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We analyze the exclusive charmonium J= � �c pair production in e�e� annihilation using the
nonfactorized perturbative QCD and the light-front quark model (LFQM) that goes beyond the peaking
approximation. We effectively include all orders of higher twist terms in the leading order of QCD
coupling constant and compare our nonfactorized analysis with the usual factorized analysis in the
calculation of the cross section. We also calculate the quark distribution amplitudes, the Gegenbauer
moments, and the decay constants for J= and �c mesons using our LFQM. Our nonfactorized result
enhances the nonrelativistic QCD result by a factor of 3� 4 at

���
s
p
� 10:6 GeV.
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I. INTRODUCTION

It has been known that the exclusive pair production of
heavy meson can be reliably predicted within the frame-
work of perturbative quantum chromodynamics (PQCD),
since the wave function is well constrained by the non-
relativistic consideration [1]. However, the large discrep-
ancy between the theoretical predictions [2–5] based on
the nonrelativistic QCD (NRQCD) [6] factorization ap-
proach and the experimental results [7,8] for the exclusive
J= � �c production in e�e� annihilation at the energy���
s
p
� 10:6 GeV has triggered the need of better under-

standing both in the available calculational tools and the
appreciable relativistic effects.

A particularly convenient and intuitive framework in
applying PQCD to exclusive processes is based upon the
light-front (LF) Fock-state decomposition of hadronic
state. If the PQCD factorization theorem is applicable,
then the invariant amplitude for exclusive processes fac-
torizes into the convolution of the valence quark distribu-
tion amplitudes (DAs) ��x; q2� with the hard scattering
amplitude TH, which is dominated by one-gluon exchange
diagrams at leading order of QCD coupling constant �s. To
implement the factorization theorem at high momentum
transfer, the hadronic wave function plays an important
role linking between the long distance nonperturbative
QCD and the short distance PQCD. In the LF framework,
the valence quark DA is computed from the valence LF
wave function �n�xi;k?i� of the hadron at equal LF time
� � t� z=c which is the probability amplitude to find n
constituents (quarks, antiquarks, and gluons) with LF mo-
menta ki � �xi;k?i� in a hadron. Here, xi and k?i are the
LF longitudinal momentum fraction and the transverse
momenta of the ith constituent in the n-particle Fock-state,
respectively.

The NRQCD factorization approach [2–5] for charmo-
nium production assumes that the constituents are suffi-
ciently nonrelativistic so that the relative motion of valence
quarks can be neglected inside the meson. In this case, the
quark DA becomes the � function, i.e. ��x; q2� � ��x�

1=2� (the so-called peaking approximation). However, the
cross section value [2–5] estimated within the NRQCD
factorization approach in the leading order of �s under-
estimates the experimental data [7,8] by an order of mag-
nitude. In order to reduce the discrepancy between theory
and experiment, the authors in Refs. [9–12] considered a
rather broad quark DA instead of �-shaped quark DA.

However, as pointed out in Refs. [13,14], if the quark
DA is not an exact � function, i.e. k? in the soft bound
state LF wave function can play a significant role, the
factorization theorem is no longer applicable. To go be-
yond the peaking approximation, the invariant amplitude
should be expressed in terms of the LF wave function
��xi;k?i� rather than the quark DA. In Refs. [13,14], we
discussed the validity issue of peaking approximation for
the heavy pseudoscalar meson pair production processes
such as e�e� ! P� P (P � Bc, Bs, B, D, Ds) using the
LF model wave function ��xi;k?i� / exp��M2

0=�
2�,

where M0 is the invariant mass of the constituent quark
and antiquark defined by M2

0 �
P
i�k2
? �m

2
i �=xi and � is

the Gaussian parameter. The Gaussian parameter � in our
model wave function was found to be related to the trans-

verse momentum via � �
����������
hk2
?i

q
. This relation naturally

explains the zero-binding energy limit as the zero trans-
verse momentum, i.e. hM2

0i � �m1 �m2�
2 and xi � mi=M

for � � 0. We also found that the heavy-quark DA is
sensitive to the value of � and indeed quite different
from the �-type DA according to our light-front quark
model (LFQM) based on the variational principle for the
QCD-motivated Hamiltonian [15,16]. In going beyond the
peaking approximation, we stressed a consistency of the
formulation by keeping the transverse momentum k? both
in the wave function part and the hard scattering part
together before doing any integration in the amplitude.
Similar consideration has also been made in the recent
investigation of the relativistic and bound state effects
[17] not based on the light-front dynamics (LFD) but
including the relativistic effects up to the second order of
the relative quark velocity, i.e. hv2i. Such nonfactorized
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analysis should be distinguished from the factorized analy-
sis [9–11] where the transverse momenta are separately
integrated out in the wave function part and in the hard
scattering part. Even if the used LF wave functions lead to
the similar shapes of DAs, it is apparent that the predictions
for the cross sections of heavy meson productions would
be different between the factorized and nonfactorized
analyses.

In this work, we extend our previous works [13,14] of
pseudoscalar meson pair production to the case of pseudo-
scalar and vector meson productions and calculate the
cross section for e�e� ! J= � �c process at leading
order of �s including effectively all orders of higher twist
terms. As noted in [14], our results for the quark DA of J= 
and �c are quite different from the �-type function. We
find that the nonfactorized form of the form factor enhan-
ces the cross section of NRQCD result by a factor of 3� 4
at

���
s
p
� 10:6 GeV while it reduces that of the factorized

formulation by 20%. Since the cross section for e�e� !
J= � �c is found to be very sensitive to the behavior of
the end points (x! 0 and 1) in the quark DA, we also
examine the results of the decay constants or equivalently
the Gegenbauer moments of J= and �c mesons. Since the
perturbative corrections of order �s to the production
amplitude has already been obtained [18] increasing the
cross section significantly, it is important to consider the
more accurate assessment of cross section at the leading
order of �s.

The paper is organized as follows. In Sec. II, we describe
the formulation of our LFQM, which has been quite suc-
cessful in describing the static and nonstatic properties of
the pseudoscalar and vector mesons [15,16]. The formulas
for the quark DA, decay constants, Gegenbauer, and �
( � x1 � x2) moments are also given in this section. In
Sec. III, the transverse momentum dependent hard scatter-
ing amplitude and the form factor for e�e� ! J= � �c
transition are given in leading order of�s. The form factors
both in the factorized and nonfactorized formulations are
explicitly given in this section. We also show in this section
that our peaking approximation (i.e. NRQCD) result co-
incides with the one derived from Ma and Si [10]. In
Sec. IV, we present the numerical results for the decay
constants, quark DAs, Gegenbauer, and � moments for
the J= and �c mesons and compare them with other
theoretical model predictions in addition to the available
experimental data. The numerical results for the e�e� !
J= � �c cross section are obtained and compared with
the data [7,8]. Summary and conclusions follow in Sec. V.
In Appendixes A and B, we summarize our results for the
helicity contributions to the hard scattering amplitudes and
the form factor, respectively.

II. MODEL DESCRIPTION

In our LFQM [15,16], the momentum space light-front
wave function of the ground state pseudoscalar and vector

mesons is given by

 �
JJz
100�xi;ki?; �i� �R

JJz
�1�2
�xi;ki?��R�xi;ki?�; (1)

where �R�xi;ki?� is the radial wave function and R
JJz
�1�2

is
the spin-orbit wave function obtained by the interaction
independent Melosh transformation from the ordinary
equal-time static spin-orbit wave function assigned by
the quantum numbers JPC. The model wave function in
Eq. (1) is represented by the Lorentz-invariant variables,
xi � p�i =P

�, ki? � pi? � xiP?, and �i, where p	i and �i
are the momenta and the helicities of constituent quarks,
respectively, and P	 � �P�; P�;P?� � �P0 � P3; �M2 �

P2
?�=P

�;P?� is the momentum of the meson M.
The covariant forms of the spin-orbit wave functions for

pseudoscalar and vector mesons are, respectively, given by
 

R00
�1�2
�
� �u�p1; �1�
5v�p2; �2����

2
p
M0

;

R1J3
�1�2
�
� �u�p1; �1��6��Jz� �

�	�p1�p2�
M0�2m �v�p2; �2����

2
p
M0

;

(2)

where �	�Jz� is the polarization vectors of the vector
meson, M2

0 � �k
2
? �m

2�=x1x2 is the invariant meson
mass square, and

P
�1�2

R
JJzy
�1�2

R
JJz
�1�2
� 1 for both pseudo-

scalar and vector mesons. Using the four-vectors p1, p2

given in terms of the LF relative momentum variables
�x;k?� as
 

p�1 � x1P�; p�2 � x2P�;

p1? � x1P? � k?; p2? � x2P? � k?;
(3)

we obtain the explicit forms of spin-orbit wave functions
for pseudoscalar and vector mesons with the longitudinal
[��0�] and transverse [���1�] polarizations as follows:

 R 00
�1�2
�

1

C
�kL m
�m �kR

� �
; (4)

 R 10
�1�2
�

1

C

kL �1�2x�M0

M0�2m m�
2k2
?

M0�2m

m�
2k2
?

M0�2m �kR �1�2x�M0

M0�2m

0@ 1A; (5)

 R 11
�1�2
�

���
2
p

C

m�
k2
?

M0�2m kR x1M0�m
M0�2m

�kR x2M0�m
M0�2m � �kR�2

M0�2m

0@ 1A; (6)

where C �
������������
2x1x2

p
M0. For the radial wave function �R,

we use the same Gaussian wave function for both pseudo-
scalar and vector mesons

 �R�xi;ki?� �
4�3=4

�3=2

��������
@kz
@x

s
exp�� ~k2=2�2�; (7)

where � is the variational parameter. When the longitudi-
nal component kz is defined by kz � �x� 1=2�M0, the
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Jacobian of the variable transformation fx;k?g ! k �
�k?; kz� is given by @kz=@x � M0=�4x1x2�. Also, the nor-
malization factor in Eq. (7) is obtained from the total wave
function normalization given by

 

Z 1

0
dx
Z d2k?

16�3 j�
JJz
100�x;k?; �1�2�j

2 � 1: (8)

The quark distribution amplitude (DA) of a hadron in our
LFQM can be obtained from the hadronic wave function
by integrating out the transverse momenta of the quarks in
the hadron,

 ��x;	� �
Z k2

?
<	2 d2k?

16�3 �
JJz
100�x;k?; �1�2�; (9)

where 	 denotes the separation scale between the pertur-
bative and nonperturbative regimes. The dependence on
the scale 	 is then given by the QCD evolution equation
[19] and can be calculated perturbatively. However, the
distribution amplitudes at a certain low scale can be ob-
tained by the necessary nonperturbative input from LFQM.
The presence of the damping Gaussian factor in our LFQM
allows us to perform the integral up to infinity without loss
of accuracy. The quark DAs for �c and J= mesons are
constrained by

 

Z 1

0
��c�J= ��x;	�dx �

f�c�J= �
2
���
6
p ; (10)

where the decay constant is defined as

 h0j �q
	
5qj�ci � if�cP
	; (11)

for a �c meson and
 

h0j �q
	qjJ= �P; h�i � fJ= MJ= �	�h�;

h0j �q	�qjJ= �P; h�i � ifTJ= ��
	�h�P� � ���h�P	�;

(12)

for a J= meson with longitudinal (h � 0) and transverse
(h � 
1) polarizations, respectively. The constraint of
Eq. (10) must be independent of cutoff 	 up to corrections
of order �2=	2, where � is some typical hadronic scale
(< 1 GeV) [19]. For the nonperturbative valence wave
function given by Eq. (7), we take 	�mc as an optimal
scale for our LFQM description of J= and �c.

The explicit form of the �c decay constant is given by
[20]

 

f�c
2
���
6
p �

Z 1

0
dx
Z d2k?

16�3

m�������������������
m2 � k2

?

q �R�x;k?�: (13)

The decay constants for the longitudinally and transversely
polarized J= meson are given by [20]

 

fJ= 
2
���
6
p �

Z 1

0
dx
Z d2k?

16�3

�R�x;k?��������������������
m2 � k2

?

q �
m�

2k2
?

M0 � 2m

�
;

(14)

 

fTJ= 
2
���
6
p �

Z 1

0
dx
Z d2k?

16�3

�R�x;k?��������������������
m2 � k2

?

q �
m�

k2
?

M0 � 2m

�
;

(15)

respectively. While the constant fJ= is known from the
experiment, the constant fTJ= is not that easily accessible
in experiment but can be estimated theoretically.

We may also redefine the quark DA as ��c�J= ��x� �
�2

���
6
p
=f�c�J= ����x� for the normalization given by

 

Z 1

0
��c�J= ��x�dx � 1: (16)

The quark DA ��x� evolved in the leading order of �s�	�
is usually expanded in Gegenbauer polynomials C3=2

n as

 ��x;	� � �as�x�
�

1�
X1
n�1

an�	�C
3=2
n �2x� 1�

�
; (17)

where �as�x� � 6x�1� x� is the asymptotic DA and the
coefficients an�	� are Gegenbauer moments [19]. The
Gegenbauer moments with n > 0 describe how much the
DAs deviate from the asymptotic one. In addition to the
Gegenbauer moments, we can also define the expectation
value of the longitudinal momentum, so-called �moments:

 h�ni �
Z 1

�1
d��n�̂��� �

Z 1

0
dx�n��x�; (18)

where ��x� � 2�̂�2x� 1� normalized by h�0i � 1.
The � moments are related to the Gegenbauer moments

as follows (up to n � 6):

 h�2i �
1

5
� a2

12

25
; h�4i �

3

35
� a2

8

35
� a4

8

77
;

h�6i �
1

21
� a2

12

77
� a4

120

1001
� a6

64

2145
:

(19)

III. HARD CONTRIBUTIONS TO e�e� ! J= � �c
PROCESS

For the exclusive process

 e�e� ! 
��q� ! J= �PV� � �c�PP�; (20)

the form factor is defined as

 hJ= �PV; h��c�PP�jJ
	
emj0i � �	�����PV�PPF �q2�;

(21)

where ����PV; h� is the polarization vector of the vector
meson with four momentum PV and helicity h. The cross
section can be calculated as

 �e�e� ! J= �c� �
��2

6
jF �s�j2

�
1�

4M2
h

s

�
3=2
; (22)

where we neglect the small mass difference between J= 
and �c, i.e. Mh � MJ= � M�c .
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At leading order of �s, the contribution to the form
factor comes from four Feynman diagrams; one of them
is shown in Fig. 1. To obtain the timelike form factor F �q2�
for the process e�e� ! 
� ! J= �c, we first calculate
the radiative decay process �c�P� � 
��q� ! J= �P0� us-
ing the Drell-Yan-West (q� � q0 � q3 � 0) frame
 

P �
�
P�;

M2
�c

P�
; 0?

�
; P0 �

�
P�;

M2
J= � q2

?

P�
;q?

�
;

q �
�
0;

q2
?

P�
;q?

�
; (23)

where the four momentum transfer is spacelike, i.e. q2 �

q�q� � q2
? � �q2

? < 0. We then analytically continue
the spacelike form factor F �q2

?� to the timelike q2 > 0
region by changing �q2

? to q2 in the form factor.
In the calculations of the form factor F �q2�, we use the

‘‘+’’ component of currents and the transverse (h � 
1)
polarization for J= given by

 ���
1� � 
1���
2
p

�
0;

2qL

P�1
; 1;i

�
; (24)

where qL � qx � iqy. For the longitudinal (h � 0) polar-
ization, it is hard to extract the form factor since both sides
of Eq. (21) vanish for any q2 value. In the energy region
where PQCD is applicable, the hadronic matrix element
hJ= jJ�emj�ci can be calculated within the leading order
PQCD by means of a homogeneous Bethe-Salpeter (BS)
equation for the meson wave function. Formally, one may
consider a contribution even at lower order without any
gluon exchange as often called Feynman mechanism.
However, we do not need to take this contribution into
account in this work because we are considering the pro-
duction process of heavy mesons that ought to require high
momentum transfer between the primary quark-antiquark
pair production and the secondary quark-antiquark pair
production in order to get the final state heavy mesons.
Since the final bound state wave functions satisfy the BS
type iterative bound state equation, one gluon exchange

can be generated by iteration from the wave function part
even if the scattering amplitude formally has no gluon
exchange. We thus generate the hard gluon exchange
from the iteration of bound state wave function and con-
sider the leading order PQCD contribution in the frame-
work of LFD. The secondary quark-antiquark pair
production can occur only through the gluon momentum
transfer due to the rational light-front energy-momentum
dispersion relation. The quark-antiquark pair production
from the vacuum is suppressed in the LFD and the absence
of zero-mode contribution can be shown by the direct
power counting method that we presented in our previous
work of weak transition form factors between pseudoscalar
and vector mesons [21]. Taking the perturbative kernel of
the BS equation as a part of hard scattering amplitude TH,
one thus obtains

 

hJ= jJ�emj�ci �
X
�;�0

Z
�d3k��d3l��11y

100 �y; l?; ��

� TH�x;k?; y; l?; q?;�; �0�

��00
100�x;k?; �

0�; (25)

where �d3k� � dxd2k?=16�3 and TH contains all two-
particle irreducible amplitudes for 
� � q �q! q �q from
the iteration of the LFQM wave function with the BS
kernel. On the other hand, the right-hand-side of Eq. (21)
for the matrix element of J� is obtained as

 hJ= jJ�emj�ci �
P����

2
p qLF �q2�: (26)

Here, we set P� � 1 without any loss of generality.
Therefore, we get the form factor as

 F �q2� �
Z
�d3k��d3l��R�y; l?�T H�R�x;k?�; (27)

where we combined the spin-orbit wave function into the
original TH to form a new T H, i.e.

 

T H �

���
2
p

qL
X
�;�0

R11y
�01�

0
2
�y; l?�TH�x;k?; y; l?; q?;�; �0�

�R00
�1�2
�x;k?�: (28)

We should note that the form factor F �q2� has a dimension
[1=GeV] so that the cross section has a dimension of [barn]
where 1 GeV�2 � 0:39 mb in the natural unit (@ � c �
1). Since the measure [d3k] has the dimension of [GeV2]
and our radial wave function �R has the dimension of
[1=GeV], the amplitude T H has the dimension of
[1=GeV3].

The leading order light-front time-ordered diagrams for
the meson form factor are shown in Fig. 2, where the
energy denominators are given by

J/ ψ

ηc

FIG. 1. One of the four Feynman diagrams for the amplitude.
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D1 � M2 � q2
? �

�k? � q?�2 �m2

x1
�

k2
? �m

2

x2
;

D2 � M2 � q2
? �

�y1q? � l?�2 �m2

y1
�

k2
? �m

2

x2

�
�y2q? � k? � l?�2

y2 � x2
;

D3 � D1;

D4 � M2 � q2
? �

�k? � q?�2 �m2

x1

�
�y2q? � k? � l?�2

x2 � y2
�
�y2q? � l?�2 �m2

y2
;

D5 � M2 �
k2
? �m

2

x1
�
�y2q? � k? � l?�2

x2 � y2

�
�y2q? � l?�2 �m2

y2
;

D6 � D4:

D7 � M2 �
�l? � y2q?�2 �m2

y1
�

k2
? �m

2

x2

�
�y2q? � k? � l?�2

y2 � x2
;

D8 � M2 �
�l? � y2q?�2 �m2

y1

�
�l? � y2q?�2 �m2

y2
;

D9 � D5; D10 � D8;

D11 � D7; D12 � D2: (29)

According to the rules of light-front perturbation theory,
the hard scattering amplitude for the diagram A1 in Fig. 2 is
given by

 

TA1
� ��1�

��k�g �

k�g D1D2
�u�k1 � q�


�u�k1�

� �4��sCF �u�l1�

	u�k1 � q�d

�kg�
	� �v�k2�


�v�l2��

� ��2��4��sCF�
��k�g �

k�g D1D2
NA1

; (30)

where NA1
� �u�l1�
	u�k1 � q�d

�kg�
	� �v�k2�
�v�l2� is the

gluon-fermion vertex part with the gauge dependent polar-
ization sum d	� for the gluon,CF � 4=3 is the color factor,

and the notation u�p� denotes actually u�p�=
�������
p�

p
for the

internal fermions in a scattering amplitude. In the Feynman
gauge, the polarization sum d	� equals to g	�. In the light-
front gauge � 	 A � A� � 0,

 d
�kg�
	� �

X
��1;2

�	�kg; �����kg; ��

� �g	� �
�	�kg�� � ���kg�	

k�g
; (31)

where kg 	 � � � 	 � � 0. Since the gluon propagator has
an instantaneous part [�	��=�k�g �2 in the light-front
gauge], we absorb this instantaneous contribution into the
regular propagator by replacing kg by �kg � �y2 �

x2; �k�g ; y2q? � k? � l?�, where �k�g � P� � q� � l�1 �
k�2 includes the instantaneous contribution.

Similarly, the hard scattering amplitude for the diagram
A2 in Fig. 2 is given by

k

k l

1

2

l1

2

A A A

B B B

1 2 3

1 2 3

kg

D D D D

D D D D D D

D 3

7 11 121098

654D 21

FIG. 2. Leading order (in �s) light-front time-ordered diagrams of the hard scattering amplitude for �c�P� ! 
��q� � J= �P0�
process.
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 TA2
� ��2��4��sCF�

��k�g �

k�g D3D4
NA2

; (32)

where NA2
has the same form as NA1

but with different
gluon momentum �kg � �x2 � y2; �k�g ; l? � y2q? � k?�.
The diagram A2 has also the instantaneous contribution
and absorbs it into �k�g � P� � q� � �k1 � q�

� � l�2 .
The hard scattering amplitude for the diagram A3 in

Fig. 2 is given by

 TA3
� ��2��4��sCF�

��k�g �

k�g D5D6
NA3

; (33)

where NA3
has also the same form as NA1

or NA2
. However,

in this case we have just regular gluon propagator with the
four momentum kg � �x2 � y2; k

�
g ; l? � y2q? � k?� and

k�g � k2
g?=k

�
g since the diagram does not have the instan-

taneous part.
Likewise, one can obtain the hard scattering amplitudes

corresponding to the diagrams Bi.
If one includes the higher twist effects such as intrinsic

transverse momenta and the quark masses, the LF gauge
part proportional to 1=k�g leads to a singularity although
the Feynman gauge part g	� gives the regular amplitude.
This is due to the gauge-invariant structure of the ampli-
tudes. The covariant derivative D	 � @	 � igA	 makes
both the intrinsic transverse momenta, k? and l?, and the
transverse gauge degree of freedom gA? be of the same
order, indicating the need of the higher Fock-state contri-
butions to ensure the gauge invariance [22]. However, we
can show that the sum of six diagrams for the LF gauge part
(1=k�g terms) vanishes in the limit that the LF energy
differences �x and �y go to zero, where �x and �y are
given by

 �x � M2 �
k2
? �m

2

x1x2
� M2 �M2

0x;

�y � M2 �
l2
? �m

2

y1y2
� M2 �M2

0y:

(34)

Details of the proof can be found in our previous work [14].
In this work, we follow the same procedure presented in
Ref. [14] and calculate the higher twist effects in the limit
of �x � �y � 0 to avoid the involvement of the higher
Fock-state contributions. Our limit �x � �y � 0 (but����������
hk2
?i

q
� � � 0) may be considered as a zeroth order

approximation in the expansion of a scattering amplitude.
That is, the scattering amplitude TH may be expanded in
terms of LF energy difference � as TH � �TH��0� �
��TH�

�1� ��2�TH�
�2� � 	 	 	 , where �TH��0� corresponds

to the amplitude in the zeroth order of �. This approxima-
tion should be distinguished from the zero-binding (or
peaking) approximation that corresponds to M �

m1 �m2 and k? � � � 0. The point of this distinction
is to note that �TH��0� includes the binding energy effect
(i.e. k?, l? � 0) that was neglected in the peaking
approximation.

In zeroth order of �, one can show that the energy
denominators entering in the diagrams Ai and Bi (i � 1,
2, 3) have the following relations:

 D 2 �D4 �D1; D2 �D5 � 0;

D2 �D8 �D7;
(35)

where Di � lim�x��y�0Di and

 

D1 � ��x2q2
? � 2k? 	 q?�=x1;

D8 � ��y2q2
? � 2l? 	 q?�=y1;

D2 � ��x
2
2y

2
2q2
? � x

2
2l2
? � y

2
2k2
?

� 2x2y2�x2l? 	 q? � y2k? 	 q? � k? 	 l?�

� �y2 � x2�
2m2�=�x2y2�y2 � x2��:

(36)

As one can see from Eqs. (4) and (6), the leading twist
(LT) (i.e. neglecting transverse momenta k? and l?) he-
licity contributions for �c�P� � 
��q� ! J= �P0; ���1��
process come from two leading helicity �H �
j�J= � ��c j � 1 components, i.e. "#!"" and #"!"" as in
the nonrelativistic spin case, i.e. 1��

2
p �j "#i � j #"i� for �c

meson to j ""i for J= meson.
In Table I, we summarize our results for the hard scat-

tering amplitude TH for these two leading helicity �H � 1
components in zeroth order of binding energy limit. For
instance,

P3
i�1 T

�"#!""�
Ai

and
P3
i�1 T

�"#!""�
Bi

are obtained as

 

�X
i

T�"#!""�Ai

�
��0
� �8��sCFN

�"#!""�
A1

�
��y2 � x2�

�y2 � x2�D1D2

�
��x2 � y2�

�x2 � y2�

�
1

D3D4
�

1

D5D6

��

� �8��sCFN
�"#!""�
A1

�
1

�y2 � x2�D1D2

�
;

�X
i

T�"#!""�Bi

�
��0
� �8��sCFN

�"#!""�
B1

�
��y2 � x2�

�y2 � x2�

�
1

D7D8

�
1

D11D12

�
�

��x2 � y2�

�x2 � y2�D9D10

�

� �8��sCFN
�"#!""�
B1

�
1

�y2 � x2�D2D8

�
:

(37)

To derive the final results in Eq. (37), we use the following
identities obtained from Eqs. (29) and (35):
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1

D3D4
�

1

D5D6
�

1

D1D4
�

1

D5D4
�

D1 �D5

D1D4D5

�
D1 �D2

D1D4��D2�
�
�1

D1D2
; (38)

for the diagram A and

 

1

D7D8
�

1

D11D12
�

1

D7D8
�

1

D7D2

�
D2 �D8

D7D2D8
�

1

D2D8
;

1

D9D10
�

1

D5D8
�
�1

D2D8
;

(39)

for the diagram B. The above identities lead to ��y2 �
x2� � ��x2 � y2� � 1 in Eq. (37).

By adding all six LF time-ordered diagrams, we obtain

 �T�"#!""�H ��0� �
X3

i�1

�T�"#!""�Ai
� T�"#!""�Bi

���0: (40)

Similarly, one can easily obtain the helicity #"!"" contri-
bution to the hard scattering amplitude, T�#"!""�H from
Table I.

In the numerical calculations for the higher twist con-
tributions, one may keep effectively only the leading order
of higher twist terms such as k2

?=q2
?, l2

?=q2
?, and k? 	

l?=q2
? due to the fact that k2

? � q2
? and l2

? � q2
? in large

momentum transfer region where PQCD is applicable
[14,23]. As shown in our previous work [14], this can be
done by neglecting the subleading higher twist terms ac-
cordingly both in the energy denominators and the numer-
ators for the hard scattering amplitude TH. This procedure
is very similar to the recent investigation of the relativistic
and bound state effects not based on the LFD but including
the relativistic effects up to the second order of the relative
quark velocity, i.e. hv2i [17]. Indeed, our numerical result
neglecting the higher orders of k2

?=q2
?, l2

?=q2
? and k? 	

l?=q2
? is very close to that presented in Ref. [17] (see

Sec. IV). However, in this work, we include all higher
orders of k2

?=q2
?, l2

?=q2
?, and k? 	 l?=q2

?. This corre-
sponds to keep effectively all higher orders of the relative

quark velocity beyond hv2i. We compare our full result
with the one neglecting the corrections of order O�hv4i�.

Using Eq. (28), we then obtain the leading helicity
contributions to the hard scattering amplitude combined
with the spin-orbit wave function in zeroth order of � as
follows

 �T H�
�0� �

���
2
p

qL
R11y
"" �T

�"#!""�
H R00

"# � T
�#"!""�
H R00

#" �

�
m�������������������

m2 � k2
?

q �m�
l2
?

M0y�2m�������������������
m2 � l2

?

q MH; (41)

where

 

MH �
16��sCFm

x1x2y1y2�y2 � x2�q2 ��x
2
1 � x

2
2�l

LqR

� �x1y1 � x2y2�k
LqR�

�
1

D1D2
�

1

D2D8

�

�
16��sCFm

x1x2y1y2�y2 � x2�

�
x2�x1y1 � x2y2�

D1D2

�
y2�x2

1 � x
2
2�

D2D8

�
; (42)

and lLqR � l? 	 q? � ijl? � q?j. Accordingly, the lead-
ing helicity contributions to the form factor lead to the
following nonfactorized form

 

F �q2� � Qc

Z
�d3k��d3l��R�x;k?��T H�

�0��R�y; l?�

�Qc�m1 $ m2�

� 2Qc

Z
�d3k��d3l�

m�������������������
m2 � k2

?

q �R�x;k?�MH

�
1������������������

m2 � l2
?

q �
m�

l2
?

M0y � 2m

�
�R�y; l?�;

(43)

where Qc � 2=3 is the charge fraction of charm quark in
the unit of e.

In the leading twist (LT) limit neglecting the transverse
momenta, the hard scattering amplitude in Eq. (42) is

TABLE I. Leading helicity contributions to the hard scattering amplitudes, T�"#!""�H and T�#"!""�H . The momentum variable pR�L�

represents pR�L� � px 
 ipy.

j�H � 1j NA1
� NA2

� NA3

P3
i�1 TAi��x � �y � 0� NB1

� NB2
� NB3

P3
i�1 TBi ��x � �y � 0�

"#!"" 2m�x1l�y1k�x2y1q�L

x2y1y2
� 8��sCF
�y2�x2�D1D2

N�"#!""�A1

2m�x1l�y1k�x1y2q�L

x2y1y2
� 8��sCF
�y2�x2�D2D8

N�"#!""�B1

#"!"" � 2m�x2l�y2k�x2y2q�L

x1y1y2
� 8��sCF
�y2�x2�D1D2

N�#"!""�A1
� 2m�x2l�y2k�x2y2q�L

x1y1y2
� 8��sCF
�y2�x2�D2D8

N�#"!""�B1
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reduced to

 M LT
H �

16��sCFm

x1x
2y1y

2
2q

4 �x1�x1y1 � x2y2� � y1�x2
1 � x

2
2��:

(44)

Then, the form factor in Eq. (43) factorizes into the con-
volution of the nonperturbative valence quark DAs
��c�J= ��x;	� with the perturbative hard scattering ampli-
tude MLT

H :

 

F LT�q2� � 2Qc

Z 1

0
dx
Z 1

0
dy��c�x;	�M

LT
H �xi; yi; q

2�

��T
J= �y;	�; (45)

where �T
J= �y;	� is the quark DA for the transversely

polarized J= meson. Furthermore, in nonrelativistic
QCD (NRQCD) limit (i.e. peaking approximation) where
the longitudinal momentum fractions are given by xi �
yi � 1=2 with Mh � 2mc, the quark DAs for both �c and
J= mesons become �-type functions, i.e.

 ��
�c�J= �

�x;	� �
f�c�J= �

2
���
6
p ��x� 1=2�; (46)

and the form factor in NRQCD limit is reduced to

 F ��q2� � 2Qc
f�cfJ= 
�2

���
6
p
�2

256��s�	�CF
q4 Mh; (47)

where the superscript � for the quark DA in Eq. (46) and
the form factor in Eq. (47) represents the NRQCD result.
Our NRQCD result1 is exactly the same as that derived
from Ma and Si in Ref. [10] (see Eqs. (16) and (21) in [10]).

Other subleading helicity contributions to the hard scat-
tering amplitude that show up as next-to-leading order in
transverse momenta are summarized in Tables IV and V of
Appendix A.

IV. NUMERICAL RESULTS

In our numerical calculations, we use our LFQM [15,16]
parameters �mc;�cc� obtained from the meson spectros-
copy with the variational principle for the QCD-motivated
effective Hamiltonian. In our LFQM, we have used the
two interaction potentials VQ �Q for �c and J= mesons:
(1) Coulomb plus harmonic oscillator (HO) potential, and
(2) Coulomb plus linear confining potential. In addition,
the hyperfine interaction essential for the distinction be-
tween J= and �c mesons is included for both cases (1)
and (2), viz.,

 VQ �Q � a� Vconf �
4�s
3r
�

32�
9

�s
m2
c

~SQ 	 ~S �Q�
3�~r�; (48)

where Vconf � br2 for the HO potential and br for the
linear confining potential, respectively. For the linear con-
fining potential, we use the string tension b � 0:18 GeV2,
which is rather well known from other quark-model analy-
sis commensurate with the Regge phenomenology [24].
The other potential model parameters are then fixed by the
variational principle for the central Hamiltonian with re-
spect to the Gaussian parameter �. For instance, the model
parameters for the linear confining potential are obtained
as a � �0:724 GeV, mc � 1:8 GeV, and the strong cou-
pling constant �s�	� � 0:313 defined by

 �s�	� �
12�

�33� 2Nf� ln�	
2=�2�

; (49)

where Nf � 4 is the number of active flavors (u, d, s, and
c). At scale 	 ’ mc for charmonium, our value of � �
162 MeV, the scale associated with nonperturbative effects
involving light quarks and gluons, is consistent with the
usual �QCD ’ 200 MeV. Our value of �s � 0:313 is also
quite comparable with other quark-model predictions such
as 0.35, 0.45, 0:30� 0:38, and 0.314 from ISGW2 model
[25], Cornell potential model [26], Bodwin-Kang-Lee
(BKL) model [27] (in next-to-leading order in �s), and
relativistic quark model [17], respectively. Lattice mea-
surements of the heavy-quark potential yield the values
for effective coupling �s of 0.22 in the quenched case and
approximately 0.26 in the unquenched case [28]. The HO
potential model parameters are obtained in a similar way as
in the case of the linear potential. We should note that the
root-mean-square value of the transverse momentum in our

LFQM is equal to the Gaussian � value, i.e.
��������������
hk2
?icc

q
�

�cc.
In Table II, we summarize our results for decay con-

stants of �c and J= obtained from our variational pa-
rameters (mc � 1:8 GeV, �cc � 0:6509 GeV) for the
linear potential [second column] and (mc � 1:8 GeV,
�cc � 0:6998 GeV) for the HO potential [third column].
Our results for the decay constants f�c � 326�354� MeV,
fJ= � 360�395� MeV, and fTJ= � 343�375� MeV ob-
tained from the linear [HO] potential parameters are quite

TABLE II. Decay constants [MeV] of �c and J= obtained
from our variational parameters �mc � 1:8; �� �GeV� and com-
pared with the experimental data.

Linear HO HO0 Exp.
(� � 0:6509) (� � 0:6998) (� � 0:7278)

f�c 326 354 370 335
 75 [29]
fJ= 360 395 416 416
 6 [30]
fTJ= 343 375 393 	 	 	

1Through the private communication with Jungil Lee and Stan
Brodsky, we have indeed confirmed the agreement between the
NRQCD result and the peaking approximation result of PQCD.
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comparable with the current experimental data, �f�c�exp �

335
 75 MeV [29] and �fJ= �exp � 416
 6 MeV [30] as
well as other theoretical model calculations such as the
QCD sum rules [31,32] in which the decay constants were
obtained as f�c � 346 MeV, fJ= � 412 MeV, and
fTJ= � 409 MeV. As a sensitivity check of our variational
parameters, we include in Table II another Gaussian pa-
rameter (mc � 1:8 GeV, �cc � 0:7278 GeV) to fit the
central value of the experimental J= decay constant.
We denote this as HO0 in Table II. In the following nu-
merical calculations, we present all of these three cases
(linear, HO, HO0) to show the parameter sensitivity of our
results.

The shape of the quark DA which depends on �mc;�cc�
values is important to the calculation of the cross section

for the heavy meson pair production in e�e� annihilations.
We thus show in Fig. 3 the normalized quark DA for�c and
J= , �c �c�x� � ��c�x� � �J= �x� obtained from linear
(dotted line), HO (solid line), and HO0 (dashed line) po-
tentials compared with the ones obtained from Bondar and
Chernyak (BC) [9] (dot-dashed line) and from QCD
sum rules [31] (double-dot–dashed line). As one can see
from Fig. 3, our quark DA�c �c�x� obtained at scale 	 ’ mc
practically vanishes in the regions x < 0:1 and x > 0:9
where the motion of c �c pair is expected to be highly
relativistic. However, our results for quark DA are certainly
wider than the delta function-type (i.e. �cc ! 0 limit)
NRQCD results [2–4], which do not take into account
the relative motion of valence quark-antiquark pair. Our
results also show that the shape of quark DA becomes
broader and more enhanced at the end point region (x!
0 or 1) as the Gaussian parameter � (or equivalently
transverse k? size) increases. In comparison with other
theoretical model calculations, we find that our result is
quite consistent with the one obtained from QCD sum rules
[31] at scale 	 ’ mc but much narrower than the one
obtained from BC [9]. As will be discussed later, the cross
section for double-charm production is indeed very sensi-
tive to the end point behavior of the quark DA.

In Table III, we list the calculated h�ni moments up to
n � 6 for the �c and J= DAs at scale 	 ’ mc and
compare with other model estimates. Our central, upper,
and lower values are obtained from HO, HO0, and linear
parameters, respectively. Since the � moments for J= 
meson with the longitudinal polarization are almost the
same as those with the transverse polarization, our results
imply that h�niJ= � h�niL � h�niT , which is also con-
firmed by the recent QCD sum rule calculations [31,32].
Furthermore, the � moments between �c and J= mesons
are not much different from each other as one can see from
Table III. Our results for the � moments are in good
agreement with those obtained from other potential models
[26,33] as well as QCD sum rules [31,32], but disagree
with the predictions obtained from BC [9] and BKL [27]
models. While NRQCD predictions [34] for the second and
fourth moments are in agreement with our model but
disagree for the higher moment h�6i. This disagreement
for the moment h�6i may be ascribed to the end point
behavior (i.e. relativistic correction) of quark DA.

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

3

3.5

4
φ cc

(x
)

Linear(β=0.6509 GeV)
HO(β=0.6998 GeV)
HO’(β=0.7278 GeV)
Bondar-Chernyak
QCD sum rules(BLL)

FIG. 3. The leading twist distribution amplitudes ��x� for �c
and J= ���c �x� � �J= �x�� obtained from our LFQM compared
with the ones from Bondar-Chernyak model [9] and QCD sum
rules [31].

TABLE III. The �moments h�ni�c and h�niJ= � h�niL � h�niT for �c and J= distribution amplitudes obtained from our LFQM at
the scale 	 ’ mc and compared with other model (h�ni�c � h�

niJ= ) estimates. Our central, upper, and lower values are obtained from
the HO, HO0, and linear potential parameters, respectively.

h�ni
Ours
h�ni�c

Ours
h�niJ= 

Buchmuller
Tye model [33]

Cornell
model [26]

BC
[9]

BKL
[27]

NRQCD
[34]

QCD sum
rules [31,32]

n � 2 0:084�0:004
�0:007 0:082�0:004

�0:006 0.086 0.084 0.13 0.019 0:075
 0:011 0:070
 0:007

n � 4 0:017�0:001
�0:003 0:016�0:002

�0:002 0.020 0.019 0.040 0.0083 0:010
 0:003 0:012
 0:002

n � 6 0:0047�0:0006
�0:0010 0:0046�0:0005

�0:0010 0.0066 0.0066 0.018 0.0026 0:0017
 0:0007 0:0031
 0:0008
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Within our model calculation, the relative quark velocity

can be obtained from the relation mrv2=2 ’ 2
�����������������
m2
c � ~k2

q
�

2mc in the center of mass frame, where mr is the reduced
mass. From this relation, we obtain v2 ’ 2k2

?=m
2
c �

2�2=m2
c, i.e.

 hv2ic �c � 0:30�0:02
�0:04; (50)

where the central, upper, and lower values are from the
HO, HO0, and linear potential parameters, respectively.
Using the dimensional regularization at leading order of
�s, the authors in Refs. [31,32] derived the relation be-
tween the relative velocity of quark-antiquark pair inside
the charmonium and the � moment as h�ni�c � h�

niJ= �

hvni=�n� 1� (n � 2, 4, 6). Applying this formula to our
model calculations, we get the relative v2 as hv2ic �c �
0:25�0:01

�0:02, where again the central, upper, and lower values
are from the HO, HO0, and linear potential parameters,
respectively. The results obtained from our LFQM and
QCD sum rule methods are not only in an agreement
with each other but also quite consistent with the value
hv2ic �c � 0:3 used in NRQCD [2,27]. Note that one gets the
quark DA ��x� � ��x� 1=2� in the limit v! 0 while
��x� ��as�x� � 6x�1� x� as v! 1. As noted in QCD
sum rule calculations [31], the moments h�ni are propor-
tional to vn according to the NRQCD v-scaling rules [6]:
�mcv2�2 � �mcv�2 � m2

c. It is not difficult to see that the
�-moments obtained from our LFQM and QCD sum rules
[31] satisfy these rules. However, as discussed in [31], the
BC moments [9] break the NRQCD v-scaling rules and the
quark DA obtained from [9] corresponds to the QCD sum
rule result [31] defined at scale 	 ’ 10 GeV rather than at
	 ’ mc. In our LFQM calculation, we would overestimate
the experimental values of decay constants for J= and �c

if we were to use the shape of BC distribution to get the
cross section value of double-charm production consistent
with the experimental data. Thus, it seems misleading to
claim that the cross section of e�e� ! J= � �c in [9] led
to a good agreement with the experiment.

The corresponding Gegenbauer moments obtained from
Eq. (19) are given by

 a2�	 ’ mc� � �0:339�0:011
�0:021;

a4�	 ’ mc� � 0:082�0:010
�0:022;

a6�	 ’ mc� � �0:0027�0:0041
�0:0112;

(51)

for �c meson and

 a2�	 ’ mc� � �0:343�0:011
�0:020;

a4�	 ’ mc� � 0:087�0:010
�0:020;

a6�	 ’ mc� � �0:0015�0:0035
�0:0067;

(52)

for J= meson, respectively. Since an for J= with longi-
tudinal polarization and aTn with transverse polarization are
not much different from each other, we do not distinguish
them in our model calculation.

In Fig. 4, we show s2F �s� for e�e� ! J= � �c pro-
cess. The left panel of Fig. 4 shows the results obtained
from the central value � � 0:6998 GeV of our model
parameters displaying different (leading and subleading)
helicity contributions. The right panel of Fig. 4 shows the
sensitivity of our model predictions with all helicity con-
tributions when the Gaussian model parameter � changes
as shown in Fig. 3. In the left panel, the dotted and short-
dashed lines represent the results obtained from the non-
relativistic peaking approximation F ��s� [Eq. (47)] and
the leading twist (LT) factorized form factor F LT�s�
[Eq. (45)] taking into account the relative motion of va-

FIG. 4. The form factor s2F �s� for e�e� ! J= � �c. The dotted, short-dashed, long-dashed, and solid line in left panel represent
the peaking, leading twist (LT), higher twist (HT) results with the leading helicity contributions and HT one with all helicity
contributions, respectively. The dot-dashed and double-dot-dashed line represent the dominant subleading contributions. The right
panel represents the HT results including all helicity contributions obtained from linear (dotted line), HO (solid line), and HO0 (dashed
line) model parameters, respectively.
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lence quarks, respectively. The long-dashed line represents
the higher twist (HT) nonfactorized form factor F HT�s�
[Eq. (43)] obtained by including the transverse momenta
�k?; l?� both in the wave function and the hard scattering
part. Note that F ��s� (dotted line), F LT�s� (short-dashed
line), and F HT�s� (long-dashed line) are obtained from the
leading helicity contributions. The solid line represents our
full solution F HT

��H�0��H�1��s� including all (leading plus
subleading) helicity contributions summarized in the
Appendix A (Tables IV and V). Among the subleading
helicity contributions, we find that only ""!"" (dot-dashed
line) and �"#!"#� � �#"!#"� (double-dot-dashed line) helic-
ity contributions give a sizeable effects and other sublead-
ing helicity contributions are negligible. As shown in
Fig. 4, we find that while s2F HT

��H�0��H�1��s� is about 2
times larger than s2F ��s� but 10% smaller than s2F LT�s�
at

���
s
p
� 10:6 GeV. It is also interesting to note that our

s2F HT
��H�0��H�1��s� takes over s2F LT�s� for

���
s
p

*

13 GeV region, although s2F HT�s� with leading helicity
components approaches to s2F LT�s� as s! 1. As one can
see from Fig. 4, the form factor obtained from our calcu-
lation shows F �s� � s�2 as s! 1 which is the expected
QCD scaling behavior [10,35–39] for the transition form
factor between pseudoscalar (0��) and vector (1��)
mesons.

In Fig. 5, we show leading order in�s contribution to the
cross section for e�e� ! J= � �c. The left panel of
Fig. 5 shows the results with leading and subleading he-
licity contributions using the HO model parameters. The
right panel of Fig. 5 shows the sensitivity of our model
predictions with all helicity contributions when the
Gaussian model parameter � changes as shown in Figs. 3
and 4. The line codes are the same as in Fig. 4. As one can
see from the left panel of Fig. 5, our peaking approxima-
tion result (dotted line) is consistent with the previous
NRQCD estimates in Refs. [2–4], which is an order of
magnitude smaller than the experimental data [7,8]. We

should note from the left panel of Fig. 5 that our higher
twist result (solid line) including all helicity contributions
enhances the peaking approximation result by a factor of
3� 4 at

���
s
p
� 10:6 GeV while it reduces that of the lead-

ing twist result by 20%. As discussed in Sec. III, our higher
twist results (HT) include all orders of k2

?=q2
?, l2

?=q2
?,

and k? 	 l?=q2
? to keep effectively all higher orders of the

relative quark velocity beyond hv2i. If we keep only the
leading order of these terms (k2

?=q2
?, l2

?=q2
?, and k? 	

l?=q2
?), our results would correspond to include the rela-

tivistic effects up to the order of hv2i [17]. Our predictions
for the cross section at

���
s
p
� 10:6 GeV obtained from

peaking approximation (�), leading twist (LT), and
higher twist (HT) are given by

 

��J= � �c� � 2:34�0:50
�0:69 �fb�;

LT�J= � �c� � 10:57�3:15
�4:02 �fb�;

��H�0��H�1�
HT �J= � �c� � 8:76�1:61

�2:84 �fb�;

(53)

where the central, upper, and lower values are obtained
from HO, HO0, and linear potential parameters, respec-
tively. Our prediction of ��H�0��H�1�

HT �J= � �c� re-
duces by about 10% from the value in Eq. (53) to
7:68�1:94

�2:66 �fb� when we keep only the leading order of
k2
?=q2

?, l2
?=q2

?, and k? 	 l?=q2
?. It is interesting to note

that our reduced value 7:68�1:94
�2:66 �fb� is indeed very close to

the result 7.8 [fb] obtained in the recent investigation
including the relativistic effects up to hv2i [17].

As a sensitivity check, we show in Fig. 6 the parameter
�mc;�� dependence of the cross section for e�e� !
J= � �c using the nonfactorized higher twist form factor
with all helicity contributions. We also show in Fig. 6 the
decay constants corresponding to the end point mass val-
ues, mc � 1:4 GeV and 1.8 GeV. The cross section in-
creases as ��mc� increases (decreases). As one can also
see from Fig. 6, the cross section is more sensitive to the
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FIG. 5 (color online). The cross section for e�e� ! J= �c with leading and subleading helicity contributions using the HO model
parameters (left panel) and with all helicity contributions using the linear, HO, and HO0 model parameters (right panel).
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variation of the Gaussian parameter than to the variation of
the charm quark mass.

The experimental results are

 �J= � �c� � B
�c�� 2� � �25:6
 2:8
 3:4� �fb�;

(54)

by Belle [7] (filled circle in Fig. 5) and

 �J= � �c� � B�c�� 2� � �17:6
 2:8�1:5
�2:1� �fb�; (55)

by BABAR [8] (filled square in Fig. 5), where B�c�� 2� is
the branching fraction for �c decay into at least two
charged particles. Considering an enhancement by the
factor of 1.8 from the corrections of next-to-leading
order (NLO) of �s [18], it might be conceivable to raise
our leading �s order result ��H�0��H�1�

HT �J= � �c� in
Eq. (53) by this factor and get a value close to the above
BABAR data. However, it would be necessary to make
detailed NLO investigation within the LF PQCD frame-
work before we can make any firm conclusion.

V. SUMMARY AND CONCLUSION

We investigated the transverse momentum effect on the
exclusive charmonium J= � �c pair production in e�e�

annihilation using the nonfactorized PQCD and LFQM
that goes beyond the peaking approximation.

Our LFQM calculation based on the variational principle
for the QCD-motivated Hamiltonian [15,16] shows that the

quark DAs for J= and �c take substantially broad shape
which is quite different from the �-type DA. If the quark
DA is not an exact � function, i.e. the relative motion of
valence quarks can play a significant role, the factorization
theorem is no longer applicable. In going beyond the
peaking approximation, we stressed a consistency by keep-
ing the transverse momentum k? both in the wave function
part and the hard scattering part simultaneously before
doing any integration in the amplitude. Such nonfactorized
analysis should be distinguished from the factorized analy-
sis where the transverse momenta are separately integrated
out in the wave function part and in the hard scattering part.
Even if the used LF wave functions lead to the similar
shapes of DAs, predictions for the cross sections of double-
charm productions are apparently different between the
factorized and nonfactorized analyses. We found that the
higher twist contributions including all helicity contribu-
tions enhanced NRQCD result by a factor of 3� 4 at

���
s
p
�

10:6 GeV while it reduced that of the leading twist result
by 20%. We also found that the cross section for e�e� !
J= �c process at

���
s
p
� 10:6 GeV is more sensitive to the

variation of the Gaussian parameter than to that of the
charm quark mass. Our results showed that the cross
section increases as ��mc� increases (decreases).

In conclusion, LFQM/PQCD analysis showed that the
relativistic correction (i.e. nondelta function) of the light-
front wave function is very important to understand the
large discrepancy between the NRQCD result and the
experimental data given by Eqs. (54) and (55). While there
have been considerations of broadening the quark DA to
reduce the discrepancy between the theory at the leading
order of �s and the experimental results [9–11], a recent
calculation of corrections of NLO of �s leads to an en-
hancement of the theoretical prediction by the factor about
1.8 [18]. This factor may enhance our result in the leading
order of�s to fit the current experimental results. However,
more detailed investigation is necessary prior to any firm
conclusion on this issue.
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APPENDIX A: HELICITY CONTRIBUTIONS TO
THE HARD SCATTERING AMPLITUDE

In this appendix, we summarize the helicity contribu-
tions ��1; �2� ! ��

0
1; �

0
2� to the hard scattering amplitude

T
��1;�2�!��01;�

0
2�

H for the �c�P� ! 
��q� � J= �P0� process.
In Tables IV and V, we summarize our results for the

helicity contributions to the hard scattering amplitudes TA
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FIG. 6 (color online). The parameter �mc;�� dependence of
the cross section for e�e� ! J= � �c.
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TABLE V. Helicity contributions to the hard scattering amplitude TB in Fig. 2.

j�Hj Helicities NB1
NB2

NB3

P
iTBi ��x � �y � 0�

"#!"# PB1 � iQB PB2 � iQB PB3 � iQB � 8��sCF
�y2�x2�

�PB�iQB
D2D8

� 2
�y2�x2�D5

�

#"!#" PB1 � iQB PB2 � iQB PB3 � iQB � 8��sCF
�y2�x2�

�PB�iQB
D2D8

� 2
�y2�x2�D5

�

0 "#!#" � 2m2�y1�x1��y2�x2�
x1x2y1y2

N�"#!#"�B1
N�"#!#"�B1

� 8��sCF
�y2�x2�D2D8

N�"#!#"�B1

#"!"# � 2m2�y1�x1��y2�x2�
x1x2y1y2

N�#"!"#�B1
N�#"!"#�B1

� 8��sCF
�y2�x2�D2D8

N�#"!"#�B1

""!"" FB1 � iGB FB2 � iGB FB3 � iGB � 8��sCF
�y2�x2�

�FB�iGBD2D8
� 2
�y2�x2�D5

�

##!## FB1 � iGB FB2 � iGB FB3 � iGB � 8��sCF
�y2�x2�

�FB�iGBD2D8
� 2
�y2�x2�D5

�

"#!"" 2m�x1l�y1k�x1y2q�
L

x2y1y2
N�"#!""�B1

N�"#!""�B1
� 8��sCF
�y2�x2�D2D8

N�"#!""�B1

"#!## 2m�x2l�y2k�x2y2q�R

x1y1y2
N�"#!##�B1

N�"#!##�B1
� 8��sCF
�y2�x2�D2D8

N�"#!##�B1

#"!"" � 2m�x2l�y2k�x2y2q�L

x1y1y2
N�#"!""�B1

N�#"!""�B1
� 8��sCF
�y2�x2�D2D8

N�#"!""�B1

1 #"!## � 2m�x1l�y1k�x1y2q�R

x2y1y2
N�#"!##�B1

N�#"!##�B1
� 8��sCF
�y2�x2�D2D8

N�#"!##�B1

""!"# � 2m�x1l�y1k�x1y2q�
R

x1x2y2
N�""!"#�B1

N�""!"#�B1
� 8��sCF
�y2�x2�D2D8

N�""!"#�B1

##!"# � 2m�x2l�y2k�x2y2q�L

x1x2y1
N�##!"#�B1

N�##!"#�B1
� 8��sCF
�y2�x2�D2D8

N�##!"#�B1

""!#" 2m�x2l�y2k�x2y2q�R

x1x2y1
N�""!#"�B1

N�""!#"�B1
� 8��sCF
�y2�x2�D2D8

N�""!#"�B1

##!#" 2m�x1l�y1k�x1y2q�L

x1x2y2
N�##!#"�B1

N�##!#"�B1
� 8��sCF
�y2�x2�D2D8

N�##!#"�B1

2 ""!## 0 0 0 0

##!"" 0 0 0 0

TABLE IV. Helicity contributions to the hard scattering amplitude TA in Fig. 2.

j�Hj Helicities NA1
NA2

NA3

P
iTAi ��x � �y � 0�

"#!"# PA1 � iQA PA2 � iQA PA3 � iQA � 8��sCF
�y2�x2�

�PA�iQD1D2
� 2
�y2�x2�D2

�

#"!#" PA1 � iQA PA2 � iQA PA3 � iQA � 8��sCF
�y2�x2�

�PA�iQD1D2
� 2
�y2�x2�D2

�

0 "#!#" � 2m2�y1�x1��y2�x2�
x1x2y1y2

N�"#!#"�A1
N�"#!#"�A1

� 8��sCF
�y2�x2�D1D2

N�"#!#"�A1

#"!"# � 2m2�y1�x1��y2�x2�
x1x2y1y2

N�#"!"#�A1
N�#"!"#�A1

� 8��sCF
�y2�x2�D1D2

N�#"!"#�A1

""!"" FA1 � iGA FA2 � iGA FA3 � iGA � 8��sCF
�y2�x2�

�FA�iGD1D2
� 2
�y2�x2�D2

�

##!## FA1 � iGA FA2 � iGA FA3 � iGA � 8��sCF
�y2�x2�

�FA�iGD1D2
� 2
�y2�x2�D2

�

"#!"" 2m�x1l�y1k�x2y1q�L

x2y1y2
N�"#!""�A1

N�"#!""�A1
� 8��sCF
�y2�x2�D1D2

N�"#!""�A1

"#!## 2m�x2l�y2k�x2y2q�
R

x1y1y2
N�"#!##�A1

N�"#!##�A1
� 8��sCF
�y2�x2�D1D2

N�"#!##�A1

#"!"" � 2m�x2l�y2k�x2y2q�L

x1y1y2
N�#"!""�A1

N�#"!""�A1
� 8��sCF
�y2�x2�D1D2

N�#"!""�A1

1 #"!## � 2m�x1l�y1k�x2y1q�R

x2y1y2
N�#"!##�A1

N�#"!##�A1
� 8��sCF
�y2�x2�D1D2

N�#"!##�A1

""!"# � 2m�x1l�y1k�x2y1q�R

x1x2y2
N�""!"#�A1

N�""!"#�A1
� 8��sCF
�y2�x2�D1D2

N�""!"#�A1

##!"# � 2m�x2l�y2k�x2y2q�
L

x1x2y1
N�##!"#�A1

N�##!"#�A1
� 8��sCF
�y2�x2�D1D2

N�##!"#�A1

""!#" 2m�x2l�y2k�x2y2q�R

x1x2y1
N�""!#"�A1

N�""!#"�A1
� 8��sCF
�y2�x2�D1D2

N�""!#"�A1

##!#" 2m�x1l�y1k�x2y1q�L

x1x2y2
N�##!#"�A1

N�##!#"�A1
� 8��sCF
�y2�x2�D1D2

N�##!#"�A1

2 ""!## 0 0 0 0

##!"" 0 0 0 0

PERTURBATIVE QCD ANALYSIS OF EXCLUSIVE . . . PHYSICAL REVIEW D 76, 094010 (2007)

094010-13



and TB for the diagrams in Fig. 2, where
 

PA1 �
�2

x1x2y1y2
�x2

2y1y2q2
? � x1x2l2

? � y1y2k2
? � x2�x1y1 � x2y2��l? 	 q?� � 2x2y1y2�k? 	 q?�

� �x1y1 � x2y2��m
2 � k? 	 l?�� �

2

�x1 � y1�
�D2 �D4� � PA �

2

�x1 � y1�
�D2 �D4�;

PA2 � PA �
2

�x1 � y1�
�D2 �D4�; PA3 � PA �

2

�x1 � y1�
�D2 �D4�;

QA �
2

x1x2y1y2
�x2�x1 � y2�jl? � q?j � 2x1y1y2jk? � q?j � �x2y2 � x1y1�jk? � l?j�;

FA1 �
�2

x1x2y1y2
�k? 	 l? � x2�l? 	 q?� � �x1y1 � x2y2�m

2� �
2

�x1 � y1�
�D2 �D4�

� FA �
2

�x1 � y1�
�D2 �D4�;

FA2 � FA �
2

�x1 � y1�
�D2 �D4�; FA3 � FA �

2

�x1 � y1�
�D2 �D4�;

GA �
2

x1x2y1y2
�2x1y1y2jk? � q?j � x2jl? � q?j � �1� 2x1y1�jk? � l?j�;

(A1)

for the diagrams Ai and
 

PB1 �
�2

x1x2y1y2
�x1x2y

2
2q2
? � x1x2l2

? � y1y2k2
? � y2�x1y1 � x2y2��k? 	 q?� � 2x1x2y2�l? 	 q?�

� �x1y1 � x2y2��m2 � k? 	 l?�� �
2

�y2 � x2�
�D9 �D7� � PB �

2

�y2 � x2�
�D9 �D7�;

PB2 � PB �
2

�x2 � y2�
�D9 �D7�; PB3 � PB �

2

�y2 � x2�
�D9 �D7�;

QB �
2

x1x2y1y2
�x1y1 � x2y2��jl? � k?j � y2jq? � k?j�;

FB1 �
�2

x1x2y1y2
�k? 	 l? � y2�k? 	 q?� � �x1y1 � x2y2�m2� �

2

�y2 � x2�
�D9 �D7� � FB �

2

�y2 � x2�
�D9 �D7�;

FB2 � FB �
2

�x2 � y2�
�D9 �D7�; FB3 � FB �

2

�y2 � x2�
�D9 �D7�;

GB �
2

x1x2y1y2
�y2jq? � k?j � jl? � k?j�;

(A2)

for the diagrams Bi, respectively.
As an illustration, we show how to obtain the hard scattering amplitudes TA �

P3
i�1 TAi (sixth column in Table IV) and

TB �
P3
i�1 TBi (sixth column in Table V) as well as the total amplitude TH � TA � TB for the ( "#!"# ) contribution. Using

the identities Eqs. (38) and (39) in Sec. III, we obtain
 �X

i

T�"#!"#�Ai

�
��0
� �8��sCF

�
��y2 � x2��PA1 � iQA�

�y2 � x2�D1D2
�
��x2 � y2��PA2 � iQA�

�x2 � y2�D3D4
�
��x2 � y2��PA3 � iQA�

�x2 � y2�D5D6

�

� �8��sCF�PA � iQA�

�
��y2 � x2�

�y2 � x2�D1D2
�
��x2 � y2�

�x2 � y2�

�
1

D3D4
�

1

D5D6

��

� 16��sCF

�
��y2 � x2�

�y2 � x2�
2

D2 �D4

D1D2
�
��x2 � y2�

�x2 � y2�
2

�
D2 �D4

D3D4
�

D2 �D4

D5D6

��

� �8��sCF�PA � iQA�

�
1

�y2 � x2�D1D2

�
� 8��sCF

�
2

�y2 � x2�
2D2

�
; (A3)

and
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 �X
i

T�"#!"#�Bi

�
��0
� �8��sCF

���y2 � x2��PB1
� iQB�

�y2 � x2�D7D8
�
��y2 � x2��PB3 � iQB�

�y2 � x2�D11D12
�
��x2 � y2��PB2 � iQB�

�x2 � y2�D9D10

�

� �8��sCF�PB � iQB�

�
��y2 � x2�

�y2 � x2�

�
1

D7D8
�

1

D11D12

�
�

��x2 � y2�

�x2 � y2�D9D10

�

� 16��sCF

�
��y2 � x2�

�y2 � x2�
2

�
D9 �D7

D7D8
�

D9 �D7

D11D12

�
�
��x2 � y2�

�x2 � y2�
2

D9 �D7

D9D10

�

� �8��sCF�PB � iQB�

�
1

�y2 � x2�D2D8

�
� 8��sCF

�
2

�y2 � x2�
2D5

�
; (A4)

where the first terms in Eqs. (A3) and (A4) proportional to
1=�y2 � x2� and the second terms proportional to 1=�y2 �
x2�

2 are related with the Feynman gauge and the LF gauge
parts, respectively. By adding all six LF time-ordered
diagrams, we obtain

 T�"#!"#�H �
X
i

�T�"#!"#�Ai
� T�"#!"#�Bi

���0

� �
8��sCF
�y2 � x2�

�
�PA � iQ�
D1D2

�
�PB � iQB�

D2D8

�
; (A5)

i.e. the singular LF gauge parts cancel each other and only
finite Feynman gauge parts contribute to the amplitude.
Similarly, we obtain other helicity contributions to the hard
scattering amplitude as shown in Tables IV and V.

APPENDIX B: HARD SCATTERING AMPLITUDE
COMBINED WITH RELATIVISTIC SPIN-ORBIT

WAVE FUNCTION

In this appendix, we list the leading and subleading
helicity contributions to the hard scattering amplitude
combined with the relativistic spin-orbit wave function,
where the subleading helicity contributions show up as
next-to-leading order in transverse momenta. That is, the
subleading helicity contributions vanish at leading twist.

We first consider the relativistic spin-orbit wave func-
tions for pseudoscalar and vector (with transverse polar-
ization � � �1) mesons given by Eqs. (4) and (6),
respectively. Besides the leading helicity (in transverse
momenta) contributions coming from two �H � 1 contri-
butions (i.e. "#!"" and #"!"" ), the subleading helicity
contributions are as follows.

(1) �H � 0 contributions:
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(2) �H � 1 contributions:
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Here, Cx �
������������
2x1x2

p
M0x and Cy �

������������
2y1y2

p
M0y. Since the

hard scattering amplitudes vanish for �H� 2 cases, we
do not consider them here.

Next, we obtain the hard scattering amplitude combined
with the spin-orbit wave function.

(1) �H � 0 contributions:
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(2) �H � 1 contributions:
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