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We propose a new description of inclusive diffraction in deep inelastic scattering. The diffractive
structure functions are expressed in the dipole picture and contain heavy-quark contributions. The dipole
scattering amplitude, a saturation model fitted on inclusive deep inelastic scattering data, features a
saturation scale Qs�x� larger than 1 GeV for x � 10�5. The q �qg contribution to the diffractive final state is
modeled in such a way that both the large-Q2 and small-� limits are implemented. In the regime xP <
0:01 in which saturation is expected to be relevant, we obtain a parameter-free description of the HERA
data with �2=points � 1:2.
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I. INTRODUCTION

Deep inelastic scattering (DIS) is a process in which a
virtual photon is used as a hard probe to resolve the small
distances inside a proton and study its partonic constitu-
ents: quarks and gluons that obey the laws of perturbative
QCD. When probing with a fixed photon virtuality Q2 �

�2
QCD, and increasing the energy of the photon-proton

collision W, the parton densities seen by the photon inside
the proton grow. Eventually, at some energy much bigger
than the hard scale, corresponding to a small value of the
Bjorken variable x ’ Q2=W2, the gluon density probed
becomes so large that nonlinear effects like gluon recom-
bination become important. One enters a nonlinear yet
weakly coupled regime of QCD [1] called the saturation
regime.

The transition to the saturation regime is characterized
by the so-called saturation momentum Qs�x� � Q0x

��=2.
This is an intrinsic scale of the high-energy proton which
increases as x decreases. Q0 ��QCD, but as the energy
increases, Qs becomes a hard scale, and the transition to
saturation occurs when Qs becomes comparable to Q. The
higher Q2 is, the smaller x should be to enter the saturation
regime. Part of the DIS events are diffractive, meaning that
the proton remains intact after the collision and there is a
rapidity gap between that proton and the rest of the final-
state particles. Such events are expected to be more sensi-
tive to the saturation regime than the inclusive ones.

Although the saturation regime is only reached when
Qs �Q, observables are sensitive to the saturation scale
already during the approach to saturation [2] when
�QCD � Qs � Q. For inclusive events in deep inelastic
scattering, this feature manifests itself via the so-called
geometric scaling property: instead of being a function of
Q2=Q2

0 and x separately, the total cross section is only a
function of � � Q2=Q2

s�x�, up to large values of �.
Experimental measurements of inclusive DIS are compat-
ible with that prediction [3]. Recently, it was shown [4] that

diffractive observables also feature the geometric scaling
behaviors expected when approaching saturation.

In the saturation regime of QCD, contributions to the
cross sections growing like Qs=Q are important. The
leading-twist approximation of perturbative QCD, in
which Q2 is taken as the biggest scale, cannot account
for such contributions, and therefore is not appropriate to
describe the small-x limit of deep inelastic scattering. As
leading-twist gluon distributions cannot be used to com-
pute cross sections, the dipole picture of DIS [5] has been
developed to describe the high-energy limit. It expresses
the hadronic scattering of the virtual photon through its
fluctuation into a color singlet q �q pair (or dipole) of a
transverse size r� 1=Q. The dipole is then the hard probe
that resolves the small distances inside the proton.

The dipole picture naturally incorporates the description
of both inclusive and diffractive events into a common
theoretical framework [6,7], as the same dipole scattering
amplitudes enter in the formulation of the inclusive and
diffractive cross sections. Different saturation parametri-
zations of the dipole-proton cross section have been suc-
cessful in describing inclusive and diffractive HERA data.
The pioneering work of [8,9] triggered several improve-
ments: the ‘‘Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP)-improved’’ model of [10] allows one to include
even high-Q2 data in the fit and the ‘‘Balitsky-Kovchegov
(BK)-inspired’’ model of [11] incorporates features from
the QCD nonlinear equations.

In diffractive DIS, when the invariant mass MX of the
diffractive final state is much smaller than Q, the dominant
contribution to the final state comes from the q �q compo-
nent of the photon wave function. By contrast, if � ’
Q2=M2

X � 1, then the dominant contributions come from
the q �qg component, or from higher Fock states, i.e., from
the photon dissociation. The main goal of this work is to
improve the description of the q �qg contribution with re-
spect to previous analysis: it will be modeled in such a way
that both the large-Q2 and small-� limits are implemented.

Including the contributions of heavy quarks in the mod-
els has also been a recent concern, as several approaches*marquet@quark.phy.bnl.gov
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observed a decrease of the saturation scale to Qs ��QCD,
when trying to include the charm quark in their analysis
[12,13]. This was problematic, however it was recently
shown [14] that it is possible to accommodate the model
of [11] with heavy-quark contributions and a saturation
scale that stays above 1 GeV for x � 10�5, rather than
dropping to about 500 MeV as is the case in other studies.
Our second goal in this paper is to check whether the dipole
cross section of this heavy-quark improved saturation
model also describes the inclusive diffraction data from
HERA.

The plan of the paper is as follows. In Sec. II, we recall
the QCD dipole picture for inclusive and diffractive DIS in
terms of the dipole-proton scattering. In Sec. III, we dis-
cuss in more details the case of diffraction and present the
different components of the model, highlighting in each
case the improvements with respect to previous ap-
proaches, in particular, concerning the inclusion of
heavy-quark contributions, and the treatment of impact
parameter. Section IV discusses how to implement the
q �qg contribution to the diffractive final state to obtain a
unified description that features both the large-Q2 and
small-� limits. In Sec. V, the results of the comparison
with the available HERA data are presented, and Sec. VI is
devoted to conclusions.

II. QCD DIPOLE PICTURE OF DEEP INELASTIC
SCATTERING

We focus on diffractive DIS: ��p! Xp (see Fig. 1).
With a momentum transfer t 	 0, the proton gets out of the
�� � p collision intact, and there is a rapidity gap between
that proton and the final state X whose invariant mass we
denote MX. We recall that the photon virtuality is denoted
Q2, and the �� � p total energy W. It is convenient to
introduce the following variables:

 x �
Q2

Q2 
W2 ; � �
Q2

Q2 
M2
X

; xP � x=�: (1)

The �� � p total cross section ��
�p!X

tot is usually expressed
as a function of x and Q2, while the diffractive cross

section d��
�p!Xp

diff =d�dt is expressed as a function of �,
xP, Q2, and t. The size of the rapidity gap in the final state
is ln�1=xP�.

A. �� ! q �q wave functions

To compute those cross sections in the high-energy
limit, it is convenient to view the process in a particular
frame called the dipole frame. In this frame, the virtual
photon undergoes the hadronic interaction via a fluctuation
into a colorless q �q pair, called dipole, which then interacts
with the target proton. The wave functions  f;��� �z; r;Q2�
describing the splitting of a virtual photon with polariza-
tion � into a dipole are well known. The indices � and �
denote the spins of the quark and the antiquark composing
the dipole of flavor f. The wave functions depend on Q2,
the fraction z of longitudinal momentum (with respect to
the �� � p collision axis) carried by the quark, and the
two-dimensional vector r whose modulus is the transverse
size of the dipole.

Formulas giving the functions  f;��� can be found in the
literature (see for instance [15]). In what follows, we will
need the functions �f

� which describe the overlap between
two wave functions for splitting into dipoles of different
transverse size r and r0:

 �f
��z; r; r

0;Q2� � Nc
X
��

� f;��� �z; r0;Q2��� f;��� �z; r;Q2�:

(2)

For a transversely (T) or longitudinally (L) polarized pho-
ton, these functions are given by
 

�f
T�z; r; r

0;Q2� �
�emNc

2	2 e2
f

�
�z2 
 �1� z�2�"2

f
r:r0

jrjjr0j


 K1�"fjrj�K1�"fjr0j�


m2
fK0�"fjrj�K0�"fjr0j�

�
; (3)

 

�f
L�z; r; r

0;Q2� �
�emNc

2	2 e2
f4Q2z2�1� z�2K0�"fjrj�


 K0�"fjr0j�: (4)
In the above, ef and mf denote the charge and mass of the
quark with flavor f and

 "2
f � z�1� z�Q2 
m2

f: (5)

B. Total cross section ��
�p!X

tot

Via the optical theorem, the �� � p total cross section is
related to the elastic scattering of the virtual photon off the
proton. In the dipole frame, this happens as follows: at a
given impact parameter b, the photon splits into a dipole
with a given size r which scatters elastically off the proton
and recombines back into the photon. Therefore the over-
lap function �� which enters in the computation of the
total cross section is

FIG. 1. Representation of �� � p deep inelastic scattering;
inclusive (left) and diffractive (right) events are pictured with
the relevant kinematic variables: the photon virtuality Q2, the
energy squared of the �� � p collision W2, and in the case of
diffraction the momentum transfer t and the invariant mass of the
diffractive final state M2

X.
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 ���z; jrj;Q2� �
X
f

�f
��z; r; r;Q2�: (6)

For a virtual photon with polarization �, the total cross
section is then given by [see Fig. 2(a)]

 ��
�p!X
� �x;Q2� � 2

Z
d2r

Z 1

0
dz�����

� �z; jrj;Q2�



Z
d2bTq �q�r;b; x� (7)

where the function Tq �q�r;b; x� is the elastic scattering
amplitude of the dipole of size r off the proton at impact
parameter b. It contains the x dependence, reflecting the
fact that in our frame, the proton carries all the energy and
is therefore evolved up to the rapidity ln�1=x�. In the high-
energy limit x� 1 we are considering here, Tq �q does not
depend on z.

C. Diffractive cross section d��
�p!Xp

diff =d�dt

The diffractive scattering happens as follows. In the
amplitude, the photon splits into a dipole of size r which
scatters off the proton at a given impact parameter b and
dissociates into a final state of invariant mass MX. The
same happens in the complex conjugate amplitude, except
that the dipole size r0 and the impact parameter b0 are
different from r and b. Indeed, the final state is character-
ized by particular values of MX (or equivalently �) and t,
corresponding to particular momenta of the quark and
antiquark in the final state. In coordinate space, this im-
poses two different dipole sizes and impact parameters in
the amplitude and the complex conjugate amplitude, there-
fore the functions �f

��z; r; r
0;Q2� [see (2)] enter in the

computation of the diffractive cross section. For a virtual
photon with polarization �, the diffractive cross section is
given by [see Fig. 2(b)]

 

d��
�p!Xp
�

d�dt
��; xP; Q

2; t� �
Q2

4�2

X
f

Z d2r
2	

Z d2r0

2	

Z 1

0
dzz�1� z����2

f�e
i�f��r0�r��f

��z; r; r
0;Q2�



Z
d2bd2b0ei���b

0�b�Tq �q�r0;b0; xP�: (8)

In the above, the differences between r and r0 on one hand,
and b and b0 on the other hand, are related via Fourier
transformation to

 � 2
f � z�1� z�Q2�1� ��=��m2

f and �2 � �t:

(9)

Note that now the proton is only evolved up to the rapidity
ln�1=xP�. This is because some of the energy (M2

X) is
carried by the dipole in order to form the diffractive final
state. The dipole is evolved up to a rapidity ln�1=�� and the
proton up to the rapidity ln��=x� � ln�1=xP�. The relevant
high-energy limit in this case is xP � 1.

Note that to write formula (8), we have neglected pos-
sible final states containing gluons. This is justified be-
cause these are suppressed by extra powers of �s.

However, if � becomes too small, or if Q2 becomes too
large, the dipole will emit soft or collinear gluons whose
emissions are accompanied by large logarithms ln�1=�� or
ln�Q2� which will compensate the factors of �s. This will
be discussed in more details in Sec. IV, when we explain
how to implement the q �qg contribution to the diffractive
final state, in order to correctly describe both the small-�
and large-Q2 limits.

III. SATURATION MODEL FOR THE DIPOLE
AMPLITUDE Tq �q

Using the dipole picture of deep inelastic scattering, we
have expressed the total (7) and diffractive (8) cross sec-
tions in the high-energy limit in terms of a single object:
the dipole scattering amplitude off the proton Tq �q�r;b; x�.

FIG. 2. The QCD dipole picture of deep inelastic scattering. The left diagram represents �� � p elastic scattering and (via the optical
theorem) corresponds to formula (7). The right diagram represents diffractive scattering (without possible final states containing
gluons) and corresponds to formula (8). In this case, the final state (indicated by the vertical dashed line) is characterized by t � ��2

and M2
X � ��

2 
m2
f�=�z�1� z��, with � � q
 q0 and � � �1� z�q� zq0 in terms of the quark and antiquark momenta q and q0.

Via Fourier transformations, q and q0 impose different sizes and impact parameters for the dipole in the amplitude and the dipole in the
complex conjugate amplitude.

UNIFIED DESCRIPTION OF DIFFRACTIVE DEEP . . . PHYSICAL REVIEW D 76, 094017 (2007)

094017-3



It is mainly a nonperturbative quantity, but its evolution
towards small values of x (or high energy) is computable
from perturbative QCD. Evolution equations have been
established in the leading ln�1=x� approximation [16–18]
and, at least for central impact parameters, one has learned
a lot about the growth of the dipole amplitude and the
transition from the leading-twist regime Tq �q � 1 towards
and into the saturation regime Tq �q & 1.

Let us recall that this transition is characterized by the
saturation scale Qs�x�, which increases as x decreases. In
the following, we shall work in the context of the BK
evolution [16] to describe the r dependence. Indeed, this
provides a natural explanation for the geometric scaling
properties of the data [3,4]. The impact parameter depen-
dence of Tq �q is still an open problem, it cannot be extracted
from perturbative QCD and it is usually modeled. In for-
mulas, one writes

 Tq �q�r;b; x� � S�b�N�jrjQs�x�; x� (10)

where we have introduced the factorized impact-parameter
profile S�b�. In the following, we detail the different com-
ponents of our model: S�b� and N�jrjQs; x�.

A. Impact-parameter profile S�b�

When performing the b integration in formula (7), this
contributes only to the normalization via a constant factor
2
R
d2bS�b� � �0 (of order 25 mb) characterizing the

transverse area of the proton. However, in the case of the
diffractive cross section (8), the b integration gives the
momentum transfer dependence. Experimentally, the dif-
fractive cross section decreases exponentially with jtj as
eBDt, where BD is the diffractive slope (of order 6 GeV�2).
This is consistent with the Gaussian profile S�b� �
e�b2=�2BD�, which then implies �0 � 4	BD.

In the literature, the quantities �0 and BD are usually
considered unrelated, however as we have shown, a con-
sistent treatment of the impact parameter dependence
within the dipole picture implies that this is not the case.
To summarize, one has

 

d�
dt
� eBDt ) S�b� � e�b2=�2BD� ) �0 � 4	BD: (11)

B. Heavy-quark improved Iancu-Itakura-Munier (IIM)
saturation model for N�jrjQs; x�

The Iancu-Itakura-Munier (IIM) saturation model is in-
spired by universal properties [19] of solutions of the BK
equation [16]. The most important feature is probably the
geometric scaling regime: at small values of x, instead of
being a function of a priori the two variables r � jrj and x,
N is actually a function of the single variable rQs�x� up to
inverse dipole sizes significantly larger than the saturation
scale Qs�x�. If rQs > 1 then N � 1 and the scaling is

obvious. We insist that the scaling property is a nontrivial
prediction for rQs � 1, when N is still much smaller
than 1.

Of course the geometric scaling window has a limited
extension: at very small dipole sizes, deep into the leading-
twist regime, the scaling breaks down. Universal scaling
violations [19] due to x not being small enough have also
been derived and are implemented in the IIM model, which
is therefore a function of rQs and x. Recently, a new type of
geometric scaling violations has been predicted, due to the
inclusion of Pomeron loops in the evolution [18,20] (the
BK equation only resums fan diagrams). These violations
transform the geometric scaling regime into an intermedi-
ate energy regime, as they arise at very small values of x in
the so-called diffusive scaling regime. This new regime is
likely out of the reach of HERA and we shall not address it
in this study.

In the IIM model, the saturation scale is parametrized by

 Qs�x� �
�
x0

x

�
�=2

GeV (12)

and the dipole amplitude is given by

 N�rQs; x� �

(
N0�

rQs
2 �

2�c exp�� 2ln2�rQs=2�

� ln�1=x� � for rQs 	 2

1� e�4�ln2��rQs� for rQs > 2

(13)

with � and � uniquely determined from the conditions that
N and its derivative are continuous at rQs � 2. The am-
plitude at the matching point is chosen to be N0 � 0:7.

In this work, we shall consider the IIM saturation model
[11] extended in [14] to include heavy quarks (with mc �
1:4 GeV, mb � 4:5 GeV, and mf � 0:14 GeV for the
light flavors). The coefficient 
 � 9:9 is obtained from
the Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel while
the critical exponent �c � 0:7376 is fitted to the HERA
measurements of the proton structure function, along with
the remaining parameters. The saturation scale parameters
are � � 0:2197 and x0 � 1:632
 10�5 and the cross sec-
tion at saturation is �0 � 70:26 GeV�2 (or 27.36 mb).
Note that, via �0 � 4	BD, this corresponds to the diffrac-
tive slope BD � 5:591 GeV�2, which is in agreement with
the experimental observations [21,22].

C. q �q components of the diffractive structure functions

Let us introduce the transverse and longitudinal
diffractive structure functions FD;3T ��; xP; Q

2� and
FD;3L ��; xP; Q

2�. They are easily obtained from the diffrac-
tive cross sections d��

�p!Xp
� =d�, integrated over the mo-

mentum transfer t. In practice, one does not actually carry
out the t integration of (8), but one rather uses the fact that
the diffractive cross section decreases exponentially with
jtj like eBDt. One writes:
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xPF
D;3
� �

Q2�

4	2�em

d��
�p!Xp
�

d�
;

d��
�p!Xp
�

d�
�
Z 0

tmin

dt
d��

�p!Xp
�

d�dt
’

1

BD

d��
�p!Xp
�

d�dt

��������t�0
;

(14)

with eBDtmin � 1 (in practice, tmin � �1 GeV2). When
computing (8) for t � 0, the two impact parameter inte-
grations yield the factor �2

0=4. As already discussed, a
consistent treatment of the impact parameter dependence
of the dipole scattering amplitude Tq �q implies �2

0=�4BD� �
	�0, which we shall use in what follows.

Note that one could also study FD;4T and FD;4L directly.
However, there is less data for those t-dependent structure
functions, and they would not further test our model, which
has the exponential decrease eBDt built in. This type of
measurement would rather be interesting to test saturation
models which feature a t-dependent saturation scale, as
predicted in [23] from the full BK equation.

Let us come back to the diffractive structure functions
FD;3� . From formulas (8), (10), and (14), one obtains the
contributions from the q �q final state. Using the transverse
overlap function (3), one gets

 

xPF
q �q
T ��; xP; Q

2� �
�0Nc
32	3

Q4

�

X
f

e2
f

Z 1

0
dz��
2

f�z�1� z�


 ��z2 
 �1� z�2��z�1� z�Q2 
m2
f�I

2
1�
f; �f; Qs� 
m

2
fI

2
0�
f; �f; Qs�� (15)

for the q �q contribution to the transverse diffractive struc-
ture function. With the longitudinal overlap function (4),
one gets the q �q contribution to the longitudinal diffractive
structure function:
 

xPF
q �q
L ��; xP; Q

2� �
�0Nc
32	3

Q4

�

X
f

e2
f

Z 1

0
dz��
2

f�


 4Q2z3�1� z�3I2
0�
f; �f; Qs�: (16)

In (15) and (16), the functions I� are given by

 I��
; �;Qs� �
Z 1

0
rdrJ��
r�K���r�N�rQs; xP� (17)

in terms of the dipole scattering amplitude N�rQs; xP� and
of the Bessel functions J� and K�.

IV. q �qg CONTRIBUTION TO THE DIFFRACTIVE
FINAL STATE

As pictured in Fig. 2, formula (8) is the contribution of
the q �q final state to the diffractive cross section. We have
neglected possible final states containing gluons, and in
general it is justified because these are suppressed by extra
powers of �s. However, there are two kinematical regimes
for which this is not the case: the large-Q2 limit and the
small-� limit. In those situations, gluon emissions are
accompanied by large logarithms ln�Q2� or ln�1=�� which
compensate the factors of �s, and multiple gluons emis-
sions should be resummed to complete formula (8).

In practice, including the q �qg final state is enough to
describe the HERA data, and this can be done within the
dipole picture in both limits, at leading ln�Q2� [9,24] or
leading ln�1=�� accuracy [25–29], as we recall in this
section. Note that, at leading ln�1=�� accuracy, all multiple
soft gluon emissions can also be accounted for in the dipole

picture [20,30], but we shall restrict this phenomenological
study to the q �qg contribution.

The most popular approach is to consider the large-Q2

limit to implement the q �qg contribution [9,12,31], even
though the experimental measurements do not reach very
high values of Q2. In fact, the contribution of the q �qg final
state is important only for small values of � which, due to
the finite energy available, correspond to rather small
values of Q2. This is not satisfactory. In this paper, the
q �qg contribution to the diffractive final state is modeled in
such a way that both the large-Q2 and small-� limits are
implemented.

A. Large-Q2 limit

At large Q2, the contribution of the X � q �qg final state
in diffractive ��p! Xp scattering was computed in
[24,32]. In momentum space, the collinear gluon has a
transverse momentum much smaller thanQ2. In coordinate
space, the scattering involves a gluonic gg dipole [see
Fig. 3(a)]: the transverse distance between the quark and
the antiquark is much smaller than the transverse distance
between the quark and the gluon. The q �q pair on one side
and the gluon on the other side form an effective gluonic
color dipole which undergoes the hadronic interaction [24].
We shall denote the corresponding scattering amplitude off
the proton Tgg�r;b; x� for a dipole of size r at impact
parameter b. With our model for impact parameter depen-
dence, we write

 Tgg�r;b; xP� � S�b� ~N�jrjQs�x�; xP� (18)

where ~N is the equivalent of N but for a gg dipole.
At leading ln�Q2�, the q �qg final state contributes only to

the transverse diffractive structure function and one has
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 xPF
q �qg
T jLL�Q2���; xP; Q

2� �
�0�sCFNc�

32	4

X
f

e2
f

Z Q2

0
dk2 ln

�
Q2

k2

�Z 1

�
dz
��

1�
�
z

�
2



�
�
z

�
2
�
I2
g�

������������
1� z
p

;
���
z
p
; Qs=k� (19)

with

 Ig�a; b; c� �
Z 1

0
rdrJ2�ar�K2�br� ~N�cr; xP�: (20)

The computation of [24] is a leading-twist two-gluon
exchange calculation in which the gg dipole is given by
~N�rQs; x� � NcN�rQs; x�=CF in terms of the q �q dipole.
However this is not consistent with the use of a saturation
model. For instance, ~N should saturate at 1, not at Nc=CF.
This implies that, when using (19) and (20) with ~N �
NcN=CF and a saturation model for N, the analysis in
the literature overestimate the q �qg contribution. In prac-
tice, this is usually compensated by using an unphysically
small value for �s.

The parametrization we shall use in this paper is ~N �
2N � N2. This relation implies the large-Nc limit, and
therefore goes well with our model for the q �q dipole
scattering amplitude N: it is consistent with the BK evo-
lution implemented in (13). Numerically, this reduces the
q �qg contribution (with respect to using ~N � NcN=CF),
especially because the saturation scale is quite large, and
therefore N is not always small.

Finally, when computing the heavy quark contributions
c �cg and b �bg, we replace the � variable in (19) by ��1

4m2

f=Q
2�. This substitution, which modifies only the

small-Q2 results, is necessary in order to insure that there
is no q �qg contributions when the final state is such that
MX � 2mf (in practice, such a substitution does not make
a difference for the light quarks).

B. Small-� limit

At small�, the contribution of the X � q �qg final state in
diffractive ��p! Xp scattering was computed in many
studies [25–29]. In coordinate space, denoting x the trans-
verse position of the quark, y that of the antiquark, and z
that of the gluon, the diffractive scattering is expressed in
terms of [see Fig. 3(b)]

 �Tq �qg�x; y; z; xP� � Tq �q�x; y; xP��
2

� S2�b��N�2��jr0jQs; jr� r0jQs; xP� � N�jrjQs; xP��
2:

(21)

In the left-hand side, the virtual contribution Tq �q represents
the scattering of the quark-antiquark pair, before the gluon
emission. Within our model for the impact parameter
b � �x
 y�=2, one has Tq �q�x; y; xP� � S�b�N�jrjQs; xP�
where the dipole size is naturally r � x� y. The real
contribution Tq �qg represents the scattering of the quark-
antiquark-gluon triplet, after the gluon emission. In the
right-hand side, we factorized the impact-parameter
profile and wrote Tq �qg�x; y; z; xP� � S�b�N�2��jr0jQs; jr�
r0jQs; xP� with r0 � x� z (and r� r0 � z� y).

In the context of the BK evolution implemented in (13),
the link between N�2� and N comes from the fact that the
scattering of the q �qg triplet is equivalent to the scattering
of two dipoles with sizes r0 and r� r0 (a dipole emitting a
soft gluon is equivalent to a dipole splitting into two di-
poles). Therefore our model for N�2� is
 

N�2��jr0jQs; jr� r0jQs; xP�

� N�jr0jQs; xP� 
 N�jr� r0jQs; xP�

� N�jr0jQs; xP�N�jr� r0jQs; xP�: (22)

At leading ln�1=��, the contribution of the q �qg final
state to the transverse diffractive structure function is
 

xPF
q �qg
T jLL�1=���xP; Q

2� �
CF�sQ2�0

8	3�em

Z 1
0
rdr



Z 1

0
dz�T�z; r;Q2�A�r; xP�

(23)

with

FIG. 3. The contribution of the X � q �qg final state in diffractive ��p! Xp scattering. Left diagram: at large Q2; the quark-
antiquark transverse distance is much smaller than the quark-gluon transverse distance and an effective gg dipole scatters off the
proton. Right diagram: at small �; the quark-antiquark-gluon triplet scatters after the gluon emission and the quark-antiquark pair
scatters before the gluon emission, with a relative minus sign. In both cases only the amplitude is shown, it has to be squared to obtain
the cross section.
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A�jrj; xP� �
Z
d2r0

r2

r02�r� r0�2
�N�jr0jQs; xP�


 N�jr� r0jQs; xP� � N�jrjQs; xP�

� N�jr0jQs; xP�N�jr� r0jQs; xP��
2: (24)

It is independent of � because the structure function
FD;3 � �d��

�p!Xp=d� picks up the coefficient of
ln�1=�� in ��

�p!Xp: Also, the overlap function is �T
because in the leading ln�1=�� approximation, the final
state mass MX is fixed only by the soft gluon longitudinal
momentum, and therefore transverse sizes are the same in
the amplitude and the complex conjugate amplitude.

Note that in (23), the impact parameter integrationR
d2bS2�b� yielded a factor �0=4. If the b profile was a

theta function as assumed in [28], the q �qg contribution
would be a factor of 2 higher. In what follows, to numeri-
cally compute A�r; xP�, we use the clever change of vari-
ables introduced in [28] that we recall in Appendix A.

C. Model for xPF
q �qg
T

The usual approach to implement the q �qg contribution is
to use formula (19), but as we shall see, this is not correct
for small values of �. Let us consider the q �qg contribution
for � � 0. By definition, the correct result is Fq �qg

T jln�1=��
given in formulas (23) and (24). By contrast, the small-�
limit of the leading ln�Q2� contribution Fq �qg

T jLL�Q2� is

 xPF
q �qg
T jLL�Q2��� � 0; xP; Q

2� �
CFNc�s�0

12	4

X
f

e2
f

Z Q2

0
dk2

�
ln
�
Q2

k2

����������Z 10 dr
r
J2�kr��2N�rQs; xP� � N

2�rQs; xP��
��������2

(25)

where we have used (19) withK2�x� � 2=x2 for x! 0. Formula (25) shows that, after rising as� decreases, the diffractive
structure function goes to a constant. This constant is different from the correct result (23) and (24), except for very large
values of Q2, for which Fq �qg

T jLL�Q2� is correct by definition. And indeed, if Q2 � Q2
s , the two formulas coincide to give

 xPF
q �qg
T �� � 0; xP; Q2 � Q2

s� �
CFNc�sQ

2
s�0

6	4

X
f

e2
f ln

�
Q2

Q2
s

�Z 1
0

d �r

�r3 �2N� �r; xP� � N
2� �r; xP��2: (26)

This is shown analytically in Appendix B. In Fig. 4, we
compare formulas (23)–(25) as a function of Q2 and for
different value of xP. One sees that when Q2 increases, the
ratio between the two results gets closer to one, but that
limit is only reached for very large values of Q2 not shown
in the figure. For the values of Q2 in the HERA range, the

actual result is smaller than the leading ln�Q2� one by a
factor of about 0.6.

In order to have the correct q �qg contribution for small
values of �, we shall use the following model:

 xPF
q �qg
T ��; xP; Q

2� � xPF
q �qg
T jLL�Q2���; xP; Q

2�



Fq �qg
T jLL�1=���xP; Q

2�

Fq �qg
T jLL�Q2��� � 0; xP; Q

2�
(27)

obtained from formulas (19), (20), and (23)–(25). It is
such that Fq �qg

T � Fq �qg
T jLL�Q2� at large Q2 and Fq �qg

T �

Fq �qg
T jLL�1=�� at small �. In the small-Q2 and large-� re-

gion, the q �qg contribution may not be correctly described.
However in this case, the diffractive structure function is
dominated by the q �q component, and the q �qg contribution
is not relevant.

Finally we point out that our implementation of the q �qg
contribution is parameter free, the only uncertainty being
related to the value of �s. The average value of Q2 in
diffractive measurements at HERA is about 10 GeV2,
therefore we choose �s � 0:25, which corresponds to
such a scale.

V. DESCRIPTION OF THE HERA DATA

The H1 and ZEUS experiments at HERA have measured
the diffractive cross section for the process ep! eXp,

FIG. 4. The contribution of the q �qg final state to the transverse
diffractive structure function Fq �qg

T at � � 0 as a function of Q2.
The full lines show the exact result Fq �qg

T jLL�1=�� while the dashed
lines show the leading ln�Q2� result Fq �qg

T jLL�Q2�. Different sets of
curves are for different values of xP � 0:01; 0:001; 0:0001;
0:000 01, from bottom to top. As Q2 increases the two results
get closer, but they coincide for only very large values of Q2.
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FIG. 5. xP�
D;3
r ��; xP; Q

2� as a function of xP for different values of � and Q2. The H1 (LRG) and ZEUS (FPC) diffractive data are
compared to the predictions of our model, and the xP range is restricted to xP < 0:01. In this figure, the H1 data are unchanged and it is
our predictions which are multiplied by the factor 1.23. The ZEUS data are multiplied by 0.85 in order to convert them to the H1 MY
range and the bin centers have been shifted to the H1 values using a parametrization given in [34]. Only the statistical part of the
uncertainty is shown for the data points on this plot. The shape of the curves in the � � 0:9 bins is due to the fact that the contribution
of FD;3L to the reduced cross section is important for large values of �.
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tagging the proton in the final state. After integrating the
squared momentum transfer dependence from tmin �
�1 GeV2 to t � 0, the data are presented in terms of the
reduced cross section �D;3r ��; xP; Q

2�:

 

d3�ep!eXp

dxPd�dQ
2 �

4	�2
em

�Q4

�
1� y


y2

2

�
�D;3r ��; xP; Q

2�;

�D;3r � FD;3T 

2� 2y

2� 2y
 y2 F
D;3
L :

(28)

with y � Q2=�sx�where
���
s
p
� 318 GeV is the total energy

in the e� p collision. We shall call the corresponding data
sets the LPS [21] (ZEUS) and FPS [22] (H1) data.

The H1 and ZEUS experiments have also measured the
diffractive cross section for the process ep! eXY, select-
ing events with a large rapidity gap between the systems X
and Y in case of H1 [33], and using the so-called MX
method in case of ZEUS [34]. Y represents the scattered
proton, either intact or in a low-mass excited state, with
MY < 1:6 GeV (H1) or MY < 2:3 GeV (ZEUS). The cut
on the squared momentum transfer t at the proton vertex is
again t >�1 GeV2 for both experiments. We shall call the
corresponding data sets the FPC [34] (ZEUS) and LRG
[33] (H1) data.

Because they include events in which the proton has
broken up, the cross sections measured for the process
ep! eXY are larger than the one measured for the process
ep! eXp. Also, because H1 and ZEUS measurements
are performed with different MY cuts, the ZEUS cross
section is bigger than the H1 cross section, for which the
proton-dissociative events are more reduced. However,
within the kinematical ranges of the measurements, it
seems that the differences are constant factors: the FPC
and LRG data points can be converted to the FPS-LPS ones
by dividing the cross sections by 1.45 and 1.23 respectively
[33,34]. Note that it is the FPS-LPS data that correspond to
our definition of diffractive events and to our formulas, as
the proton should truly escape the collision intact.

In our model, the reduced cross section �D;3r ��; xP; Q
2�

is given in terms of the diffractive structure functions by

 xP�
D;3
r � xPF

q �q
T 
 xPF

q �qg
T 


2� 2y

2� 2y
 y2 xPF
q �q
L : (29)

Using formulas (15), (16), and (27), and the dipole scat-
tering amplitude (13), we obtain a parameter-free calcula-
tion for xP�

D;3
r that we can compare to the data. Diffractive

DIS measurements are sensitive to the saturation regime of
QCD only for small values of xP, therefore we shall only
consider experimental data which feature xP < 10�2 in our
comparisons. Note that we do not include any q �qg con-
tribution to the longitudinal structure function: for small
values of� it could be sizeable, but for kinematical reasons
small � is associated with y close to 1, in which case FD;3L

does not contribute to �D;3r .

To estimate the quality of our description, we performed
the following �2 computations, adding statistical and sys-
tematic uncertainties in quadrature. Within the LPS
 FPS
(ep! eXp) data sets, 76 points pass the xP < 0:01 cut and
we obtain �2=points � 0:80. When comparing to the 4
data sets, with the proper renormalizations for the FPC
and LRG (ep! eXY) measurements, 343 points pass the
xP < 0:01 cut and we obtain �2=points � 1:28. This is a
quite good description, considering our predictions are
parameter free. As an illustration, Fig. 5 displays a com-
parison of our predictions with the FPC
 LRG data. We
also checked the agreement with the charm contribution to
�D;3r using the few points available [35], one obtains
�2=points � 0:68.

Note that, if the running coupling �s�Q2� is used in the
q �qg contribution (instead of imposing �s � 0:25), the
description of �D;3r is also very good with similar values
of �2=points: 0.63 when comparing to the LPS and FPS
data, and 1.20 when comparing to the four data sets. In this
case, the additional cut Q2 > 1 GeV2 is used in order to
keep the coupling reasonably small (this only removes 15
of the LPS points). We also noticed that it is possible to
obtain a description of equal quality without the correction
Fq �qg
T jLL�1=��=F

q �qg
T jLL�Q2� in the q �qg contribution (27), if

one imposes an unphysically small value for the coupling:
�s � 0:15.

Finally, Fig. 6 shows predictions for the longitudinal
diffractive structure function FD;3L ��; xP; Q

2�, which in
our approach is obtained from the q �q contribution Fq �q

L
[see formula (16)].

VI. CONCLUSIONS

We presented a new description of HERA diffractive
deep inelastic scattering data. It uses the parametrization
for the dipole scattering amplitude obtained in [14]. This is
an extension of the IIM saturation model which contains

FIG. 6. Predictions for the longitudinal diffractive structure
function. xPF

D;3
L ��; xP; Q

2� is plotted as a function of � for
Q2 � 5 GeV2 and for different values of xP � 0:01; 0:001;
0:0001. With our parametrization, only the q �q final state con-
tributes.
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heavy-quark contributions. Contrary to previous studies, it
features a saturation scaleQs�x� that stays above 1 GeV for
x � 10�5, rather than dropping by a factor of 2 after
including heavy-quark contributions. Our description of
the data is parameter-free and, in the regime xP < 0:01,
it features values of �2=points of order 1.

Let us recall the improvements that our model brings
with respect to previous approaches.

(i) Instead of considering the dipole cross section �0

and the diffractive slope BD as independent quanti-
ties, we use the relation (11). It results from a con-
sistent treatment of the impact parameter
dependence of the dipole scattering amplitude. Com-
pared to previous approaches, it removes the possi-
bility to adjust BD.

(ii) In the large-Q2 limit, the q �qg contribution to the
diffractive final state is described by a gg dipole. By
contrast with previous approaches, it is expressed in
terms of the q �q dipole in such a way that it is
consistent with unitarity ( ~N 	 1), yielding a more
satisfactory description.

(iii) The q �qg contribution to the diffractive final state is
modeled in such a way that both the large-Q2 and
small-� limits are implemented (27). For the values
of Q2 in the HERA range, the resulting q �qg con-
tribution is smaller than the leading ln�Q2� result
used in previous descriptions. This allows one to
have a good description of the data with a value of
�s (either fixed at �s � 0:25 or running with Q2)
that is not unphysically small.

(iv) Our predictions include correctly the contribution
of the longitudinal diffractive structure function
FD;3L : we predict �D;3r , not FD;32 � FD;3T 
 FD;3L .

(v) When comparing our predictions to the experimen-
tal data, the comparison is made with the ep! eXp
data unchanged and the ep! eXY data renormal-
ized, and not the opposite. Our definition of diffrac-
tive events (and our formulas) is such that the proton
truly escapes the collision intact.

Of all the possible descriptions of diffractive DIS data
(for a global analysis, see [36]), the dipole picture is the
one which is adapted to study the physics of parton satu-
ration. Having a consistent saturation model to describe
hard diffraction in e� p scattering represent a good foun-
dation for further works. On the phenomenological side,
studying hard diffraction in e� A becomes of interest [37],
as it is an ideal process to investigate the saturation regime
of QCD that could be explored at a future electron-ion

collider. On the theoretical side, many new developments
improved our understanding of the QCD nonlinear evolu-
tion, and their consequences are to be investigated [20,38].
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APPENDIX A: NUMERICAL COMPUTATION OF
A�jrj; xP�

In this Appendix, following [28], we show how to trans-
form the expression [see formula (24)]
 

A�jrj; xP� �
Z
d2r0

r2

r02�r� r0�2
�N�jr0jQs; xP�


 N�jr� r0jQs; xP� � N�jrjQs; xP�

� N�jr0jQs; xP�N�jr� r0jQs; xP��2 (A1)

in order to estimate it numerically. Writing the two-
dimensional integration in the complex plane and introduc-
ing S � 1� N, we obtain (with r � jrj)
 

A�r; xP� �
Z dzd�z

2jzj2j1� zj2
�S�jzjrQs; xP�S�j1� zjrQs; xP�

� S�rQs; xP��
2: (A2)

We then follow the following procedure.
(i) jzj and j1� zj are invariant by symmetry with re-

spect to the real axis so one can multiply the integral
by 2 and restrict ourselves to the upper part of the
complex plane.

(ii) For jzj 	 1, let us change the variables into u �
jzj 2 �0; 1� and v � j1�zj
jzj�1

2jzj 2 �0; 1�, this implies

 dzd�z �
8jzj2j1� zjdudv

jz� �zj
j1� zjjz� �zj � 4u�1� u
 2uv�

����������������������������������������������������������������
v�1� v��1
 uv��1� u
 uv�

p
: (A3)

(iii) For jzj � 1, let us change the variables into u � 1=jzj 2 �0; 1� and v � j1�zj�jzj
1
2 2 �0; 1�, this implies
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 dzd�z �
8jzj3j1� zjdudv

jz� �zj
j1� zj
jzj

jz� �zj � 4�1=u� 1
 2v�
����������������������������������������������������������������
v�1� v��1
 uv��1� u
 uv�

p
: (A4)

One gets

 A�r; xP� �
Z 1

0

Z 1

0

2dudv

u�1� u
 2uv�
����������������������������������������������������������������
v�1� v��1
 uv��1� u
 uv�

p fu2�S�rQs=u; xP�S��1=u� 1
 2v�rQs; xP�

� S�rQs; xP��
2 
 �S�urQs; xP�S��1� u
 2uv�rQs; xP� � S�rQs; xP��

2g (A5)

which is easy to evaluate numerically, as this features only
integrable singularities.

APPENDIX B: SMALL-� AND LARGE-Q2 LIMIT
OF xPF

q �qg
T

In this Appendix, we show that the small-� limit of the
leading ln�Q2� result Fq �qg

T jLL�Q2� and the large-Q2 limit of
the leading ln�1=�� result Fq �qg

T jLL�1=�� coincide. The first
case has been derived in the text and we obtained for-
mula (26). We now show how, forQ2 � Q2

s , formulas (23)
and (24) give the same result.

The starting point is the transverse overlap function

 

�T�z; r;Q2� �
�emNc

2	2

X
f

e2
f��z

2 
 �1� z�2�"2
fK

2
1�r"f�


m2
fK

2
0�r"f��; (B1)

where one can neglect quark masses with respect to Q2.
The z integration of (B1) can be done in the two limits
rQ� 1 and rQ� 1: using the Mellin representation of
K2

1�x�, one gets

 Z 1

0
dz�z2 
 �1� z�2�z�1� z�K2

1��
�����������������
z�1� z�

p
� �

����
	
p Z c
i1

c�i1

d�
2i	

��2� ���� 1��������
 1���2� ����4� ��
��6� 2�����
 1=2�

1< Re�c�< 2

�
2

3

�
4=�4 for �� 1

1=�2 for �� 1
: (B2)

To obtain the second equality, we used the fact that in the �� 1 case (�� 1 case), the dominant contribution to the �
integration comes from the single pole at � � 2 (at � � 1). One can then write

 

Z 1
0
rdr

Z 1

0
dz�T�z; r;Q

2�f�r� �
�emNc

3	2

X
f

e2
f

�Z 2=Q

0

dr
r
f�r� 
 4

1

Q2

Z 1
2=Q

dr

r3 f�r�
�
: (B3)

Note that in [28] a similar estimation was obtained. By contrast, the replacement K1��� ! ��1� ��=� was used and as a
result, the normalization factors were not under control.

To complete the calculation, we need to compute f�r� � A�r; xP�, in the two limits rQs � 1 and rQs � 1 (see [28]):
 

A�r; xP� � 2	r2Q2
s

Z d �r

�r3 �2N� �r; xP� � N
2� �r; xP��

2 for rQs � 1 (B4)

 A�r; xP� � 2	 ln�r2Q2
s��1� N�rQs; xP��

2 for rQs � 1: (B5)

The first line is obtained from configurations in which the q �q pair is small and is well separated from the gluon. When using
those results in (B3) by dividing the r integration region in three domains, one sees that the dominant contribution comes
from the region r 2 �2=Q; 1=Qs�. It is enhanced by the collinear factor ln�Q2=Q2

s�:
 

xPF
q �qg
T �� � 0; Q2 � Q2

s� �
CFNc�sQ2

s�0

6	4

X
f

e2
f ln

�
Q2

Q2
s

�Z 1
0

d �r

�r3 �2N� �r; xP� � N
2� �r; xP��

2: (B6)

This formula is identical to formula (26).
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014017 (1998).

[9] K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D 60,
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