! P| nonstrange axial-vector meson.
The ratio Br(B — A(P,)P)/Br(B — A('P,)P), where me-
sons ACP,) and A('P,) have the same quark content, is
~1.6-4.5, except for a small number of them. The mode
B~ — a; K°, which is a pure penguin channel, is the most
dominant (its branching ratio of 84.1 X 107 is the big-
gest). Penguin contribution to this mode is given by dye,
parameters. Other dominant decays are B* — af 7~ and
B® — af K™, whose branching ratios are 74.3 X 107® and
72.2 X 107, respectively. In these decays there is a de-
structive interference between penguin and W-external or
W-internal contributions. On the other hand, a similar

TABLE IX. Branching ratios (in units of 107°) of B — AP
decays, where A is a nonstrange axial-vector meson, using the
ISGW?2 form factors for B — A transitions and WSB [LCSR] for
B — P transitions.

Mode B Mode B
B> a;wt 36.7[235] B —b;wt 0.0[ -]
B —afw™ 743[---1 B —bjw 3621
B — a)® 027[---1 B°—pin° 0.15 [0.14]
B™—a;n° 13.6 [7.8] B~ — by a° 029([---]
B~ —a)m 432[---]1 B — M7 18.6 [19.4]
B —aln 054[---1 B —bin 0.17 [0.20]
B-—ayn 134 [9.1] B-—bn 0.06 [---]
B — a)n/ 0.09[---1 B°— by 0.02 [0.03]
B™ —ain 136 [10.1] B~ — b7’ 0.58 -]
B — a'K° 423[---1  B°—BIK° 193 [---]
B*—afk~  722[---1 B —bjK” 357 (-]
B~ —d)K~  434([---1 B —bK” 181 [---]
B™—a;K 841[---] B —bkK° 415 (-]
B — fa° 047[---1 B - na° 016 [---]
B — fim~ 341[---1 B —hm 18.6 [17.9]
B’— fin 371 [---1 B —>hin 182 [+~
B — fin/ 221 0[] B — hn' 1127--]
B — fK° 34701 B —mnK° 19.0 [18.3]
B —fikK~ 3l1[---] B —hK 19.0 [17.7]
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situation is found changing a P, meson by a ' P, meson
with the same quark content (see the fourth column in
Table IX). At the experimental level there is not enough
information. Our predictions for Br(B® — a;#") =
36.7 X 107% and Br(B® — a} 7~) = 74.3 X 107° are con-
sistent with the experimental average value Br(B° —
aj m) = (40.9 = 7.6) X 1076 [8]. This average includes
BABAR and Belle results [1]. Finally, we want to mention
that our predictions are at the same order as the ones
obtained by Laporta-Nardulli-Pham (see Tables V and VI
in Ref. [8]), although our values are in general bigger,
except in a few modes.

In Table X, we show branching ratios for B — K P
decays for two values (6 = 32°, 58°) of the mixing angle
K4 — Kp. The strange axial-vector meson is K;(1270) or
K(1400). In this case, the most dominant decays are
B~ — K, (1400)n"), with branching ratios of O(107°).
On the other hand, branching ratios of modes B° —
Kyw", B®— K7, B- - K; 7% B~ — Kyn~, B®—
KYK°, and B~ — K)K~, where the K, meson can be
K,(1270) or K;(1400), are not sensitive to the value of
the mixing angle. On the contrary, branching ratios of
B — K%(1270)n"(K°) and B~ — K; (1270)n"(K°)
strongly depend on the mixing angle. The same decays
but changing K;(1270) by K;(1400) are not very sensitive
to this angle. Branching ratios of B — K;(1270)P and B —
K (1400) P are smaller with = 32° and § = 58°, respec-
tively. Laporta-Nardulli-Pham, in Table IV, Ref. [8], dis-
played some of the branching ratios that we present in
Table X. In general, both predictions agree.

In Table XI, we display branching ratios for B — AV
decays with A being a 3P, or a ! P, nonstrange axial-vector
meson. Most of these decays are suppressed. In general,
Br(B — A(PP,)V) is bigger than Br(B — A('P,)V), where
mesons ACP,) and A(' P,) have the same quark content. In
this case, dominant decays are B~ — f1p~, B® = aip*.
Their branching ratios are O(107%). If we compare

PHYSICAL REVIEW D 76, 094019 (2007)

TABLE XI. Branching ratios (in units of 107%) of B — AV
decays, where A is a nonstrange axial-vector meson, using the
ISGW2 form factors B — A transitions and WSB [LCSR] for
B — V transitions.

Mode B Mode B

B — ayp”’ 4.7 [3.5] BY — byp™ 00([---]
B—afp™  43[---] B —bfp~  16[ -]
B — a%p° 0.01 [0.009]  B°— b9p° 0.002[---]
B~ —a;p® 30[23] B~ — by p° 0.0005 [~ -]
B~ —d%~  24[---] B~ —bp~  086[ -]
B'— dlw 0.003 [0.02] B°— bW 0.02[---]
B- —a; 2.2 [5.1] B~ —bjw 0.004 [---]
B —ad¢ 0.0005[---]1 B"— bl 0.0002 [« --]
B —aj¢ 0001 [---]1 B —b ¢ 0.0004 [ - -]
B*— a%k*  0.64 [0.61] BY— pIK*  015([---]
B'—afK* 092[---] B®—bfK* 032[---]
B~ —dk*~  0.86 [0.81] B~ — K 0.12[0.17]
B~ —a;K*Y 051[---] B~ — by K 018[---]
B — f,p° 0.03 BY — hp° 0.02[---]
B™ — fip~ 491[--] B™ — hip~ 1.6[---]
B'— flo 0.02[--] B> ho 0.005[---]
B'— fi¢ 0.0005[--+] B — h ¢ 0.0002 [ - -]
BY— fiK* 043 [0.42] BO—n K 016[---]
B~ — f1K*~ 045 [0.48] B~ — K™ 034[---]

Tables IX and XI we found that Br(B — AP(g,g,)) >
Br(B — AV(q14,)).

In Table XII, we present branching ratios for B— K,V
decays for two values (§ =32°, 58°) of the mixing angle
K, — K. The strange axial-vector meson is K;(1270) or
K,(1400). These decays are, in general, suppressed. The
dominant decays are B°— K9(1400)K*°, B~ —
K; (1400)K*°, and B~ — K{(1270)K*~. Their branching
ratios are @(107°). On the other hand, the branching ratios
of modes B°—K; p*, B-—=Kp~, B-—>K; w, B°—
K9K*, and B~ — KK*~, with K, = K,(1270), K,(1400),
are not sensitive to the value of the mixing angle. On

TABLE X. Branching ratios (in units of 107%) of B — AP decays, where A is a strange axial-vector meson K;(1270) or K,(1400),
using the ISGW2 form factors for B — A transitions and WSB [LCSR] for B — P transitions.

Mode B (32°) B (58°) Mode B (32°) B (58°)
B — K (1270)7* 4.3 [2.8] 43 [2.8] B® — K (1400)7* 2.3 [1.5] 23 [1.5]
B — K9(1270)7° 2.3 [1.5] 2.1 [1.4] B® — K9(1400)7° 1.7 [1.3] 1.6 [1.3]
B~ — K, (1270)7° 2.5 [1.6] 1.6 [0.9] B~ — K, (1400)7° 0.67 [0.51] 0.64 [0.55]
B~ — K9(1270) 7~ 4.7 [3.0] 4.7 [3.0] B~ — K9(1400)7~ 2.5 [1.7] 2.5 [1.7]
B — K9%(1270)n 1.5 [1.1] 10.2 [9.8] B% — K9(1400)n 52.8 [52.5] 46.8 [46.6]
B~ — K; (1270)n 0.95 [0.65] 20.7 [19.4] B~ — K; (1400)n 95.1 [93.3] 84.8 [83.1]
B° — K9(1270)n/ 1.1 [0.8] 9.4 [9.1] B° — K9(1400)n/ 51.4 [51.2] 46.0 [45.8]
B~ — K, (1270)n/ 0.53 [0.4] 16.6 [15.6] B~ — K (1400)n’ 80.0 [78.5] 71.9 [70.5]
B — K)(1270)K° 0.20 [0.17] 0.20 [0.17] B® — K9(1400)K° 0.11 [0.09] 0.11 [0.09]
B° — KY(1270)K° 0021 -] 070 [---] B® — K9(1400)K° 417[--] 36[---]
B~ — K; (1270)K° 0.02[--] 075 -] B~ — K, (1400)K° 441---] 39[---]
B~ — K)(1270)K~ 0.22 [0.18] 0.22 [0.18] B~ — K)(1400)K ~ 0.12 [0.10] 0.12 [0.10]
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Branching ratios (in units of 107%) of B — AV decays, where A is a strange axial-vector meson K;(1270) or K,(1400),

using the ISGW2 form factors for B — A transitions and WSB [LCSR] for B — V transitions.

Mode B (32°) B (58°) Mode B (32°) B (58°)
B — K (1270)p* 0.62 [0.45] 0.62 [0.45] B° — K[ (1400)p* 0.45 [0.31] 0.45 [0.31]
B° — K9(1270)p° 0.001 [--+] 0.02[ -] B° — K9(1400)p° 0.05[---] 0.04 -]
B~ — K; (1270)p° 0.10 [0.03] 0.05 [0.07] B~ — K, (1400)p° 0.02 [0.01] 0.02 [0.01]
B~ — K(1270)p~ 0.001 [---] 0.001 [---] B~ — KY%(1400)p~ 0.001 [0.0006] 0.001 [0.0006]
B’ — KY(1270)w 0.0002 [0.001] 0.001 [0.003] B’ — KY(1400) @ 0.004 [0.005] 0.003 [0.007]
B~ — K, (1270)w 0.06 [0.16] 0.07 [0.15] B~ — K; (1400)w 0.06 [0.07] 0.06 [0.07]
B — K9(1270)¢ 0.004 [---] 025[ -] B® — K9(1400)¢ 087 [--] 0.66[---]
B~ — K, (1270)¢ 0.004 [---] 027 -] B~ — K (1400)¢ 093[---] 0.69[---]
B® — K9(1270)K*0 0.96 [0.76] 0.96 [0.76] B° — K)(1400)K*° 0.67 [0.52] 0.67 [0.52]
BY — KY(1270)K* 0.0007 [+ -] 031[-] B° — K9(1400)K*° L1[--] 0.82[-]
B~ — K; (1270)K*° 0.0007 [+ - -] 0331[--] B~ — K (1400)K*0 12[--] 0.88 [ -]
B~ — KY(1270)K*~ 1.0 [0.82] 1.0 [0.82] B~ — KV(1400)K*~ 0.73 [0.56] 0.73 [0.56]

TABLE XIII. Branching ratios (in units of 107°) of B — AA
decays, where A is a nonstrange axial-vector meson, using the
ISGW2 form factors.

Mode B
B — ajaf 6.4
B — a%af 0.1
B~ — ayaf 3.6
B — af, 0.02
B~ —ay f 37

the contrary, branching ratios of B® — K%(1270)K*° and
B~ — K; (1270)K* strongly depend on the value of 6.
The predictions obtained in Ref. [9] (see Tables II and III)
for B— K(1270)¢ and B — K,(1400)¢ and our predic-
tions for these modes do not agree, except for the case with
N =00 and § = 58° (with u =2.5GeV or u =4.4GeV).
In this case the respective branching ratios are @O(1077).
Moreover, in Tables IX, X, XI, and XII, between brack-
ets we show values corresponding to the branching ratios
B — AP and B — AV, where B — P(V) transitions are
calculated in the LCSR approach. The values with the
symbol [ - - -] represent branching ratios which basically
have equal value with respect to the calculated with the
WSB model. In general, the branching ratios are smaller

compared with the calculated with the WSB model. The
branching ratios for B~ — a; w, B~ — b] w, and B —
K w decays increase their values, because in the LCSR
approach the form factors for B — w transitions are bigger
compared with the WSB model.

In Table XIII, we present branching ratios for five B —
AA decays, where A is a nonstrange axial-vector meson.
The branching ratio of B — aja; is O(107°). In this
group, this decay is dominant. From Tables XI (see second
column) and XIII we conclude that Br(B — a; V(q1G,) ~
Br(B — a; A(q1G,)), where V and A are nonstrange
mesons.

In Table XIV, we show branching ratios for B — KA
decays for two values (§ = 32°, 58°) of the mixing angle
K4 — K. The strange axial-vector meson is K;(1270) or
K,(1400). Branching ratios of the decays B — K| ai and
B~ — KYaj are not sensitive to the mixing angle. In this
group, Br(B° — K;(1270)a]) ~ 1077 is the biggest.
From Tables XII and XIV we conclude that Br(B —
K,p) ~ Br(B — K;a,).

Finally, in Table XV, we present a summary about
experimental information given in Ref. [5] for branching
ratios of some charmless B — AP, AV, AA decays. In
general, bounds for these branching ratios are
<(1073-10"%). There is a similar situation for charmed
and charmonium B decays [5].

TABLE XIV. Branching ratios (in units of 107%) of B — KA decays, where A is a nonstrange
axial-vector meson, using the ISGW2 form factors. The K; axial-vector mesons are K;(1270)

and K, (1400).

Mode B(32°) B(58°) Mode B(32°) B(58°)
B’ — K, (1270)a; 0.79 0.79 B® — K (1400)a; 0.49 0.49
B® — K9(1270)a} 0.002 0.03 B° — KV(1400)a) 0.08 0.06
B~ — K (1270)a) 0.12 0.06 B~ — K (1400)a) 0.03 0.03
B~ — KY(1270)a; 0.002 0.002 B~ — KY(1400)a; 0.001 0.001
B’ — KV(1270)f, 0.44 0.53 BY — KV(1400)f, 0.48 0.44
B~ — K, (1270)f, 0.15 0.27 B~ — K (1400)f, 0.34 0.29
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TABLE XV. Experimental bounds for branching ratios of
some charmless B — AP, AV, and AA decays reported in [5].

Mode Bexp

B® — a7 (1260) 7™ <49 x 1074
B® — 49(1260)7° <1.1x1073
B — al F(1260)p~ <3.4x1073
B® — a9(1260)p° <2.4 %1073
B0 — K+(1400)7r— <1.1x1073
BY — af (1260)K~ <23 %1074
B® — K9(1400)p° <3.0x 1073
B® — K9(1400) ¢ <5.0%x 1073
Bt — a;(1260)7° <1.7%x 1073
B* — a%(1260)7* <9.0 X 1074
BT — a; (1260)p° <6.2 X 1074
B* — a; (1260)a)(1260) <1.3 X 1072
B* — K9(1400) 7" <2.6X 1073
BT — K (1400)p° <7.8 X 1074
BT — K (1400)¢ <1.1x1073

VII. CONCLUSIONS

In this work, we have presented a systematic study of
exclusive charmless nonleptonic two-body B decays in-
cluding axial-vector mesons in the final state. Branching
ratios of decays B — PA, B — VA, and B — AA (where A,
V and P denote an axial vector, a vector, and a pseudosca-
lar meson, respectively) have been calculated assuming the
naive factorization hypothesis and using the improved
version of the nonrelativistic ISGW quark model in order
to obtain form factors required for B — A transitions. Form
factors for B— P and B — V transitions were obtained
from the WSB model and LCSR approach. We have in-
cluded contributions that arise from the effective AB = 1
weak Hamiltonian H., i.e., we have considered
W-external and W-internal emissions, which have contri-
butions of a; and a, QCD parameters, respectively, and
penguin contributions given by a3 ;90 QCD parameters.
The respective factorized amplitudes of these decays are
explicitly showed in the appendices and their penguin
contributions have been classified. We also present a com-
parison between B — A and B — V transitions.

We have obtained branching ratios for 141 exclusive
channels B — AP, AV, and AA where the axial-vector
meson can be a >P, or a ' P, meson. We also studied the
dependence of the branching ratios for B — K, P(V, A)
decays [K; = K;(1270), K,(1400) are the physical strange
axial-vector mesons] with respect to the mixing angle
between K;, and K;p. The best scenarios for determining
this mixing angle are the decays B°— K?(1270)n")X
(K% K*0) and B~ — K; (1270)n"(K°, K*°) because their
branching ratios strongly depend on the mixing angle.

Our results show that some of these decays can be
reached in experiment. In fact, decays B~ — a7, B —
atm™, B-—a K% B'—alk~, B'— f,R°, B~ —

PHYSICAL REVIEW D 76, 094019 (2007)

f1iK~, B~ — K;(1400)n", B~ — b;K°, and B°—
by 7~ (K~) have branching ratios of the order of 107.

At the experimental level there is not enough informa-
tion. In Ref. [5] there are only bounds for branching ratios
of some charmless B — AP, AV, AA decays (see
Table XV). In general, our results are smaller that these
bounds by 2 orders of magnitude. Our predictions Br(B° —
a; ) =36.7X107°23.5X 107°] and Br(B’—
a1 7)) =743 X107 6[ -], i.e. the CP-averaged branch-
ing ratio Br(B® — aj 7) = 55.5 X 1076[48.9 X 107¢] is
consistent with the experimental average value Br(B* —
aj ) = (40.9 = 7.6) X 1076 [8]. This average includes
BABAR and Belle results [1].

In general, we can explain the large branching ratios for
B — K,(1400)1"” as a combination of effects, the con-
structive interference of the terms a4 and a4 which are the
bigger coefficients in the penguin sector of the effective
Hamiltonian and the two-mixing K4 — K3 and n — 7’
involved in the decays.

Finally, we want to mention that our predictions are at
the same order as ones obtained by Laporta-Nardulli-Pham
(see Tables Vand VIin Ref. [8]), although our values are in
general bigger, except in a few modes. On the other hand,
predictions obtained in Ref. [9] (see Tables II and III) for
B — K;(1270)¢p and B — K;(1400)¢ and our predictions
for these modes (see Table XI) do not agree, except for the
case with Nf = oo and 6 = 58° (with u = 2.5 GeV or
M = 4.4 GeV). In this case the respective branching ratios
are O(1077).

ACKNOWLEDGMENTS

We thank C. Ramirez from Universidad Industrial de
Santander, Colombia, for useful conversations and G.
Lopez Castro from CINVESTAYV, México, for reading the
manuscript and his valuable suggestions. The authors ac-
knowledge financial support from Conacyt (G.C.) and
Comité Central de Investigaciones of University of
Tolima (J. H.M. and C.E. V.).

APPENDIX A: MATRIX ELEMENTS FOR B
DECAYS TO AN AXIAL AND A PSEUDOSCALAR
MESON

M(BO - (11_77 ) - 2ma1fa1FB—>7T(m ){Vubv ud41

- thth(a4 + ay)} (A1)

M(BO—af ) = 2im,, VI~ (mz,){vu,,v;da1 —VLV

X |:a4+a]0 +2(a6 ‘I’Clg)

om0
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my

_ . ) 1
M(B° — af7n°) = 2im f,V al(mgr){vubv;;daz - Vzbvfd[_azx — (2a6 — ay) — ~5(a; — 3aq — alo)”

2md(mb - md) 2

, ) i
+ zma,fa,F?_W(mgl){vubv;dQZ - Vuqud[_CM - 5(307 —3ag — 010)}} (A3)

. —a * * 1 m%r
M(B_ —_ (,ll_’?TO) = Zlm,,.fﬂ.Vg l(mzr){Vuqudaz - V,thd|:—a4 - §(3d7 - 3(19 - alo) - (2(16 - ag) m:”

+ 2my, fo FET (2 WV Vigar — Vi Viglag + ayp)} (A4)

2
MB~ — am) = 2imf Ve 2NV Vigay — Vi Vigl as + ago + 2(ag + Mo
( 61177 ) lmﬂ-fﬂ- 0 (mﬂ') ub m[al thV td dy ayo (aé aS) (md ¥ mu)(mb — mu)

. 1
+ 2ma]fa]Ff;_’”(mﬁl){VubV:daz - Vszfd|:_CM - 5(307 = 3ag — alo)” (AS)

m2 fx
_ ) B . . 0 0
M(B®— afn") =2im, 0 f4,Vy " (mim){Vuqud“z - thVzd|:2a3 +ay—2as + (2a5 - 08)72ms(m;7 “n) (}Z - l)rn“)

,,](/)
1 B_"’](/) 2 « « 1 3
- 5(07 —ag+ alo)}} +2my, fo, F (mg, {Vuqudaz - thV,d[_CM + 7410~ 5(07 - 09)}}
1
. B— *
— Zlmn(/)fi](/) V() @ (mzl(,)){V,thd[c@ —ds + 5(617 - (19):”
+2imy0 Vo o (mi(/)){vcbvjda2 = VwViylas —as —a; + ag)} (A6)
M(37 —_ a;n(/)) = 21mn(/)f;(,) Vg ay (mzl(/)){vubvudaZ - thth|:26l3 + ag — 2615 - 5(617 - Clg + Cl]o)
mi(/) f;(/) B—n®, o N *
+ (2as — as)m<fuw - 1>rn</) “ +2my fo, Fy (Mg WVupVyqar — Vi Viglas + ayo)}
n
. - . 1
- 21mn(/)fi](,) Vg % (m%l(,)){V,thd[ch + ag — 2615 - 5(617 - Clg):”
+2im 0 f Vo @ (mzl(/)){vcbV:dQZ =V Viylas —as — a; + ao)} (A7)
_ _ 3
M(BO - a(l)Ko) = Zma]fa]F{}_’K(mil){vuhV:XaZ - Vlbvzyi(_ch + Clg)}
Dimy fVE" (m2)V,, V Lo+ 2 ) i (A8)
— Zlm m — —=d dAe — A
KJKkVo K)Vib m[a4 5410 6 8 (m, + my)(my, — md)}
>30) + - . B—a, 2 % * m%{
M(B° — af K™) = 2img [V, (mK){Vuqusal - thVts|:a4 + ayo + 2(ag + ag) n+ m ), = )H (A9)
s u b my
M(B~ — a¥K™) = 2img fx Ve (m2)V,, Visa, — Vi Vi ay + ayo + 2(ag + ag) M-
1 KJKY0Q K ub Y us“1 thVts 4 10 6 8 (ms ¥ mu)(mh _ mu)
% % s 3
+ 2ma|fa|FlB_'K(mg])(E : pB){VuqusGZ - thVtsi(_a7 + aQ)} (AlO)
v A B—ay( > ] 1 mi All
M (B~ — a; K°) = =2imgfxVy “(mp)Vy,Vis| as — 5 %10 + (2a¢ — ag) (m. & ) (my — ) (All1)
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_ - 1 m?
MB® — f17°) = 2im,f Ve T 2V Vigay — Vi Vil as — = (Bag — 3ag + ayo) + (2ag — as)—wo_
2 2my(my — my)

1
+ szlffl Ff_'”(mjzcl){VMbV:daz - thV:d|:203 + as — 2615 - 5(617 — dg + alo)i”» (A12)
B—f . m%f
M(B_ — f17T_) - 2im7,.f7TV0 ‘(m%){VubV;dal - V,bV[*d[a4 + a10 + 2(6!6 + Clg) (md T )(mb “m ):”

1
+ melffl FIIB—WT(mJ%I {VubV;daz - thV;"d[Z% + ag — 2(15 - 5(617 — dg + Cllo)iH (A13)

R . — * * 1
M(B® — fin") = im0 fro Vo Ut (m37</)){Vuqudaz - thV;d[zaa +ay —2as — 5(07 —ay + ay)

2 S
m_ f () (1) s s
+ (2a6 - ag)WTI_W(f%() - 1)]’.’7(1):” + 2mf1ff1Ff K (m}]){Vuqudaz - thth[Z(h + ay
n/
1 . — . 1
—2as — 5(07 —agt a10)}} - 21m7,</)ff7m Vg 4 (mi(/)){V,thd[% —as+ 5(617 - a9)“
+ 2im 0 f, Vo~ (m2 WV Vigar = VipVilas — as — a; + ayl} (Al4)

D L £ £ 1
M(B° — f1K°) = 2my f, F?_'K(m%){vubvusaz - Vszts[Z% - 2as — 5(“7 - a9)}}

1 m2
—2i VEI (2 )WV, Vi ay — —ay + 2ac — K AlS
imgfrVy ' (mg)VyVi| as 5 %0 (2as — ag) e+ my)my — my) (AIS5)
_ -\ . B_'fl 2 % % m%{*
MB~ — f1K) = 2imyfxVE™ (m,a{vubvmal - vtbv,{a4+am+2(a6+ag) }}
(ms + mu)(mb - mu)
+2mp, £, F?*K(mﬁl){vubvmaz - V,bvm[Zag — 245 =5 (a7 - ag)}} (A16)
M (B® — Ky m) = 2im, f Ve S (m2 )V, Visa, — Vi Vislag + aio)} (A17)

= > . B—K! * * — T *
M (BO - K?WO) = 21m7rf77'v0 ](m%r){vub Visar = Vi Vts%(_a7 + a9)} - 2mK]fK] Fllg (mg(l)vtb Vts[a4 - %am]

(A18)
M(B™ — Ky m°) = 2im, £, Vg (m2 KV, Visas — Vi Vid(—ar + ag)}

+ 2mg fk, F]]g_)#(m%(l(lyo)){vubV;:sal = Vi Vis(as + ayg)} (A19)

M(B~ — K{m™) = —2mg, fx, FF~"(mg )V Vid(as — 3a10)} (A20)

D L . —, * * 1
(B — Rin') = 2im 3, V3™ 002 Vi Vi = Vi Vi 2as = as) = 5 (ar = a) |
B—n o * ! . s yB—Ki, 2 *
— ZmKlfK(I)Fl (mK(l)){Vfth5<a4 - 5(110)} - 21m7l(,)fn(,) VO (mn(,)) thVts Cl3 + 614 - 615
2 u
1 m f 0]
+ ~(a; — ay — ayp) + 2ag — ag) ————— <I—L>}
217 o T ) e T oy — g\ R

+ 2imy0 fC Vo (m2 WV Visas = Vi Vilas = as — az + ay)} (A21)
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_ _ . — % % 1
M(B~ — Kl 7’(/)) = 2lm7](’)ff,l](/) V(? ki (mi(/)){vubvuscb - Vletls|:2a3 —2as — E(a7 - a9)i|}

— () * £3 . — £3
+ 2mg, fx, Ff K (m%(, WVusVasar — Vi Vis(ag + ayo)} — 2lmn</>ff7m fo K (mi(/)){vtbvts[C% +ay

2 u

1 m- I

—as "'—(617_619_010)"‘(206_“8)—7)() [
2 my) s

2mg(m), — 7
+2im0flo vy (mi(/)){vchvzsaZ = VyVislaz — as — a7 + ao)} (A22)
M (B® — KVK®) = —2my, fx, FE5(mx )V, Vigdlas — Saio)} (A23)

_ _ 1 m2
M (B® — KOKO) = —2i vE K m2 ), v* ——ap+ (2 K A24
( 1 ) imgfg 0 (mK) th Vigy| A4 2a10 (2ag — )( m, + md)(mb m,) ( )
_ — 0 . B—K, 2 * 1 mio
M (B —_ Kl K ) = _2lmeKV0 (mK)thth{|:a4 - Ealo + (2a6 - ag) (ms T md)(mb - ):|} (A25)
M(B~ — K)K™) = —2my fk, F?ﬁK(m%(I)thV;kd{(aA, — fa)}. (A26)

APPENDIX B: MATRIX ELEMENTS FOR B DECAYS TO AN AXTAL AND A VECTOR MESON

RO, o — o+ . . 2VE=P(mg,)
M(B —a; p ) = ma]fal{vubvudal - thvtd(a4 + alO)}(i E,u,wvﬁeal ppop
(mp + m,)
s AB—p (. 2
. B— lA2 (ma )
—i(mp + m,)AT " (m3 )(e, - €,) + m(fp - pp)ley, - PB)) (B1)
_ . 2A5=a (m2)
M(BO - apri) pfp{Vuh dal thvtd(a4 + al()):%(ﬁ E/J,VO(,BGP Ea]poal
mp
. —a ivy " (m3)
=iy VI e, ) 0 G Pl ) B2)
= 1 2AB_’”1(m2)
B — a\p°) = — VupVigas — Vi Viy| —aq + = (Baz + 3aq + — a
M( ap ) mpfp{ ub ¥ g2 th ¥ td Ay 2( as dg alO) (mB n mal) ,LLVa,BEP alpBP 1
. - ivy " (m2)
iy m VI ) ey, ) + e pa)e, o))
ay
N . 1 2VB*P(ma])
+ malfal{vubvudaZ - V,thd|:—a4 - 5(307 —3a9 — alO)}K(B"‘m) ,uvaﬂfal pPBPp
. = iAS P (m2)
=iy AT ey )+ 2T P, ) (B3)
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245~ (m2)

M(87 - a;po) = _mpfp{vubV;dQZ}( + m, ) /Lvaﬁep ealpoal l(mB + mal)Vf_’al(m,zy)(eal : €p)

vy~ (m2) 2VE=P(m2)

(€4, - PB)(E, - PB)) + malfa]{vuhvzdal ViV, ( ay; +ag + am)}(

(mB + mal) d2 (mB + mp)
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B—a lvg_}al 2*)
iy m V) ey, ) + I e palen ) (BO
mp al
_ _. . 1 2484 (m?.) -
M(B® — aYK™) = my fx- Vi Vi as — s aro 7%11%6?*6(1[[73%, — i(mp + m, )V1 “(my.) (e, + €x)
2 (mB + mal)
VI~ (m2.) . .3
(niB—kimK)(s”‘ - pp)eg - PB)> + malfal{vuhvimaZ + VthszE(a7 - a9)}
a
2VE=K (2
<m € uvap€hy €x PBPK — i(mpg + mg=)AB=K (m2 g - €,)
iAF=K (m2)
(mz_i_—ml)(fK* - pp)ley, - PB)) (B7)
B K
B 0 o . . 2AB~4 (m%.) u
MB~ — ajK ) = —mgfxAVipVasar — Vi Vis(as + 6110)}<(B+7m) €uvap€g alpoal
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5 ivy i (mk.)
—i(mg + m, )V; " (m%.)(e,, - €x) + W(Ga, - pp)eg - PB))
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. .3 2VE=K (m3)
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B K*
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50 0 " « 1 2AB=4 (m2)
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( mp + mal
vy (md)

—i(mg + mal)VlB_)al(m%u)(Ea] C€,) T Ty +m)
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30 oH0) — . 1 245711 (mi.) ; B—f1(, 2
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* £ l
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(G v ke PP doma 4 e JAP 0 e 1)
B K*

lAg—)K* (m% )

(mpy + ' )(fK* PB)('ff1 “ PB) (B16)
B K*

2481 (m?.)
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B—fi
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— ilmy + m VI 2 ey, - €4) + (e, Po)leg - p3>) (B19)

RO + * #* 2VB—'P(mK1) Vo
MB° — Kip™) = mg fx AVirVisar — Vi Vis(as + ayo)} W €uvap€k,€pPBDp
1A2 P(mKl)

— ilmp + m AP (0 (e, - €x,) + o € Pl p3>) (B20)

247K (m2)

M v La
) €uvap€p eKl poKl

D % * £ 3
M(B*— K)p°) = _mpfp{vubvuva - VszmE(Ch + 09)}(W

Wil(m%))(m “pp)€, p3)> —mg fk, {th st(““ B %aw)}

B—K; 2
—ilmg+mg )V, ! €x "€,)+
( B Kl) ( p)( K, p) (mB+mK1
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p
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2457k (m?) u

——— € €
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APPENDIX C: MATRIX ELEMENTS FOR B DECAYS TO TWO AXIAL MESONS

0 -+ * * 2’Al!g_wll(’/’/l‘211 kv a B
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ap

-y/B—a 2
. B— ZVQ (mg,)
- l(mB + mal)V] “ mgl)(eal ' eal) + .
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(mB + mal)
. B—a, 2 ivf_’al (m% * *
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24578 (7))
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