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We study the properties of the chromohydrodynamical instabilities induced by a relativistic jet that
crosses the quark-gluon plasma. Assuming that the jet of particles and the plasma can be described using a
hydrodynamical approach, we derive and discuss the dispersion laws for the unstable collective modes. In
our analysis, the chromohydrodynamical equations for the collective modes are tackled in the linear
response approximation. Such an approximation, valid for short time scales, allows one to study in a
straightforward way the dependence of the dispersion laws of the collective modes on the velocity of the
jet, on the magnitude of the momentum of the collective mode and on the angle between these two
quantities. In the conformal limit, we find that unstable modes arise for velocity of the jet larger than the
speed of the sound of the plasma and only modes with momenta smaller than a certain value are unstable.
Moreover, for ultrarelativistic velocities of the jet, the longitudinal mode becomes stable and the most
unstable modes correspond to relative angles between the velocity of the jet and momentum of the
collective mode larger than��=8. Our results suggest an alternative mechanism for the description of the
jet quenching phenomenon, where the jet crossing the plasma loses energy exciting colored unstable
modes.
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I. INTRODUCTION

One of the remarkable findings at the Relativistic Heavy
Ion Collider, RHIC, is that hydrodynamical models are
able to accurately describe the spectra of soft hadrons
produced in heavy-ion collisions [1,2]. Hydrodynamics,
being an effective macroscopic approach valid at large
distances and long time scales, cannot give account of
the preequilibrium stage of the reaction. However, hydro-
dynamics describes correctly elliptic flow at RHIC,
and allows to put some bounds on the thermalization
time t < 1 fm=c.

An experimental evidence of the production of a ther-
malized quark-gluon plasma in ultrarelativistic heavy-ion
collisions at RHIC [1] is the so-called jet quenching. In this
phenomenon, high pT partons produced in the initial stage
of the collision by hard scatterings lose energy and de-
grade, mainly by radiative processes, while traveling
through the hot and dense medium transferring energy
and momentum to the plasma (see [3] for reviews). In
order to describe these processes and the subsequent modi-
fication of the hadronic spectra due to the interaction of the
high pT partons with the medium, various models have
been proposed where perturbative QCD is supplemented
with medium-induced parton energy loss [4] or where the
AdS/CFT correspondence [5] is employed.

It is interesting to analyze whether some aspects of the
process of jet quenching can be described employing a
hydrodynamical picture [6]. Hydrodynamics describes the
behavior of a system in local equilibrium in terms of
conservation laws of macroscopic quantities. On the other
hand, the jet quenching is related to the modification of
high-pT parton fragmentation processes in the medium. It
is then clear that hydrodynamics cannot describe the mi-

croscopic processes related to jet quenching, but it can give
information on the macroscopic and collective behavior of
the system composed by the plasma and the hard jets.

In Refs. [7,8] the effect of a jet crossing the plasma at
high speed has been analyzed. The authors have employed
a hydrodynamical approach to describe the process of
energy and momentum deposition from the fast jet to the
surrounding plasma. In a hydrodynamical picture, a high
pT jet crossing the medium at a velocity higher than the
speed of sound forms shock waves with a Mach cone
structure. Such shock waves should be detectable in the
low pT parton distributions at angles �� 1:2 with respect
to the direction of the trigger particle. A preliminary analy-
sis of the azimuthal dihadron correlation performed by the
STAR collaboration [9] and the PHENIX collaboration
[10] seems to suggest the formation of such a conical
flow. However, it is yet unclear whether those structures
are compatible with Mach cone formation and alternative
explanations have been proposed [11]. The study per-
formed in Ref. [6] concludes that, for realistic phenome-
nological values of the hydrodynamical variables, the
Mach cone effects are too weak to explain the PHENIX
results. It is our aim here to explore whether other hydro-
dynamical effects, not considered in [6], may enhance the
signal.

The study of the interaction of a relativistic stream of
particles with an electromagnetic plasma is a topic of
interest in different fields of physics, ranging from inertial
confinement fusion, astrophysics, and cosmology. When
the particles of the stream are charged, plasma instabilities
develop, leading to an initial stage of fast growth of the
electromagnetic fields. One then talks about filamentation,
two-stream or Weibel instabilities, according to which is
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the fastest growing collective mode, although the notation
is nonuniversal and sometimes confusing. Weibel instabil-
ities usually refer to the case when the plasma is out of
equilibrium, and with an anisotropic distribution in the
velocities of its constituents, but the name is also used in
the context of a jet moving in an equilibrated plasma if the
instability appears in the transverse modes. These jet in-
duced instabilities have been studied using a variety of
methods, from kinetic theory to hydrodynamics [12,13].
Experimental evidence of the relativistic filamentation in-
stability has also been reported in Ref. [14].

The study of chromo-Weibel instabilities is now a very
active field of research [15–30] (see also the recent reviews
[31,32] for a more complete list of references). This is so
because it was suggested [15,16] that the presence of
plasma instabilities could be a natural explanation for the
fast equilibration that measurements of the elliptic flow at
RHIC seem to imply. In the early stage of a heavy-ion
collision, the nonequilibrium anisotropic distributions of
the partons should be responsible for the fast growth of the
chromomagnetic plasma modes, which in turn would iso-
tropize the system and speed up the thermalization process.
Whether the experimental conditions met at RHIC are
favoring this thermalization scenario or not is a question
that requires hard numerical simulations.

In this paper we study how a relativistic jet crossing an
equilibrated quark-gluon plasma induces instabilities using
a chromohydrodynamical approach [33]. We will assume
that both the plasma and the jet can be described using
hydrodynamics. Therefore, regarding the plasma, we con-
sider conditions that can be realized after t� 1 fm=c of the
moment the heavy-ion collision has taken place and the
plasma has thermalized. Regarding the jet, there are some
experimental evidences that the particles that constitute the
jet that crosses the plasma equilibrate. Indeed, consider a
fast parton that traverses the medium in the direction
opposite the direction of a high pT trigger particle. The
mean value of the momentum associated with the soft
hadrons emitted by the parton that crosses the medium
and detected in the hemisphere opposite to the direction
of the trigger particle reaches a common value [9] suggest-
ing that the energy lost by the fast parton thermalizes [6].

In studying the evolution of the system composed by the
plasma and the jet, we will employ ideal hydrodynamic
equations that do not take into account the effect of colli-
sions. Therefore our results will be valid on time scales
shorter than the mean-free path time for collisions. We
postpone the study of more realistic fluid equations to
future work.

The validity of the chromohydrodynamical approach
will be our starting assumption, as this allows us to sim-
plify the equations governing the evolution of the system.
To the best of our knowledge, only Ref. [34] considers the
possibility of the appearance of filamentation instabilities
produced by hard jets in heavy-ion collisions. However, the

approach considered there and ours are different. The
analysis of Ref. [34] is performed within kinetic theory,
and thus relies on the quasiparticle picture and a weak
coupling scenario. Instead, we use fluid equations. We
note that colored plasma waves are believed to be very
quickly damped (and this is the reason to exclude them in
the study of Ref. [6]). That conclusion might have to be
reviewed, as in the presence of instabilities rather than
damping, one finds exponential growth of the fields. Our
approach is also different to the color wakefield scenario of
Refs. [35,36]. In those references, the authors studied the
field response to a single moving colored particle, which
produces a color charge density wake. Instead, we consider
a color neutral jet, treated hydrodynamically, that moves
through the plasma and produces color fluctuations and
instabilities.

This paper is structured as follows. In Sec. II we review
the chromohydrodynamical equations describing the fluc-
tuations of a plasma around the stationary colorless state in
the linear approximation [33]. In Sec. III the equations
describing sound colorless fluctuations and plasma colored
fluctuations are derived. In Sec. IV we consider the case
where a relativistic jet crosses the plasma. Assuming that
both the plasma and the jet can be treated using a hydro-
dynamical approach, we derive the dispersion law for the
collective modes. We find that there is one unstable mode if
the velocity of the jet is larger than the speed of sound and
if the momentum of the collective mode is in modulus
smaller than a threshold value. Regarding the orientation of
the momentum of the collective mode, we study separately
the case where it is collinear with the velocity of the jet, the
case where it is orthogonal, and then for a generic angle
between the two. Quite interestingly, we find that the
unstable mode with momentum parallel to the velocity of
the jet is the dominant one for velocity of the jet v & 0:8.
For larger values of the jet velocity only the modes
with angles larger than ��=8 are significant and the
dominant unstable modes correspond to angles ��=4.
We draw our conclusions in Sec. V. We work using natural
units @ � c � kB � 1 and use the metric convention
�1;�1;�1;�1�.

II. CHROMOHYDRODYNAMIC EQUATIONS FOR
THE QUARK-GLUON PLASMA

Hydrodynamical equations are the expressions of the
conservation laws of a system when it is in local equilib-
rium. In the quark-gluon plasma there are conservation
laws which concern the baryon current, the color current,
and the energy-momentum tensor. In Ref. [37] the local
equilibrium state for the quark-gluon plasma has been
determined. It is in general described by one singlet four
velocity, a baryon density, singlet energy and pressure, and
in principle, a nonvanishing color density. However, dy-
namical processes associated to the existence of Ohmic
currents tend to whiten the plasma quickly, on time scales
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much shorter than momentum equilibration processes [38].
For this reason, one can expect that only colorless (singlet)
fluctuations are relevant at large time and space scales.
However, there are situations, as the one considered in the
present paper, when color fluctuations grow on short time
scales instead of being damped. Therefore in order to
describe the short time evolution of the plasma, one needs
to include color hydrodynamical fluctuations in the equa-
tions. In Ref. [33] such a chromohydrodynamical approach
for the short time evolution of the system has been formu-
lated, and here we will review the basic set of equations.

For simplicity, as in Ref. [33], we will only consider the
contribution of quarks in the fundamental representation.
The inclusion of antiquarks and gluons is straightforward.
The fluid approach is based on the covariant continuity
equation for the fluid four-flow

 D�n
� � 0; (1)

and on the equation that couples the energy-momentum
tensor T�� to the gauge fields

 D�T�� �
g
2
fF��; n�g � 0; (2)

where the various quantities are 3� 3 Hermitian matrices
in color space, and we have suppressed color indices. The
covariant derivative is defined as

 D� � @� � ig�A��x�; . . .	;

with A� � A�a �x��a for a � 1; . . . ; 8 and �a � �a=2,
where �a are the SU�3� Gell-Mann matrices and therefore
Tr��a�b� � 1

2�
ab. The strength tensor appearing in Eq. (2)

is given by F�� � @�A� � @�A� � ig�A�; A�	.
We further assume that the four-flow and the energy-

momentum tensor have the expression valid for an ideal
fluid, i.e.

 n��x� � n�x�u��x�; (3)

and

 T���x� � 1
2���x� 
 p�x��fu

��x�; u��x�g � p�x�g��; (4)

where the hydrodynamic velocity u�, the particle density
n, the energy density �, and the pressure p are 3� 3
matrices in color space. The quantities defined above
have in general both colorless and colored components,
as an example the particle density can be written as

 n�	 � n0I�	 

1
2na�

a
�	; (5)

where �, 	 � 1, 2, 3 are color indices and I is the identity
matrix. In the following equations we will omit the color
indices not to overcharge the notation.

The color current due to the flow of the fluid can be
expressed in terms of the hydrodynamic velocity and the
particle density as

 j��x� � �
g
2

�
nu� �

1

3
Tr�nu�	

�
; (6)

and it acts as a source term for the gauge fields in the Yang
Mills equation

 D�F
���x� � j��x�: (7)

Thus, we will assume that all the gauge fields that appear in
the fluid equations are only due to the presence of a colored
current in the medium.

It is worth remarking that Eqs. (1) and (2) were derived
in Ref. [33] from the collisionless transport equation
obeyed by the particle distribution function. Thus, the
conservation laws expressed by Eqs. (1) and (2) are strictly
valid on time scales shorter than the mean-free path time.
As an example, for quarks n0 represents the quark particle
density, which fulfills a conservation law that says that the
change of the number of particles within a volume element
is equal to the flux of particles across the surface of the
volume element. On the other hand, for times larger than
the mean-free path time, this conservation law is violated
by collision processes that change the particle number
inside the volume element. Then, only baryon number is
conserved, which requires the knowledge of both the quark
and antiquark particle densities.

Summarizing, for time scales shorter than the mean-free
path time there are more conservation laws than at long
time scales, as Eqs. (1) and (2) indicate. Their validity for
the short time phenomena that will be studied here is then
guaranteed.

Linearization of the chromohydrodynamic equations

We shall consider the fluctuations of density, energy
density, pressure, and plasma velocity, around their sta-
tionary and colorless state described by �n, ��, �p, and �u�,
respectively. In order to study such fluctuations we linea-
rize the chromohydrodynamic equations (1) and (2), as-
suming the fluctuations to be small. Notice that in the
stationary state the color current defined in Eq. (6) van-
ishes, indeed

 

�j � � �g� �n �u� � 1
3 Tr� �n �u�	� � 0; (8)

and we will assume that in the stationary state no field F��

is present in the system. We define the space dependent
fluctuations of the various quantities around their colorless
values as

 n�x� � �n
 �n�x�; ��x� � ��
 ���x�; (9)

 p�x� � �p
 �p�x�; u��x� � �u� 
 �u��x�: (10)

All the fluctuations can contain both colorless and colored
components, therefore they can be decomposed as

 �n�	 � �n0I�	 

1
2�na�

a
�	; (11)
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where �n0 is the colorless fluctuation, and �na the corre-
sponding colored components.

The state described by �n, ��, �p, and �u� is assumed to be
stationary, colorless, and homogeneous on the scale of
variation of the fluctuations and therefore we have that

 D� �n � 0; D� �� � 0; D� �p � 0; D� �u� � 0:

(12)

Moreover, since we will consider only small deviations
from the stationary state, we will assume that the following
conditions are obeyed:

 �n� �n; ��� ��; �p� �p; �u� � �u�:

(13)

Actually, �n, ��, �p, and �u� should be diagonalized to
be comparable to the �n, ��, �p, and �u�.

We now aim to determine the set of equations that the
fluctuations �n, ��, �p, and �u� obey. Employing the
equations (9) and (10), we can derive the expression of the
fluctuation of n� and of T�� around their colorless and
homogeneous values:

 n� � �n �u� 
 �n�u� 
 �n �u�; (14)

 

T�� � � ��
 �p� �u� �u� � �pg�� 
 ���
 �p� �u� �u�


 � ��
 �p�� �u��u� 
 �u� �u�� � �pg��: (15)

Upon using these expressions in Eqs. (1) and (2), we obtain
that �u�, �p, �� and �n must obey the following equa-
tions:
 

�nD��u
�
�D��n� �u

� � 0;

�u�D���
� ��
 �p�D��u
� � 0;

� ��
 �p� �u�D��u���D�� �u� �u�D���p�g �n �u�F�� � 0:

(16)

These equations do not form a closed set and one more
relation has to be provided. In hydrodynamical treatments,
one usually imposes an equation of state (EoS) of the form

 p � p��; n�; (17)

and in this way one obtains a closed set of equations. For
the applications we have in mind, we will consider that the
conformal limit is reached, and further the effects of the
particle density can be ignored. Thus, we will use an
equation of state given by

 p�x� � c2
s��x�; (18)

where cs is the speed of sound, and in the conformal limit
cs � 1=

���
3
p

. We will however leave cs as a parameter, and
use its value only in the numerical analysis of the
equations.

We will study separately colorless and colored fluctua-
tions. In order to obtain the equation governing the color-

less fluctuation we take the trace of Eq. (16) obtaining
 

�n@��u
�
0 
 �@��n0� �u� � 0;

�u�@���0 
 � ��
 �p�@��u
�
0 � 0;

� ��
 �p� �u�@��u�0 � �@
� � �u� �u�@���p0 � 0:

(19)

Multiplying Eq. (16) by �a and taking the trace, we gather
the equations for colored hydrodynamical fluctuations:
 

�n�D��u��a 
 �D��n�a �u� � 0;

�u��D����a 
 � ��
 �p��D��u��a � 0;

� ��
 �p� �u��D��u��a � ��D� � �u� �u�D���p�a � g �n �u�F
��
a

� 0; (20)

where we have used the notation �D�X�a � @�Xa 

gfabcAb�X

c.

III. SOUND AND PLASMA WAVES
IN THE QUARK-GLUON PLASMA

In order to analyze the linearized chromohydrodynam-
ical equations derived in the previous section, we will treat
separately the colorless and colored fluctuations showing
that they describe the propagation of sound and plasma
waves, respectively.

A. Sound waves

The colorless fluctuations of plasma velocity, energy
density, pressure, and density obey the equations (19)
that in momentum space read
 

�u�k��n0 
 �nk��u
�
0 � 0;

�u�k���0 
 � ��
 �p�k��u
�
0 � 0;

i� ��
 �p� �u�k
��u�0 
 i� �u

� �u�k� � k
���p0 � 0;

(21)

where k� � �!;k�. Since pressure and energy density are
related by the EoS (18), their variations are not indepen-
dent and upon differentiating Eq. (18) we obtain that

 �p0 �

�
@p
@�

�
��0 � c2

s��0: (22)

Substituting this expression in Eq. (21), we find the
following equation for the fluctuations of the pressure:

 

1

�u�k�

��
1

c2
s
� 1

�
� �u�k��2 
 k2

�
�p0 � 0; (23)

while the fluctuations of the other quantities can be ex-
pressed as

 �u�0 � �
1

� 1
c2
s

 1� �p

k�� �u� �u� � g���

�u  k
�p0; (24)

 �n0 � � �n
k��u

�
0

�u  k
: (25)
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In the plasma rest frame, �u� � �1; 0; 0; 0�, Eq. (23) sim-
plifies to

 

�
1

c2
s
�

k2

!2

�
�p0 � 0; (26)

which gives the standard expression of the sound waves in
a plasma, reflecting the fact that all colorless hydrodynam-
ical fluctuations propagate at the speed of sound.

B. Plasma waves

Regarding the colored components of the fluctuations,
Eq. (20), we linearize in the A fields as well. The reason is
that we will be interested in the computation of the polar-
ization tensor and expanding at the first order in A is
sufficient. One then finds

 �u �k��na 
 �nk��u
�
a � 0; (27)

 �u �k���a 
 � ��
 �p�k��u
�
a � 0; (28)

 

i� ��
 �p� �u�k
��u�a
 i� �u

� �u�k�� k
���pa� q �n �u�F

��
a � 0;

(29)

and the fluctuation of the pressure and the fluctuations of
the energy density can be related using the EoS (18), that
leads to �pa � c2

s��a [33,39].
Equations (27) and (28) relate the fluctuations of the

density and energy density with the fluctuations of the
velocity

 �na � � �n
k��u

�
a

�u  k
; (30)

 ��a � �� ��
 �p�
k��u

�
a

�u  k
; (31)

and combining these expression with Eq. (22) we find that
Eq. (29) can be rewritten as

 

�
g�� 


c2
s

� �u  k�2
�k�k� � �u�k�� �u  k��

�
�u�;a

� 
ig
�n

� ��
 �p�� �u  k�
�u�F

��
a : (32)

The inverse of the operator on the left-hand side of this
equation can be determined observing that

 �
g�� 


c2
s

� �u  k�2
�k�k� � �u�k�� �u  k��

�

� �g
� �T �k��k
k� � �u
k�� �u  k��	 � g
�; (33)

where

 T �k� � �
1

k2 
 � 1
c2
s
� 1�� �u  k�2

: (34)

Then one can solve Eq. (32) and the fluctuation of the
hydrodynamic velocity takes the form

 

�u
;a � ig
�n

� ��
 �p�� �u  k�

� �g
� 
T �k��k
k� � �u
k�� �u  k��	 �u�F
��
a :

(35)

The fluctuation of the current induced by the fluctuation
of the density and of the hydrodynamic velocity can be
derived from Eq. (6) and is given by

 �j�a � �
g
2
� �n�u�a 
 �na �u��: (36)

Such fluctuations are related in linear response theory to
fluctuations of the gauge fields via

 �j�a �k� � ����
ab �k�A�;b�k�; (37)

where ���
ab is the polarization tensor. Considering that the

linearized strength tensor equals F��a �k� � �ik�A�a�k� 

ik�A�a �k�, and upon substituting the values of the fluctua-
tions of density and energy density in Eq. (36) we obtain
that

 

���
ab �k� � ��ab

g2

2

�n2

� ��
 �p�
1

� �u  k�2

�
� �u  k��k� �u� 
 k� �u�� � � �u  k�2g�� � k2 �u� �u�

�
1

k2 
 � 1
c2
s
� 1�� �u  k�2

�� �u  k�k2�k� �u� 
 k� �u�� � � �u  k�2k�k� � k4 �u� �u��
�
: (38)

One can easily check that the polarization tensor (38) is symmetric and transverse [k�����k� � 0].
In the plasma rest frame, �u� � �1; 0; 0; 0�, the polarization tensor simplifies considerably and its components are given

by
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 �00
ab�!;k� � ��ab!

2
p

k2

!2 � c2
sk2 ;

�0i
ab�!;k� � �i0

ab�!;k� � ��ab!
2
p

!ki

!2 � c2
sk2 ;

�ij
ab�!;k� � ��ab!

2
p

�
�ij 


c2
skikj

!2 � c2
sk2

�
;

(39)

where

 !2
p �

g2

2

�n2

� ��
 �p�
(40)

is the plasma frequency.
At the linear order, the Fourier transformed chromody-

namic field A��k� satisfies the equation of motion

 �k2g�� � k�k� �����k�	A��k� � 0; (41)

where we have dropped the color indices a, b.
In order to determine the dispersion law for the gauge

fields, we define the dielectric tensor "ij�k� according to

 "ij�k� � �ij 

1

!2 �ij�k�; (42)

that in the plasma rest frame is given by

 "ijp �!;k� �
�
1�

!2
p

!2

�
�ij �

!2
p

!2

c2
skikj

!2 � c2
sk2 : (43)

The dispersion equation can now be determined by
computing the determinant of the matrix

 Mij � k2�ij � kikj �!2"ij�k�; (44)

and solving the equation

 det�Mij	 � 0; (45)

where we assumed the Coulomb gauge, k A�k� � 0, and
A0 � 0, meaning that E � i!A.

Taking the wave vector in a given direction, say k �
�k; 0; 0�, one finds the following solutions to the dispersion
relation:

 !2 � !2
p 
 c2

sk2; (46)

 !2 � !2
p 
 k2; (47)

which correspond to longitudinal and transverse modes,
respectively. Notice also that both modes are not damped.
The reason is that we have neglected the dissipative terms
in the hydrodynamical equations, assuming that the col-
ored plasma on the time scale of interest to the present
analysis can be approximated as an ideal fluid. In order to
consider the damping of color fluctuations in the hydro-
dynamical limit, one should include transport coefficients,
such as color conductivity or color diffusion.

Let us compare the dispersion laws of the longitudinal
and transverse modes obtained above with the correspond-

ing results in kinetic theory. Using the hard thermal loop
effective theory, one can determine the polarization tensor
for the gauge fields. The dispersion laws in the limit k� !
for the longitudinal and transverse modes are given by [40]

 !2 � !2
p 


3
5k

2; (48)

 !2 � !2
p 


6
5k

2; (49)

respectively. The chromohydrodynamical approach repro-
duces the short time physics of kinetic theory in the domain
k� !. There is a numerical discrepancy in the k2 terms
when comparing the two sets of dispersion laws. The origin
of such a discrepancy is that, in order to go from transport
theory to a fluid approach, one has to impose a relation
between the energy and the pressure of the system that
allows one to discard all the higher momenta moments that
are contained in the particle distribution function. Such an
approximation, typical of a hydrodynamical approach,
does not affect in any profound manner the physics de-
scribed in the domain of applicability of the formalism.

IV. A RELATIVISTIC JET TRAVERSING THE
PLASMA

We shall now consider a jet of particles propagating
across the plasma at a relativistic velocity v � jvj. We
assume that both the jet and the plasma are initially in
equilibrium but jet and plasma are not in equilibrium with
each other. The system formed by the plasma and the jet is
one specific example of the so-called two-stream systems,
which have been widely studied in magnetohydrodynam-
ics, and extended to the chromohydrodynamical case in
Ref. [33].

We are not concerned with the colorless hydrodynamical
fluctuations, which have been studied elsewhere [7,8]. We
will instead examine the evolution of the colored fluctua-
tions at short time scales, where the equations describing
such fluctuations can be linearized.

We consider the frame where the plasma is at rest. The
velocity, as well as the pressure, energy density, and par-
ticle density of the jet and of the plasma will be different
and will be labeled in a different way. Since the plasma is at
rest, �u�p � �1; 0; 0; 0�, whereas the velocity of the jet will
have the general expression �u�jet � ��1; v�, with � �

1=
��������������
1� v2
p

. The polarization tensor associated to the jet
can be computed in an analogous way to that of the plasma
and will have the expression reported in Eq. (38) with
�u� ! �u�jet. In the limit where �� 1, it is possible to
neglect the last term in the square bracket on the right-
hand side of Eq. (38). Such an approximation corresponds
to solving the fluid equations neglecting the effect of the
pressure gradients. One can also see that this approxima-
tion corresponds to considering that the distribution func-
tion of the constituents of the jet is of the form (see [33] for
a discussion of this approximation)
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 f�p� � �n �u0��3�
�
p�

��
 �p
�n

u
�
; (50)

which describes fast moving particles, with a nonthermal
distribution.

Employing Eq. (42), we obtain the following expression
of the dielectric tensor for the jet:
 

"ijjet�!;k� �
�
1�

!2
jet

!2

�
�ij

�
!2

jet

!2

�
vikj 
 vjki

!� k  v
�
�!2 � k2�vivj

�!� k  v�2

�
; (51)

where

 !2
jet �

g2

2

�n2
jet

� ��jet 
 �pjet�
(52)

is the plasma frequency squared of the jet.
In order to obtain the dielectric tensor of the system

composed by the plasma and the jet, we note that the total
polarization tensor of the system is given by the sum of the
two polarization tensors in linear response theory

 ���
t � ���

p 
���
jet ; (53)

where the expression of the components of ���
p is given in

Eq. (39). The dielectric tensor of the total system turns out
to be
 

"ijt �!;k� �
�
1�

!2
t

!2

�
�ij �

!2
p

!2

c2
sk
ikj

!2 � c2
sk2

�
!2

jet

!2

�
vikj 
 vjki

!� k  v
�
�!2 � k2�vivj

�!� k  v�2

�
; (54)

where

 !2
t � !2

p 
!
2
jet: (55)

The dispersion laws of the collective modes of the system
composed by the plasma and the jet can now be determined
solving the equation

 det�Mij
t 	 � det�k2�ij � kikj �!2"ijt �k�	 � 0: (56)

The solutions of this equation depend on jkj, jvj, cos� �
k̂  v̂, !p, !jet, and cs. We find that Eq. (56) admits eight
solutions, however two of them are trivially given by ! �
0 and six of these solutions are given by the roots of a
polynomial of the sixth order. In order to simplify the
expression of the dispersion law and to study the depen-
dence of the unstable collective modes on the values of the
various parameters, we define the dimensionless quantities,

 x �
!
!t
; y �

k
!t
; b �

!2
jet

!2
t

; (57)

meaning that we will measure momenta and energies in
units of !t. Since the plasma frequency of the jet is

unknown, we will treat b as a parameter and we will
analyze values of b� 1 corresponding to !jet � !p.

We anticipate that we find that five of the dispersion laws
are always stable, whereas one is unstable in a certain
range of values of the parameters. In particular, we find
that, for values of v smaller than the speed of sound of the
plasma, cs, all the modes are stable independent of the
values of the remaining parameters. Let us also note that,
when k and v are not parallel, it is not possible to decom-
pose the dielectric function (54) with only transverse and
longitudinal projectors of k. We will then not refer to
transverse or longitudinal modes in that case.

In the following subsections, we will analyze the dis-
persion relations of the collective modes for different
orientations of k and v.

A. k parallel to v

Here we consider the case corresponding to k k v, and
choose k � �0; 0; k� and v � �0; 0; v�. This case can be
easily analyzed because for this orientation of k and v
the dielectric tensor (54) and the matrix Mij

t defined in
Eq. (56) are diagonal and the corresponding dispersion
equation factorizes. Moreover, since k is parallel to v, it
is possible to define transverse and longitudinal modes
with respect to the orientation of these vectors. We find
two stable transverse modes with dispersion law

 !2 � !2
t 
 k

2: (58)

Notice that this dispersion law is analogous to the disper-
sion law that we obtained in Eq. (47) that describes the
propagation of the transverse mode in a plasma without a
jet. The only difference is that the plasma frequency!p has
been replaced with !t. Therefore the only effect on the
transverse modes due to the presence of the jet is to change
the plasma frequency of the mode.

Regarding the longitudinal modes, they are given by the
solution of the following equation:
 

!2 �!2
t �!

2
p

c2
sk2

!2 � c2
sk

2

�!2
jet

2vk!� v2!2 � v2k2

�!� kv�2
� 0: (59)

In terms of the dimensionless variables defined in Eq. (57),
the equation for the longitudinal modes (59) can be written
as
 

x2�x4 � 2vyx3 
 x2��1
 bv2 
 y2�v2 � c2
s��


 2vyx�1� b
 c2
sy2� � y2�bv2�c2

s � 1� � c2
sb


 v2�c2
sy2 
 1��	 � 0: (60)

This equation has two trivial solutions x � 0, and four
solutions corresponding to the roots of a quartic equation.
As already mentioned, we find that at most one mode is
unstable. In the present case, one of the longitudinal modes
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is unstable for cs < v < 1. Since the cases where v � cs
and v! 1 will play a special role for these modes, let us
first consider the solutions of Eq. (59) for these two values
of the velocity.

In the limit v! 1, Eq. (59) simplifies to

 !2 �!2
t �!

2
p

c2
sk

2

!2 � c2
sk

2 
!
2
jet

� !2 �!2
p �!2

p
c2
sk

2

!2 � c2
sk2 � 0; (61)

with solution, !2 � 0 and

 !2 � !2
p 
 c

2
sk

2: (62)

This solution is the same that we have obtained for a
plasma without a jet in Eq. (46). Therefore in the limit v!
1, the longitudinal mode is stable and we see that a jet of
particles moving at the speed of light can only affect the
transverse modes, but they do not affect at all the longitu-
dinal modes. This is related to the dimensional contraction
which occurs in the eikonal limit [41], when it can be
shown that the strength field tensor caused by a massless
particle that moves at the speed of light is on the plane
transverse to its motion.

In the case v � cs, it is possible to find one simple
analytical solution [apart from the trivial solution !2 � 0
and Eq. (58)] which is given by

 ! � csk; (63)

whereas three more solutions correspond to the roots of
 

x3 � csx2y
 csy�1
 b��2
 c2
s�


 x��1
 c2
s�b� y2�� 
 c2

sy2� � 0: (64)

The discriminant of this equation is negative for b < 1,
meaning that the three solutions of this equation are always
real and the corresponding modes stable.

We now turn to a numerical study of the nontrivial
solutions of Eq. (60) as a function of the parameters b
and v. We find a solution with a positive imaginary part for
any nonvanishing value of b and for v larger than cs. Such
a solution corresponds to the unstable longitudinal collec-
tive mode of the system. In Fig. 1 we have reported the plot
of the imaginary part of the frequency, �, of this longitu-
dinal mode as a function of k=!t, for b � 0:02 and for four
different values of the velocity of the jet: v � 0:6, full (red
online) line; v � 0:7, dashed (magenta online) line; v �
0:8, full (green online) line; v � 0:9, dot-dashed (blue
online) line. For any value of the velocity smaller than or
equal to the speed of sound, we numerically find � � 0.
For values of v larger than the speed of sound and less than
1, this collective mode becomes unstable in a range of
values of the momentum k < kmax. For small values of k,
� increases with increasing momentum and reaches a peak.
Then it decreases and at kmax becomes zero. As can be seen
in Fig. 1 for v > cs, the value of kmax decreases with
increasing velocity.

The value of � at the peak, that we will indicate with
�max, depends on v and b. In Fig. 2 we present the plot of
�max as a function of b for four values of the jet velocity:
v � 0:6, full (red online) line; v � 0:7, dashed (magenta
online) line; v � 0:8, full (green online) line; v � 0:9, dot-
dashed (blue online) line. Note that independent of the
value of v, for b � 0, we obtain that � � 0. In this case
the plasma frequency of the jet is zero and corresponds to
the case where the system consists of the plasma only.
Indeed, for b � 0, the dielectric tensor (54) does not
have any contribution from the jet and therefore all the
collective modes are stable, as shown in the previous

0 5 10 15
k/ωt

0

0.05

0.1

Γ/
ω

t

v = 0.6
v = 0.7
v = 0.8
v = 0.9

FIG. 1 (color online). Imaginary part of the dispersion law of
the unstable longitudinal mode for the system composed by a
plasma and a jet as a function of k=!t. Here the momentum of
the unstable mode is parallel to the velocity of the jet v, b �
!2

jet=!
2
t � 0:02 and the four different lines correspond to differ-

ent values of the velocity of the jet jvj.

0 0.05 0.1
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0.08

0.16

Γ m
ax

/ω
t
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v = 0.7
v = 0.8
v = 0.9

FIG. 2 (color online). Variations of the largest value of the
imaginary part of the dispersion law of the unstable longitudinal
mode for the system composed by a plasma and a jet in the case
k k v as a function of b for four different values of the velocity of
the jet, jvj.
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section. With increasing values of b, i.e. of the plasma
frequency of the jet, �max increases, meaning that to larger
values of the density of the jet (for fixed values of g and
��jet 
 �pjet) correspond larger instabilities. Moreover, for
values of b & 0:01 the value of �max increases quickly with
increasing b whereas for larger values of b, �max becomes
less sensitive to the actual value of b. In particular, for v �
0:6, �max saturates at �0:09!t. As a function of the veloc-
ity we find that for a given value of b the value of �max

increases with increasing velocity for cs < v & 0:7. For
v� 0:7–0:8 the value of �max reaches its maximum value
and then for larger values of the velocity decreases and
eventually in the ultrarelativistic case v! 1 we find that
the frequency of the longitudinal mode becomes real for all
the values of k.

B. k orthogonal to v

We now consider the case corresponding to k orthogonal
to v, choosing k � �k; 0; 0� and v � �0; 0; v�. In this case
the matrix Mij

t defined in Eq. (56) is block diagonal. One
block is one-dimensional and corresponds to the compo-
nent Myy

t . The other block is two-dimensional and corre-
sponds to the components of Mij

t with indices i, j � x, z.
Therefore the dispersion equation (56) factorizes into two
equations. Regarding the one-dimensional block, it de-
scribes a mode orthogonal to both k and v. This mode is
stable and has dispersion law

 !2 � !2
t 
 k2: (65)

This dispersion law is analogous to the dispersion law for
the transverse mode for a plasma without a jet, given in
Eq. (47), with the plasma frequency !p replaced with !t.
The remaining collective modes are solutions of the equa-
tion
 �
!2 �!2

t �!
2
p

c2
sk2

!2 � c2
sk2

�

�

�
!2 � k2 �!2

t �!
2
jet

v2�k2 �!2�

!2

�
�!4

jet

v2k2

!2 � 0:

(66)

Using the variables defined in Eq. (57), one can rewrite this
equation as
 

x2�x2 � 1� c2
sy2��x2 � 1� y2 
 v2b� 
 x2y2b�c2

s � v2�


 by2�v2 � c2
s 
 c2

sy2�v2 � 1� 
 c2
sv2b� � b2v2y2 � 0;

(67)

where we have already factored out the trivial solution
x2 � 0.

Also in this case we find that for v & cs no mode is
unstable and for v > cs only one mode is unstable in a
certain range of values of the momentum. We have nu-
merically studied the solutions of Eq. (67) and we have

reported the results in Figs. 3 and 4. In Fig. 3 it is shown the
plot of the imaginary part of ! for b � 0:02, as a function
of k for five different values of the jet velocity: v � 0:6,
full (red online) line; v � 0:7, dashed (magenta online)
line; v � 0:8, full (green online) line; v � 0:9, dot-dashed
(blue online) line; v � 1, dot-dot-dashed (black) line.

The largest value of k where the orthogonal mode is
unstable is a monotonic increasing function of v and it
diverges for v! 1. Also the value of the imaginary part of
� at the peak, �max, increases with increasing v, but for
v! 1 reaches a maximum finite value. The behavior of
the largest value of the imaginary part of the frequency,
�max, as a function of b, for various values of the velocity,

0 2 4 6 8 10
k/ωt
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0.08

Γ/
ω

t

v = 0.6
v = 0.7
v = 0.8
v = 0.9
v = 1.0

FIG. 3 (color online). Imaginary part of the dispersion law of
the unstable mode for the system composed by a plasma and a jet
in the case where the momentum of the collective mode, k, is
orthogonal to the velocity of the jet, v, as a function of the
momentum k=!t and for b � !2

jet=!
2
t � 0:02. The five different

lines correspond to different values of the velocity jvj.
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FIG. 4 (color online). Largest value of the imaginary part of
the dispersion law of the unstable mode for the system composed
by a plasma and a jet in the case where the momentum of the
collective mode, k, is orthogonal to the velocity of the jet, v, as a
function of b � !2

jet=!
2
t . The five different lines correspond to

different values of the velocity jvj.
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is reported in Fig. 4. With increasing values of b, i.e. with
increasing value of the plasma frequency of the jet, the
value of �max increases. Moreover, for a given value of b,
the larger the velocity of the jet, the larger is the value of
�max.

C. Arbitrary angles

In the previous two subsections, we have analyzed the
behavior of the unstable mode of the plasma for two values
of the angle � between k and v. In particular, in Sec. IVA
we have considered � � 0, corresponding to modes with
k k v and in Sec. IV B we have taken � � �=2, corre-
sponding to modes with k ? v. A common feature of the
two cases is that the value of �max (corresponding to the
largest value of the imaginary part of the frequency as a
function of jkj), increases with increasing values of the
plasma frequency of the jet. Regarding the dependence of
�max on the value of the velocity of the jet v one can see,
comparing the plots in Fig. 4 with those in Fig. 2, that for

the ultrarelativistic jet the modes with k ? v dominate the
modes with k k v. On the other hand, for velocity larger
than the speed of sound, but v & 0:9 the longitudinal
modes are dominant.

In this subsection, we analyze the general case, of an
arbitrary angle � and we will determine at which angle
corresponds the most unstable mode as a function of v and
b. For definitiveness we choose v � �0; 0; v� and k �
�0; k sin�; k cos��.

The analysis of the dispersion laws for the modes with
k k v and k ? v was simplified by the fact that in both
cases the matrix Mij

t defined in Eq. (56) becomes block
diagonal and the corresponding equation for the dispersion
laws factorizes. However, for arbitrary angle � the matrix
Mij
t is not block diagonal. Then we will rely on a numerical

solution of Eq. (56). Employing the definitions in Eq. (57)
we obtain (apart from the two trivial solutions correspond-
ing to ! � 0) that the six dispersion laws can be obtained
from the roots of the equation

 

0 � 2x6 
 x4��4
 2bv2 
 ��2� 2c2
s 
 v2�y2� 
 x2�2� 2bv2 � ��2� 2�1
 b�c2

s 
 �2
 b
 2bc2
s�v2�y2

� �v2 
 c2
s��2
 v2��y4� 
 by2���v2�b
 y2�� 
 c2

s��2�1
 y2� 
 v2�1
 b
 2y2���


 vy�v�1
 c2
sy2��y
 y3� � 4x��1
 x2 � y2���1
 b
 x2 � c2

sy2� cos��� 
 vy���b2��1
 c2
s��


 b��2
 c2
s 
 x2 � y2� 
 ��1
 x2 � y2���1
 x2 � c2

sy2�� cos�2���: (68)

Of the six solutions of this equation, only one corre-
sponds to an unstable mode in a certain range of parame-
ters. In particular, for any value of �, we find an unstable
mode only if v > cs and if the momentum is smaller than a
certain value kmax, where kmax depends on �, v, and b. The
largest value of the imaginary part �max depends on �, v,
and b as well and in Fig. 5 we show three plots of �max as a
function of b for various values of � and v. In each plot the
full (red online) line corresponds to � � 0, the dashed
(magenta online) line corresponds to � � �=8, the dot-

dashed (green online) line corresponds to � � �=4, the
dotted (blue online) line to � � 3�=8, and the dot-dash-
dashed (black) line to � � �=2. The left panel corresponds
to v � 0:8, the central panel to v � 0:9, and the right panel
corresponds to v � 1.

For v � 0:8 (left panel), the most unstable modes are
those corresponding to small angles �, i.e. are those modes
with k almost collinear with the velocity of the jet. In this
regime these modes dominate the dynamics. With increas-
ing velocity modes with larger values of the angle become
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FIG. 5 (color online). Largest value of the imaginary part of the dispersion law for the unstable mode as a function of b for three
different values of the velocity of the jet jvj and five different angles between k and v. The left panel corresponds to v � 0:8 and the
dominant unstable modes correspond to small angles �, i.e. to modes that are almost collinear with the jet. The central panel
corresponds to v � 0:9 and the right panel to v! 1. In both cases the modes corresponding to �� �=4 are the dominant one. In the
limit v! 1, modes with momentum collinear with the velocity of the jet are suppressed and the mode with � � 0 vanishes.
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relevant. Indeed for a value of the velocity v � 0:9, corre-
sponding to the central panel in Fig. 5, the imaginary part
of the modes with 0< �< �=4 is the largest and the
corresponding modes dominant. In the ultrarelativistic
case v! 1, right panel in Fig. 5, the dominant modes
are those with �� �=4. Modes with k almost collinear
with v, or more precisely all the modes at angles � & �=8,
are suppressed. Notice that the modes with very large
values of �� �=2 are not the dominant one. This means
that modes with k orthogonal to v are not the most im-
portant: more important are ‘‘oblique’’ modes with ��
�=4.

In agreement with the analytical results of the previous
section, in the limit v! 1, that is shown on the right panel
of Fig. 5, the mode with � � 0 has a vanishing imaginary
part and is stable.

V. CONCLUSIONS

It is well known that hydrodynamics predicts that any
object moving in a fluid at a velocity higher than the speed
of sound creates shock waves and a Mach cone structure.
The conclusion of our study is that a neutral stream of
colored particles moving at a velocity higher than the speed
of sound in a quark-gluon plasma in the conformal limit
also causes gauge field instabilities. It is curious to note
that the speed of sound is the threshold value for the
appearance of both the Mach cone structure and the gauge
field instabilities. Qualitatively one can understand why
this happens considering that if an external perturbation to
the plasma moves slower than the speed of sound, the
system can respond by locally rearranging the values of
density, energy density, pressure, and plasma velocity, and
then hydrodynamical fluctuations of these quantities may
counteract the slow external perturbation. This is not the
case when the perturbation propagates faster than the larger
velocity of propagation of hydrodynamical fluctuations,
i.e. larger than the speed of sound.

Even if we have obtained our results by solving the
chromohydrodynamical equation of the system in the lin-
ear response approximation, let us stress that the same
results are easily translated for electromagnetic relativistic
fluids. To the best of our knowledge, the speed of sound
bound that we found has not been discussed in the existing
literature.

We believe that the mechanism proposed in this article
provides one possible effective hydrodynamical descrip-
tion of the jet quenching phenomena, valid at macroscopic
scales. Indeed we have shown that the energy and momenta
stored in the total system (composed by the plasma and the
jet) is effectively converted into (growing) energy and

momenta stored in the gauge fields, which are initially
absent. The jet loses energy in its dynamical evolution.

However, our analysis of this mechanism has to be
considered as preliminary and therefore we cannot indicate
consequences for existing data of jet quenching at RHIC.
Indeed, we have neglected several aspects of the system
produced in heavy-ion collisions that complicate the treat-
ment of the jet quenching phenomenon, such as the expan-
sion of the plasma, or the transition to a hadronic phase,
that takes place when the plasma becomes sufficiently
dilute. One of the relevant points here is whether the
system has enough time to generate the growth of the
gauge fields before hadronization begins. As found in our
numerical study, the maximal value of the growth rate,
here characterized by �max, runs between �max �
�0:08–0:15�!t. Therefore, the plasma instabilities fully
develop on time scales of the order t� �6:7–12:5�=!t. To
get an upper bound of that time scale, we evaluate the
plasma frequency in a weakly coupling scenario at T �
350 MeV, finding t� 1–2 fm=c.

Another aspect that we have neglected is the existence of
dissipative terms in the hydrodynamical equations that at a
certain stage of the plasma evolution might be able to damp
the hydrodynamical fluctuations.

In any case, assuming that the generated gauge fields
have sufficient time to grow, what is their fate? How do
they hadronize? The late stage evolution of the chromohy-
drodynamical instabilities may depend on a different num-
ber of facts. One should discuss what is the saturation
mechanism of the instabilities, which could be drastically
affected by dissipative color damping phenomena. In any
case, naively speaking, we would expect that the existence
of some gauge field modes at soft values of the momenta
less than kmax, and in a given direction in momenta space,
should be translated at RHIC into an enhanced production
of hadrons with momenta <kmax, versus the case without
gauge field instabilities. Moreover, if one takes into ac-
count the effect of the growth of the gauge fields in the
numerical simulations of the conical flow, then this might
lead to an enhancement of the number of soft hadrons
produced by the jet with respect to the case where the
effect of the growth of the gauge fields has not been
considered [6].
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