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An exploratory study of charmless 3-body decays of B mesons is presented using a simple model based
on the framework of the factorization approach. The nonresonant contributions arising from B! P1P2

transitions are evaluated using heavy meson chiral perturbation theory (HMChPT). The momentum
dependence of nonresonant amplitudes is assumed to be in the exponential form e��NRpB��pi�pj� so that the
HMChPT results are recovered in the soft meson limit pi; pj ! 0. In addition, we have identified another
large source of the nonresonant signal in the matrix elements of scalar densities, e.g. hK �Kj �ssj0i, which can
be constrained from the decay �B0 ! KSKSKS or B� ! K�KSKS. The intermediate vector-meson
contributions to 3-body decays are identified through the vector current, while the scalar meson
resonances are mainly associated with the scalar density. Their effects are described in terms of the
Breit-Wigner formalism. Our main results are: (i) All KKK modes are dominated by the nonresonant
background. The predicted branching ratios of K�K�KS�L�, K�K�K� and K�KSKS modes are consistent
with the data within errors. (ii) Although the penguin-dominated B0 ! K�K�KS decay is subject to a
potentially significant tree pollution, its effective sin2� is very similar to that of the KSKSKS mode.
However, direct CP asymmetry of the former, being of order �4%, is more prominent than the latter.
(iii) For B! K�� decays, we found sizable nonresonant contributions in K����� and �K0����

modes, in agreement with the Belle measurements but larger than the BABAR result. (iv) Time-dependent
CP asymmetries in KS�

0�0, a purely CP-even state, and KS�
���, an admixture of CP-even and

CP-odd components, are studied. (v) The �����0 mode is found to have a rate larger than ������

even though the former involves a �0 in the final state. They are both dominated by resonant �
contributions. (vi) We have computed the resonant contributions to 3-body decays and determined the
rates for the quasi-two-body decays B! VP and B! SP. The predicted ��, f0�980�K and f0�980��
rates are in agreement with the data, while the calculated �K, K��, �K and K�0�1430�� are in general too
small compared to experiment. (vii) Sizable direct CP asymmetry is found in K�K�K� and K�K���

modes.
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I. INTRODUCTION

Three-body decays of heavy mesons are more compli-
cated than the two-body case as they receive resonant and
nonresonant contributions and involve 3-body matrix ele-
ments. The three-body meson decays are generally domi-
nated by intermediate vector and scalar resonances,
namely, they proceed via quasi-two-body decays contain-
ing a resonance state and a pseudoscalar meson. The
analysis of these decays using the Dalitz plot technique
enables one to study the properties of various resonances.
The nonresonant background is usually believed to be a
small fraction of the total 3-body decay rate. Experi-
mentally, it is hard to measure the direct 3-body decays
as the interference between nonresonant and quasi-two-
body amplitudes makes it difficult to disentangle these two
distinct contributions and extract the nonresonant one.

The Dalitz plot analysis of 3-body B decays provides a
nice methodology for extracting information on the unitar-
ity triangle in the standard model (SM). For example, the
Dalitz analysis combined with isospin symmetry allows
one to extract the angle � from B! ��! ��� [1].
Recently, a method has been proposed in [2] for determin-
ing Cabibbo-Kobayashi-Maskawa (CKM) parameters in 3-

body decays B! K�� and Bs ! K��. This method was
extended further in [3] to �I � 1, I�K��� � 1=2 ampli-
tudes in the above decays and to I � 1 amplitudes in Bs !
K� �K and Bs ! �K�K.

Nonresonant 3-body decays of charmed mesons have
been measured in several channels and the nonresonant
signals in charm decays are found to be less than 10% [4].
In the past few years, some of the charmless B to 3-body
decay modes have also been measured at B factories and
studied using the Dalitz plot analysis. The measured frac-
tions and the corresponding branching ratios of nonreso-
nant components for some of 3-body B decay modes are
listed in Table I. We see that the nonresonant 3-body
decays could play an essential role in B decays. It is now
well established that the B! KKK modes are dominated
by the nonresonant background. For example, the nonre-
sonant fraction is about 90% in �B0 ! K�K� �K0 decay.
While this is a surprise in view of the rather small non-
resonant contributions in 3-body charm decays, it is not
entirely unexpected because the energy release scale in
weak B decays is of order 5 GeV, whereas the major
resonances lie in the energy region of 0.77 to 1.6 GeV.
Consequently, it is likely that 3-body B decays may receive
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sizable nonresonant contributions. At any rate, it is impor-
tant to understand and identify the underlying mechanism
for nonresonant decays.

The direct nonresonant three-body decays of mesons in
general receive two distinct contributions: one from the
pointlike weak transition and the other from the pole dia-
grams that involve three-point or four-point strong vertices.
For D decays, attempts of applying the effective SU�4� �
SU�4� chiral Lagrangian to describe the DP! DP and
PP! PP scattering at energies 	mD have been made by
several authors [18–22] to calculate the nonresonant D
decays, though in principle it is not justified to employ the
SU(4) chiral symmetry. As shown in [21,22], the predic-
tions of the nonresonant decay rates in chiral perturbation
theory are in general too small when compared with ex-
periment. With the advent of heavy quark symmetry and its
combination with chiral symmetry [23–25], the nonreso-
nant D decays can be studied reliably at least in the kine-
matic region where the final pseuodscalar mesons are soft.
Some of the direct 3-body D decays were studied based on
this approach [26,27].

For the case of B mesons, consider the three-body B
decay B! P1P2P3. Under the factorization hypothesis,
one of the nonresonant contributions arises from the tran-
sitions B! P1P2. The nonresonant background in charm-
less three-body B decays due to the transition B! P1P2

has been studied extensively [28–33] based on heavy
meson chiral perturbation theory (HMChPT) [23–25].
However, the predicted decay rates are, in general, unex-
pectedly large. For example, the branching ratio of the

nonresonant decay B� ! ������ is predicted to be of
order 10�5 in [28,29], which is too large compared to the
limit 4:6� 10�6 set by BABAR [5]. Therefore, it is impor-
tant to reexamine and clarify the existing calculations.

The issue has to do with the applicability of HMChPT. In
order to apply this approach, two of the final-state pseu-
doscalars in B! P1P2 transition have to be soft. The
momentum of the soft pseudoscalar should be smaller
than the chiral-symmetry breaking scale of order 1 GeV.
For 3-body charmless B decays, the available phase space
where chiral perturbation theory is applicable is only a
small fraction of the whole Dalitz plot. Therefore, it is
not justified to apply chiral and heavy quark symmetries to
a certain kinematic region and then generalize it to the
region beyond its validity. In this work we shall assume the
momentum dependence of nonresonant amplitudes in the
exponential form e��NRpB��pi�pj� so that the HMChPT re-
sults are recovered in the soft meson limit pi, pj ! 0. We
shall see that the parameter �NR can be fixed from the tree-
dominated decay B� ! ������.

However, the nonresonant background in B! P1P2

transition does not suffice to account for the experimental
observation that the penguin-dominated decay B! KKK
is dominated by the nonresonant contributions. This im-
plies that the two-body matrix element e.g. hK �Kj �ssj0i
induced by the scalar density should have a large non-
resonant component. In the absence of first-principles cal-
culation, we will use the �B0 ! KSKSKS mode in
conjunction with the mass spectrum in �B0 ! K�K� �K0

to fix the nonresonant contribution to hK �Kj �ssj0i.

TABLE I. Branching ratios of various charmless three-body decays of B mesons. The fractions and the corresponding branching
ratios of nonresonant (NR) components are included whenever available. The first and second entries are BABAR and Belle results,
respectively.

Decay BR (10�6) BRNR(10�6) NR fraction (%) Ref.

B� ! ������ 16:2
 1:2
 0:9 2:3
 0:9
 0:5< 4:6 13:6
 6:1 [5]
� � � � � � � � �

B� ! K����� 64:1
 2:4
 4:0 2:87
 0:65
 0:43�0:63
�0:25 4:5
 1:5 [6]

48:8
 1:1
 3:6 16:9
 1:3
 1:3�1:1
�0:9 34:0
 2:2�2:1

�1:8 [7]
B� ! K�K�K� 35:2
 0:9
 1:6a 50
 6
 4 141
 16
 9 [8]

32:1
 1:3
 2:4b 24:0
 1:5
 1:5c 74:8
 3:6c [9]
B� ! K�KSKS 10:7
 1:2
 1:0 [10]

13:4
 1:9
 1:5 [11]

�B0 ! �K0���� 43:0
 2:3
 2:3 [12]
47:5
 2:4
 3:7 19:9
 2:5
 1:6�0:7

�1:2 41:9
 5:1
 0:6�1:4
�2:5 [13]

�B0 ! K����0 34:9
 2:1
 3:9 <4:6 [14]
36:6�4:2

�4:3 
 3:0 5:7�2:7�0:5
�2:5�0:4 < 9:4 [15]

�B0 ! K�K� �K0 23:8
 2:0
 1:6 26:7
 4:6 112:0
 14:9 [16]
28:3
 3:3
 4:0 [11]

�B0 ! KSKSKS 6:9�0:9
�0:8 
 0:6 [17]

4:2�1:6
�1:3 
 0:8 [11]

aWhen the intrinsic charm contribution is excluded, the charmless branching ratio will become �33:5
 0:9
 1:6� � 10�6.
bWhen the contribution from B� ! �c0K

� is excluded, the charmless branching ratio will become �30:6
 1:2
 2:3� � 10�6.
cBelle found two solutions for the fractions and branching ratios. We follow Belle to use the large solution.
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In this work, we shall study the charmless 3-body decays
of B mesons using the factorization approach. Besides the
nonresonant background as discussed above, we will also
study resonant contributions to 3-body decays. Vector-
meson and scalar resonances contribute to the two-body
matrix elements hP1P2jV�j0i and hP1P2jSj0i, respectively.
They can also contribute to the three-body matrix element
hP1P2jV� � A�jBi. Resonant effects are described in
terms of the usual Breit-Wigner formalism. In this manner
we are able to figure out the relevant resonances which
contribute to the 3-body decays of interest and compute the
rates of B! VP and B! SP. In conjunction with the
nonresonant contribution, we are ready to calculate the
total rates for three-body decays.

It should be stressed from the outset that in this work we
take the factorization approximation as a working hypothe-
sis rather than a first-principles starting point. If we start
with theories such as QCD factorization (QCDF) [34], or
perturbative QCD (pQCD) [35] or soft-collinear effective
theory [36], then we can take power corrections seriously
and make an estimation. Since factorization has not been
proved for three-body B decays, we shall work in the
phenomenological factorization model rather than in the
established theories such as QCDF. That is, we start with
the simple idea of factorization and see if it works for
three-body decays, in the hope that it will provide a useful
zeroth step for others to try to improve.

The penguin-induced three-body decays B0 !
K�K�KS and KSKSKS deserve special attention as the
current measurements of the deviation of sin2�eff in
KKK modes from sin2�J= KS may indicate new physics
in b! s penguin-induced modes. It is of great importance
to examine and estimate how much of the deviation of
sin2�eff is allowed in the SM. Owing to the presence of
color-allowed tree contributions in B0 ! K�K�KS, this
mode is subject to a potentially significant tree pollution
and the deviation of the mixing-induced CP asymmetry
from that measured in B! J= KS could be as large as
O�0:10�. Since the tree amplitude is tied to the nonresonant
background, it is very important to understand the non-
resonant contributions in order to have a reliable estimate
of sin2�eff in KKK modes.

The layout of the present paper is as follows. In Sec. II
we shall apply the factorization approach to study B0 !
K�K�KS and KSKSKS decays and discuss resonant and
nonresonant contributions. In order to set up the framework
for calculations we will discuss B! KKK modes in most
details. We then turn to K�� modes in Sec. III, the tree-
dominated modes KK� in Sec. IV, and ��� in Sec. V. In

Sec. VI, we determine the rates for B! VP and B! SP
and compare our results with the approach of QCD facto-
rization. Section VII contains our conclusions. The factor-
izable amplitudes of various B! P1P2P3 decays are
summarized in Appendix A. The relevant input parameters
such as decay constants, form factors, etc. are collected in
Appendix B.

II. B! KKK DECAYS

For 3-body B decays, the b! sq �q penguin transitions
contribute to the final states with odd number of kaons,
namely, KKK and K��, while b! uq �q tree and b!
dq �q penguin transitions contribute to final states with even
number of kaons, e.g. KK� and ���. We shall first
discuss the b! s penguin-dominated 3-body decays in
detail and then turn to b! u tree-dominated modes. For
B! KKK modes, we shall first consider the neutral B
decays as they involve mixing-induced CP asymmetries.

A. �B0 ! KKK decays

We consider the decay �B0 ! K�K� �K0 as an illustra-
tion. Under the factorization approach, the �B0 ! K�K� �K0

decay amplitude consists of three distinct factorizable
terms: (i) the current-induced process with a meson emis-
sion, h �B0 ! K� �K0i � h0! K�i, (ii) the transition pro-
cess, h �B0 ! �K0i � h0! K�K�i, and (iii) the
annihilation process h �B0 ! 0i � h0! K�K� �K0i, where
hA! Bi denotes a A! B transition matrix element. In
the factorization approach, the matrix element of the �B!
�K �KK decay amplitude is given by

 h �K �KKjH eff j �Bi �
GF���

2
p

X
p�u;c

��s�p h �K �KKjTpj �Bi; (2.1)

where ��s�p � VpbV�ps and the explicit expression of Tp in
terms of four-quark operators is given in Eq. (A2). The
factorizable �B0 ! K�K� �K0 decay amplitude is given in
Eq. (A4). Note that the Okubo-Zweig-Iizuka (OZI)-
suppressed matrix element hK�K�j� �dd�V�Aj0i is included
in the factorizable amplitude since it could be enhanced
through the long-distance pole contributions via the inter-
mediate vector mesons such as �0 and !. Likewise, the
OZI-suppressed matrix elements hK�K�j� �db�V�Aj �B0i and
hK�K�j �d�1� 	5�bj �B0i are included as they receive con-
tributions from the scalar resonances like f0�980�.

For the current-induced process, the two-meson transi-
tion matrix element h �K0K�j� �ub�V�Aj �B

0i has the general
expression [37]

 

h �K0�p1�K��p2�j� �ub�V�Aj �B0i � ir�pB � p1 � p2�� � i!��p2 � p1�� � i!��p2 � p1��

� h
����p�B�p2 � p1�
��p2 � p1�

�; (2.2)

where � �q1q2�V�A � �q1	��1� 	5�q2. This leads to
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 AHMChPT
current-ind � hK

��p3�j��su�V�Aj0ih �K0�p1�K
��p2�j� �ub�V�Aj �B

0i

� �
fK
2
�2m2

3r� �m
2
B � s12 �m

2
3�!� � �s23 � s13 �m

2
2 �m

2
1�!�; (2.3)

where sij � �pi � pj�2. To compute the form factors r, !
 and h, one needs to consider not only the pointlike contact
diagram, Fig. 1(a), but also various pole diagrams depicted in Fig. 1. In principle, one can apply HMChPT to evaluate the
form factors r,!� and!� [37]. However, this will lead to too large decay rates in disagreement with experiment [38]. The
heavy meson chiral Lagrangian given in [23–25] is needed to compute the strong B�BP, B�B�P and BBPP vertices. The
results for the form factors are [29,37]
 

!� � �
g

f2
�

fB�smB�s
���������������mBmB�s
p

s23 �m
2
B�s

�
1�
�pB � p1� � p1

m2
B�s

�
�

fB
2f2

�
;

!� �
g

f2
�

fB�smB�s
���������������mBmB�s
p

s23 �m
2
B�s

�
1�
�pB � p1� � p1

m2
B�s

�
;

r �
fB

2f2
�
�
fB
f2
�

pB � �p2 � p1�

�pB � p1 � p2�
2 �m2

B

�
2gfB�s
f2
�

��������
mB

mB�s

s
�pB � p1� � p1

s23 �m
2
B�s

�
4g2fB
f2
�

mBmB�s

�pB � p1 � p2�
2 �m2

B

�
p1 � p2 � p1 � �pB � p1�p2 � �pB � p1�=m

2
B�s

s23 �m2
B�s

;

(2.4)

where f� � 132 MeV, g is a heavy-flavor independent
strong coupling which can be extracted from the CLEO
measurement of the D�� decay width, jgj � 0:59

0:01
 0:07 [39]. We shall follow [23] to fix its sign to
be negative. The pointlike diagram Fig. 1(a) characterized
by the term fB=�2f2

�� contributes to the form factors !�
and r, while Figs. 1(b) and 1(d) contribute to r and Fig. 1(c)
contributes to all the form factors.

A direct calculation indicates that the branching ratio of
�B0 ! K�K� �K0 arising from the current-induced process

alone is already at the level of 77� 10�6 which exceeds
the measured total branching ratio of 25� 10�6 (see
Table I). The issue has to do with the applicability of
HMChPT. In order to apply this approach, two of the
final-state pseudoscalars (K� and �K0 in this example)

have to be soft. The momentum of the soft pseudoscalar
should be smaller than the chiral-symmetry breaking scale
�� of order 0:83� 1:0 GeV. For 3-body charmless B
decays, the available phase space where chiral perturbation
theory is applicable is only a small fraction of the whole
Dalitz plot. Therefore, it is not justified to apply chiral and
heavy quark symmetries to a certain kinematic region and
then generalize it to the region beyond its validity. If the
soft meson result is assumed to be the same in the whole
Dalitz plot, the decay rate will be greatly overestimated.

In [38,40] we have tried to circumvent the aforemen-
tioned problem by applying HMChPT only to the strong
vertex and use the form factors to describe the weak vertex.
Moreover, we introduced a form factor to take care of the
off-shell effect. For example, Fig. 1(c) can be evaluated by
considering the strong interaction �B0 ! �K0 �B�s followed by
the weak transition �B�s ! K� and the result is [38]

 AFig: 1�c� �
fK
f�

g ���������������mBmB�s
p

s23 �m
2
B�s

F�s23; mB�s �F
BsK
1 �m2

3�

�
mB �

s23

mB

�mB
m2
B � s23

m2
3

�
1�

FBsK0 �m2
3�

FBsK1 �m2
3�

���
m2

1 �m
2
3

� s13 �
�s23 �m

2
2 �m

2
3��m

2
B � s23 �m

2
1�

2m2
B�s

�
;

(2.5)

where FBsK0;1 are the Bs ! K weak transition from factors in
the standard convention [41] and we have introduced a
form factor F�s23; mB�s � to take into account the off-shell
effect of the B�s pole [40]. It is parametrized as
F�s23; mB�s � � ��

2 �m2
B�s
�=��2 � s23� with the cutoff pa-

rameter � chosen to be � � mB�s ��QCD. Needless to say,

K +

K +

B
0

B
0

B −

B
0

K
0

K +

B −

K
0

K
0

K +

K
0

B
0 B

*0
s B

*0
s

(a)

(c) (d)

(b)

FIG. 1. Pointlike and pole diagrams responsible for the �B0 !
K� �K0 matrix element induced by the current �u	��1� 	5�b,
where the symbol � denotes an insertion of the current.
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this parametrization of the form factor is somewhat arbi-
trary. Moreover, the nonresonant contribution thus calcu-
lated is too small compared to experiment.

The Dalitz plot analysis of �B0 ! K�K� �K0 has been
recently performed by BABAR [16]. In the BABAR analy-
sis, a phenomenological parametrization of the nonreso-
nant amplitudes is described by
 

ANR � �c12e
i�12e��s

2
12 � c13e

i�13e��s
2
13

� c23ei�23e��s
2
23��1� bNRei����NR��; (2.6)

and resonant terms are described by

 AR �
X
r

cr�1� br�frei��r��r���;

�AR �
X
r

cr�1� br�fre
i��r��r���:

(2.7)

The BABAR results for isobar amplitudes, phases and
fractions from the fit to the B0 ! K�K�K0 are summa-
rized in Table II. It is evident that this decay is dominated
by the nonresonant background. For our purpose, we will
parametrize the current-induced nonresonant amplitude
Eq. (2.3) as

 Acurrent-ind � AHMChPT
current-inde

��NRpB��p1�p2�ei�12 ; (2.8)

so that the HMChPT results are recovered in the chiral
limit p1, p2 ! 0. That is, the nonresonant amplitude in the
soft meson region is described by HMChPT, but its energy
dependence beyond the chiral limit is governed by the
exponential term e��NRpB��p1�p2�. In what follows, we shall
use the tree-dominated B� ! ������ decay data to fix
�NR, which turns out to be

 �NR � 0:103�0:018
�0:011 GeV�2: (2.9)

This is very close to the naive expectation of �NR 	

O�1=�2mB��� based on the dimensional argument. The

phase �12 of the nonresonant amplitude in the �K� �K0�
system will be set to zero for simplicity.

For the transition amplitude, we need to evaluate the 2-
kaon creation matrix element which can be expressed in
terms of timelike kaon current form factors as
 

hK��pK��K
��pK��j �q	�qj0i � �pK� � pK���F

K�K�
q ;

hK0�pK0� �K0�p �K0�j �q	�qj0i � �pK0 � p �K0��FK
0 �K0

q :

(2.10)

The weak vector form factors FK
�K�

q and FK
0 �K0

q can be
related to the kaon electromagnetic (e.m.) form factors
FK

�K�
em and FK

0 �K0

em for the charged and neutral kaons, re-
spectively. Phenomenologically, the e.m. form factors re-
ceive resonant and nonresonant contributions and can be
expressed by
 

FK
�K�

em � F� � F! � F� � FNR;

FK
0 �K0

em � �F� � F! � F� � F0NR:
(2.11)

It follows from Eqs. (2.10) and (2.11) that

 FK
�K�

u � FK
0 �K0

d � F� � 3F! �
1

3
�3FNR � F0NR�;

FK
�K�

d � FK
0 �K0

u � �F� � 3F!;

FK
�K�

s � FK
0 �K0

s � �3F� �
1

3
�3FNR � 2F0NR�;

(2.12)

where use of isospin symmetry has been made.
The resonant and nonresonant terms in Eq. (2.11) can be

parametrized as
 

Fh�s23� �
ch

m2
h � s23 � imh�h

;

F�0�NR�s23� �

�
x�0�1

s23
�
x�0�2

s2
23

��
ln
�
s23

~�2

��
�1
;

(2.13)

with ~� � 0:3 GeV. The expression for the nonresonant

TABLE II. BABAR results for isobar amplitudes, phases, and fractions from the fit to the B0 !
K�K�K0 [16]. Three rows for nonresonant contribution correspond to coefficients of exponen-
tial functions in Eq. (2.6), while the fraction is given for the combined amplitude. For the
nonresonant decay mode in K�K�, the amplitude c12 and the phase �12 in Eq. (2.6) are fixed to
be one and zero, respectively. Errors are statistical only.

Decay Amplitude cr Phase �r Fraction (%)

��1020�K0 0:0085
 0:0010 �0:016
 0:234 12:5
 1:3
f0�980�K0 0:622
 0:046 �0:14
 0:14 40:2
 9:6
X0�1550�K0 0:114
 0:018 �0:47
 0:20 4:1
 1:3
�K�K��NRK0 1 (fixed) 0 (fixed)
�K�K0�NRK� 0:33
 0:07 1:95
 0:27 112:0
 14:9
�K�K0�NRK

� 0:31
 0:08 �1:34
 0:37

�c0�1P�K
0 0:0306
 0:006 49 0:81

�2:33
 0:54 3:0
 1:2
D�K� 1:11
 0:17 � � � 3:6
 1:5
D�s K

� 0:76
 0:14 � � � 1:8
 0:6
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form factor is motivated by the asymptotic constraint from
pQCD, namely, F�t� ! �1=t��ln�t=~�2��1 in the large t
limit [42]. The unknown parameters ch, xi and x0i are fitted
from the kaon e.m. data, giving the best fit values (in units
of GeV2 for ch) [43]:

 c� � 3c! � c� � 0:363; c��1450� � 7:98� 10�3;

c��1700� � 1:71� 10�3; c!�1420� � �7:64� 10�2;

c!�1650� � �0:116; c��1680� � �2:0� 10�2;

(2.14)

and

 x1 � �3:26 GeV2; x2 � 5:02 GeV4;

x01 � 0:47 GeV2; x02 � 0:
(2.15)

Note that the form factors F�;!;� in Eqs. (2.11) and (2.12)
include the contributions from the vector mesons ��770�,
��1450�, ��1700�, !�782�, !�1420�, !�1650�, ��1020�
and ��1680�. It is interesting to note that (i) the fitted
values of cV are very close to the vector-meson dominance
expression gV	gVKK for V � �;!;� [4,44], where gV	 is
the e.m. coupling of the vector meson defined by
hVjjemj0i � gV	"

�
V and gVKK is the V ! KK strong cou-

pling with �g�K�K� ’ g�K�K�=
���
2
p
� g!K�K�=

���
2
p
’

3:03, and (ii) the vector-meson pole contributions alone
yield FK

�K�
u;s �0� � 1;�1 and FK

�K�
d �0� � 0 as the charged

kaon does not contain the valence d quark. The matrix
element for the current-induced decay process then has the
expression

 h �K0�p1�j��sb�V�Aj �B0ihK��p2�K��p3�j� �qq�V�Aj0i

� �s12 � s13�FBK1 �s23�FK
�K�

q �s23�: (2.16)

We also need to specify the 2-body matrix elements
hK�K�j �ssj0ih �K0j �sbj �B0i induced from the scalar densities.
The use of the equation of motion leads to

 h �K0�p1�j�sbj �B
0�pB�i �

m2
B �m

2
K

mb �ms
FBK0 �s23�: (2.17)

The matrix element hK�K�j �ssj0i receives resonant and
nonresonant contributions:
 

hK��p2�K��p3�j�ssj0i � fK
�K�

s �s23�

�
X
i

mf0i
�fsf0i
gf0i!K�K�

m2
f0i
� s23 � imf0i

�f0i

� fNR
s ;

fNR
s �

v
3
�3FNR � 2F0NR� � NRe

��s23 ;

(2.18)

where f0i denote the generic f0-type scalar mesons,
f0i � f0�980�; f0�1370�; f0�1500�; X0�1550�; � � � , the sca-
lar decay constant �fsf0i

is defined by hf0ij �ssj0i � mf0i
�fsf0i

[see Eq. (B1)], gf0i!K�K� is the f0i ! K�K� strong cou-

pling, and the nonresonant terms are related to those in
FK

�K�
s through the equation of motion. The presence of the

nonresonant NR term will be explained shortly. The main
scalar meson pole contributions are those that have domi-
nant s�s content and large coupling to K �K. We consider the
scalar mesons f0�980� and X0�1550� [denoted as fX�1500�
by Belle] which are supposed to have the largest
couplings with the K �K pair. Note that the nature of the
broad state X0�1550� observed by BABAR and Belle, for
example, what is its relation with f0�1500�, is not clear.
To proceed with the numerical calculations, we shall
use gf0�980�!K�K� � 4:3 GeV,1 gX0�1550�!K�K� �
1:4 GeV, �f0�980� � 80 MeV, �X0�1550� � 0:257 GeV [8],
�ff0�980��� � mb=2� ’ 0:46 GeV [46] and �ff0�1530� ’

0:30 GeV. The sign of the resonant terms is fixed by
fK

�K�
s �0� � v from a chiral perturbation theory calcula-

tion (see, for example, [47]). It should be stressed that
although the nonresonant contributions to fKKs and FKKs
are related through the equation of motion, the resonant
ones are different and not related a priori. As stressed in
[40], to apply the equation of motion, the form factors
should be away from the resonant region. In the presence
of the resonances, we thus need to introduce a nonresonant
term characterized by the parameter NR in Eq. (2.18)
which will be specified later. The parameter � appearing
in the same equation should be close to the value of �NR

given in Eq. (2.9). We will use the experimental measure-
ment � � �0:14
 0:02� GeV�2 [16].

As noticed before, the matrix elements
hK�K�j� �db�V�Aj �B

0i and hK�K�j �d�1� 	5�bj �B
0i are in-

cluded in Eq. (A4) as they receive intermediate scalar pole
contributions. More explicitly,

 hK��p2�K��p3�j� �db�V�Aj �B0iR

�
X
i

gf0i!K�K�

m2
f0i
� s23 � imf0i

�f0i

hf0ij� �db�V�Aj �B
0i: (2.19)

Hence,

 h �K0�p1�j� �sd�V�Aj0ihK��p2�K��p3�j� �db�V�Aj �B0iR

�
X
i

gf0i!K�K�

m2
f0i
� s23 � imf0i

�f0i

fKF
Bfd0i
0 �m2

K��m
2
B �m

2
f0i
�:

(2.20)

The superscript u of the form factor F
Bfu0i
0 reminds us that it

is the u �u quark content that gets involved in the B to f0i

1This is different from the coupling gf0�980�!K�K� � 1:5 GeV
originally employed in [40]. The coupling gf0�980�!���� 	
1:33 GeV can be fixed from a recent Belle measurement of
��f0�980� ! ����� [see Eq. (3.18)]. Using the BES result
�gf0�980�!KK=gf0�980�!���2 � 4:21
 0:25
 0:21 [45], one can
deduce that gf0�980�!KK � 2:7
 0:6 GeV. In this work, we
found that a slightly large coupling gf0�980�!KK will give better
numerical results.
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form factor transition. In short, the relevant f0�980� pole
contributions to �B0 ! K�K� �K0 are
 

h �K0K�K�jTpj �B
0if0
�

gf0�980�!K�K�

m2
f0
� s23 � imf0

�f0

�

�
2
mf0

mb

�fsf0
FBK0 �m

2
f0
��m2

B �m
2
K�

�

�
ap6 �

1

2
ap8

�

� fKF
Bfd0
0 �m2

K��m
2
B �m

2
f0
�

�

�
ap4 �

1

2
ap10 � �a

p
6 �

1

2
ap8 �r

K
�

��
;

(2.21)

where we have employed Eq. (2.18) and applied
equations of motion to the matrix elements h �K0j �s	5dj0i�
hK�K�j �d	5bj �B0i. Comparing this equation with Eq. (A6)
of [48], we see that the expression inside f� � �g is identical
to that of �B0 ! f0�980� �K0, as it should be.

We digress for a moment to discuss the wave function of
the f0�980�. What is the quark structure of the light scalar
mesons below or near 1 GeV has been quite controversial.
In this work we shall consider the conventional q �q assign-
ment for the f0�980�. In the naive quark model, the flavor
wave functions of the f0�980� and �600� read

  �
1���
2
p �u �u� d �d�; f0 � s�s; (2.22)

where the ideal mixing for f0 and  has been assumed. In
this picture, f0�980� is purely an s�s state. However, there
also exists some experimental evidence indicating that
f0�980� is not purely an s�s state. First, the observation of
��J= ! f0!� �

1
2 ��J= ! f0�� [4] clearly indicates

the existence of the nonstrange and strange quark content
in f0�980�. Second, the fact that f0�980� and a0�980� have
similar widths and that the f0 width is dominated by ��
also suggests the composition of u �u and d �d pairs in
f0�980�; that is, f0�980� ! �� should not be
OZI suppressed relative to a0�980� ! ��. Therefore, iso-
scalars �600� and f0 must have a mixing
 

jf0�980�i � js�si cos�� jn �ni sin�;

j�600�i � �js�si sin�� jn �ni cos�;
(2.23)

with n �n � � �uu� �dd�=
���
2
p

. Experimental implications for
the f0 �  mixing angle have been discussed in detail in
[49]. It is found that � lies in the ranges of 25� < �< 40�

and �40� < �<�15� (or 140� < �< 165�). Note that
the phenomenological analysis of the radiative decays
�! f0�980�	 and f0�980� ! 		 favors a solution of
the � to be negative (or in the second quadrant). In this
work, we shall use � � �25�.

Finally, the matrix elements involving 3-kaon creation
are given by [38]

 

h �K0�p1�K
��p2�K

��p3�j��sd�V�Aj0ih0j� �db�V�Aj �B
0i � 0;

h �K0�p1�K��p2�K��p3�j�s	5dj0ih0j �d	5bj �B0i

� v
fBm2

B

f�mb

�
1�

s13 �m2
1 �m

2
3

m2
B �m

2
K

�
FKKK�m2

B�; (2.24)

where

 v �
m2
K�

mu �ms
�
m2
K �m

2
�

ms �md
; (2.25)

characterizes the quark-order parameter h �qqi which spon-
taneously breaks the chiral symmetry. Both relations in
Eq. (2.24) are originally derived in the chiral limit [38] and
hence the quark masses appearing in Eq. (2.25) are referred
to the scale 	1 GeV. The first relation reflects helicity
suppression which is expected to be even more effective for
energetic kaons. For the second relation, we introduce the
form factor FKKK to extrapolate the chiral result to the
physical region. Following [38] we shall take FKKK�q2� �

1=�1� �q2=�2
�� with �� � 0:83 GeV being a chiral-

symmetry breaking scale.
To proceed with the numerical calculations, we need to

specify the input parameters. The relevant CKM matrix
elements, decay constants, form factors, the effective
Wilson coefficients api and the running quark masses are
collected in Appendix B. As for the parameter NR in
Eq. (2.18), in principle we can set its phase � to zero
and use the measured KSKSKS rate, namely, B� �B0 !
KSKSKS� � �6:2
 0:9� � 10�6 [50], to fix the parameter
NR and then use the data obtained from the Dalitz plot
analysis to determine the strong phases �r for resonant
amplitudes. However, in doing so one needs the data of
invariant mass spectra. In the absence of such information,
instead we will treat � as a free parameter and do not
assign any other strong phases to the resonant amplitudes
except for those arising from the Breit-Wigner formalism.
It turns out that if� is small, the K�K� mass spectrum in
�B0 ! K�K�KS will have a prominent hump at the invari-
ant mass mK�K� � 3 GeV, which is not seen experimen-
tally [see Fig. 2(c)]. We found that � � �=4 will yield
K�K� mass spectrum consistent with the data

 NR � ei�=4�3:36�1:12
�0:96� GeV: (2.26)

Note that the phase of NR is consistent with the BABAR
measurement shown in Table II, namely, �BABAR

 �
1:19
 0:37.

The calculated branching ratios of resonant and non-
resonant contributions to �B0 ! K�K� �K0 are summarized
in Table III. The theoretical errors shown there are from the
uncertainties in (i) the parameter �NR which governs the
momentum dependence of the nonresonant amplitude,
(ii) the strange quark mass ms, the form factor FBK0 and
the nonresonant parameter NR, and (iii) the unitarity
angle 	.
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In QCD calculations based on a heavy quark expansion,
one faces uncertainties arising from power corrections
such as annihilation and hard-scattering contributions.
For example, in QCD factorization, there are large theo-
retical uncertainties related to the modelling of power
corrections corresponding to weak annihilation effects
and the chirally enhanced power corrections to hard spec-
tator scattering. Even for two-body B decays, power cor-
rections are of order (10–20)% for tree-dominated modes,
but they are usually bigger than the central values for
penguin-dominated decays. Needless to say, 1=mb power
corrections for three-body decays may well be larger.
However, as stressed in the Introduction, in this explor-
atory work we use the phenomenological factorization
model rather than in the established theories based on a
heavy quark expansion. Consequently, uncertainties due to
power corrections, at this stage, are not included in our
calculations, by assumption. In view of such shortcomings
we must emphasize that the additional errors due to such
model dependent assumptions may be sizable.

From Table III we see that the predicted rates for reso-
nant and nonresonant components are consistent with ex-
periment within errors. The nonresonant contribution
arises dominantly from the transition process (88%) via
the scalar-density-induced vacuum to K �K transition,
namely, hK�K�j �ssj0i, and slightly from the current-

induced process (3%). Therefore, it is natural to conjecture
that nonresonant decays could also play a prominent role in
other penguin-dominated 3-body B decays.

The K�K�KS mode is an admixture of CP-even and
CP-odd components. By excluding the major CP-odd
contribution from �KS, the 3-body K�K�KS final state
is primarily CP even. The K�K� mass spectra of the �B0 !
K�K�KS decay from CP-even and CP-odd contributions
are shown in Fig. 2. For the CP-even spectrum, there are
peaks at the threshold and mK�K� � 1:5 GeV region. The
threshold enhancement arises from the f0�980�KS and the
nonresonant fK

�K�
S contributions [see Eq. (2.18)].2 For the

CP-odd spectrum, the peak on the lower end corresponds
to the �KS contribution, which is also shown in the inset.
The b! u transition is governed by the current-induced
process h �B0 ! K� �K0i � h0! K�i [see Eq. (A4)]. From
Eq. (2.8) it is clear that the b! u amplitude prefers a small
invariant mass of K� and �K0 and hence a large invariant
mass of K� and K�. In contrast, the b! s amplitude
prefers a small s23. Consequently, their interference is
largely suppressed. The full K�K�KS spectrum, which is
the sum of the CP-even and the CP-odd parts, has been
measured by BABAR [Fig. 2(c)]. It clearly shows the
phenomenon of threshold enhancement and the scalar
resonances X0�1550� and �c0.

The decay �B0 ! KSKSKS is a pure penguin-induced
mode [cf. Eq. (A7)] and it receives intermediate pole
contributions only from the isosinglet scalar mesons such
as f0�980�. Just like other KKK modes, this decay is
governed by the nonresonant background dominated by
the NR term defined in Eq. (2.18). Hence, this mode is
ideal for determining the unknown parameter NR which is
given in Eq. (2.26). Time-dependent CP violation in neu-

TABLE III. Branching ratios (in units of 10�6) of resonant and
nonresonant (NR) contributions to �B0 ! K�K� �K0. Theoretical
errors correspond to the uncertainties in (i) �NR, (ii) ms, FBK0 and
NR, and (iii) 	 � �59
 7��. We do not have 1=mb power
corrections within this model. However, systematic errors due
to model dependent assumptions may be sizable and are not
included in the error estimates that we give. Experimental results
are taken from Table II.

Decay mode BABAR [16] Theory

� �K0 2:98
 0:45 2:6�0:0�0:5�0:0
�0:0�0:4�0:0

f0�980� �K0 9:57
 2:51 5:8�0:0�0:1�0:0
�0:0�0:5�0:0

X0�1550�K� 0:98
 0:33 0:93�0:00�0:16�0:00
�0:00�0:15�0:00

NR 26:7
 4:6 18:1�0:6�5:1�0:2
�0:7�3:8�0:2

Total 23:8
 2:0
 1:6 19:8�0:4�0:5�0:1
�0:4�0:4�0:2
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FIG. 2 (color online). The K�K� mass spectra for �B0 ! K�K�KS decay from (a) CP-even and (b) CP-odd contributions. The inset
in (b) is for the � region. The full K�K�KS spectrum, which is the sum of CP-even and CP-odd parts, measured by BABAR [16] is
depicted in (c).

2In our previous work [40] we have argued that the spectrum
should have a peak at the large mK�K� end. This is because we
have introduced an additional nonresonant contribution to the
!� parameter parametrized as !NR

� � � 2pB�p2

s2
12

and employed the
B� ! D0K0K� data and applied isospin symmetry to the �B!
K �K matrix elements to determine the unknown parameter �.
Since this nonresonant term favors a small mK�KS region, a peak
of the spectrum at large mK�K� is thus expected. However, such
a bump is not seen experimentally [16]. In this work we will no
longer consider this term.
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tral 3-body decay modes with fixed CP parity was first
discussed by Gershon and Hazumi [51].

Results for the decay rates and CP asymmetries in �B0 !

K�K�KS�L�, KSKSKS�L� are displayed in Tables IV and V,
respectively. (For the decay amplitudes of �B0 !

KSKSKS�L�, see [40] for details.) The mixing-induced CP
violations are defined by
 

SKKK;CP
 �
2
R

Im�e�2i�ACP
 �A�CP
�ds12ds23R
jACP
j

2ds12ds23 �
R
j �ACP
j

2ds12ds23

;

SKKK �
2
R

Im�e�2i�A �A��ds12ds23R
jAj2ds12ds23 �

R
j �Aj2ds12ds23

� f�SKKK;CP� � �1� f��SKKK;CP�; (2.27)

where A is the decay amplitude of �B0 ! K�K�KS�L� or
KSKSKS�L� and �A is the conjugated B0 decay amplitude,
and f� is the CP even fraction defined by

 f� �
�CP� � ��CP�

�� ��
j�KSexcluded: (2.28)

Generally, it is more convenient to define an effective
sin2� via Sf � ��f sin2�eff with �f � 2f� � 1 for
K�K�KS. The predicted value of f� is consistent with
the data but it is on the higher end of the experimental
measurement because the CP-odd contributions from the
vector mesons �;!; . . . ; are OZI suppressed and the
CP-odd nonresonant contribution is constrained by the
������ rate.

The deviation of the mixing-induced CP asymmetry in
B0 ! K�K�KS and KSKSKS from that measured in B!
�c �cKS, i.e. sin2��c �cKS � 0:681
 0:025 [50], namely,
� sin2�eff � sin2�eff � sin2��c �cKS , is calculated from

Table V to be

 

� sin2�K�K�KS � 0:047�0:028
�0:033;

� sin2�KSKSKS � 0:038�0:027
�0:032:

(2.29)

The corresponding experimental values are 0:049
 0:10
and �0:101
 0:20, respectively. Because of the presence
of color-allowed tree contributions in �B0 ! K�K�KS, it is
naively expected that this penguin-dominated mode is
subject to a potentially significant tree pollution and hence
� sin2�eff can be as large as O�10%�. However, our cal-
culation indicates the deviation of the mixing-induced CP
asymmetry in �B0 ! K�K�KS from that measured in �B0 !
�c �cKS is very similar to that of the KSKSKS mode as the
tree pollution effect in the former is somewhat washed out.
Nevertheless, direct CP asymmetry of the former, being of
order �4%, is more prominent than the latter.3

B. B� ! KKK decays

The B� ! K�K�K� decay amplitude has a similar
expression as Eq. (A4) except that one also needs to add
the contributions from the interchange s23 ! s12 and put a
factor of 1=2 in the decay rate to account for the identical
particle effect.

TABLE V. Mixing-induced and direct CP asymmetries
sin2�eff (top) and Af (in %, bottom), respectively, in �B0 !

K�K�KS and KSKSKS decays. Experimental results for
K�K�KS and K�K�KL modes are obtained from the data of
�B0 ! K�K� �K0. Results for �K�K�KL�CP
 are identical to

those for �K�K�KS�CP�. For theoretical errors, see Table III.
Experimental results are taken from [50].

Final state sin2�eff Expt.

�K�K�KS��KSexcluded 0:728�0:001�0:002�0:009
�0:002�0:001�0:020 0:73
 0:10

�K�K�KS�CP� 0:732�0:003�0:006�0:009
�0:004�0:004�0:020

�K�K�KL��KLexcluded 0:728�0:001�0:002�0:009
�0:002�0:001�0:020 0:73
 0:10

KSKSKS 0:719�0:000�0:000�0:008
�0:000�0:000�0:019 0:58
 0:20

KSKSKL 0:718�0:000�0:000�0:008
�0:000�0:000�0:019

Af (%) Expt.

�K�K�KS��KSexcluded �4:63�1:35�0:53�0:40
�1:01�0:54�0:34 �7
 8

�K�K�KS�CP� �4:86�1:43�0:52�0:42
�1:09�0:55�0:35

�K�K�KL��KLexcluded �4:63�1:35�0:53�0:40
�1:01�0:54�0:34 �7
 8

KSKSKS 0:69�0:01�0:01�0:05
�0:01�0:01�0:06 14
 15

KSKSKL 0:77�0:01�0:01�0:05
�0:01�0:03�0:07

TABLE IV. Branching ratios for �B0 ! K�K�KS, KSKSKS,
KSKSKL decays and the fraction of CP-even contribution to
�B0 ! K�K�KS, f�. The branching ratio of CP-odd K�K�KS

with �KS excluded is shown in parentheses. Results for
�K�K�KL�CP
 are identical to those for �K�K�KS�CP�. For
theoretical errors, see Table III. Experimental results are taken
from [50].

Final-state B�10�6�theory B�10�6�expt

K�K�KS 9:89�0:19�2:28�0:07
�0:21�1:81�0:08 12:4
 1:2

�K�K�KS�CP� 8:33�0:10�1:82�0:05
�0:12�1:49�0:06

�K�K�KS�CP� 1:57�0:09�0:46�0:02
�0:10�0:32�0:02

�0:14�0:06�0:14�0:01
�0:06�0:06�0:01�

KSKSKS Input 6:2
 0:9
KSKSKL 7:63�0:01�1:37�0:03

�0:01�1:19�0:03 <14

ftheory
� fexpt

�

K�K�KS 0:98�0:01�0:01�0:00
�0:01�0:02�0:00 0:91
 0:07

ftheory
�

K�K�KL 0:98�0:01�0:01�0:00
�0:01�0:02�0:00

3In our previous work [40], � sin2�eff is found to be

 � sin2�K�K�KS � 0:06�0:09
�0:04; � sin2�KSKSKS � 0:06�0:03

�0:04;

for sin2�J= KS � 0:687
 0:032, while direct CP asymmetry is
less than 1% in both modes. Note that due to an oversight the
experimental error bars were not included in our previous paper
for the theoretical calculation of � sin2�eff .
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Branching ratios of resonant and nonresonant contribu-
tions to B� ! K�K�K� are shown in Table VI. It is clear
that the predicted rates of resonant and nonresonant com-
ponents are consistent with the data except for the broad
scalar resonance X0�1550�. Both BABAR and Belle have
seen a large fraction from X0�1550�, �121
 19
 6�% by
BABAR [8] and �63:4
 6:9�% by Belle [9],4 while our
prediction is similar to that in �B0 ! K�K� �K0. It is not
clear why there is a huge disparity between B� !
K�K�K� and �B0 ! K�K� �K0 as far as the X0�1550�
contribution is concerned. Obviously, a refined measure-
ment of the X0�1550� contribution to the K�K�K� mode
is urgently needed in order to clarify this issue. Our result
for the nonresonant contribution is in good agreement with
Belle, but disagrees with BABAR. Notice that Belle did not
see the scalar resonance f0�980� as Belle employed the
E791 result [52] for gf0!K �K which is smaller than gf0!��.
In contrast to E791, the ratio gf0!K �K=gf0!�� is measured
to be larger than 4 in the existing e�e� experiments
[45,53]

We next turn to the decay B� ! K�KSKS. Following
[54], let us consider the symmetric state of K0 �K0

 jK0 �K0isym � �jK
0�p1� �K0�p2�i � j �K0�p1�K

0�p2�i=
���
2
p

� �jKS�p1�KS�p2�i � jKL�p1�KL�p2�i=
���
2
p
:

(2.30)

Hence,

 

B�B� ! K�KSKS� �
1

2
�B�B� ! K�KSKS�

�B�B� ! K�KLKL�

�
1

2
B�B� ! K��K0 �K0�sym�: (2.31)

The factorizable amplitude of B� ! K�K0 �K0 is given by
Eq. (A8). Just as other KKK modes, this decay is also
expected to be dominated by the nonresonant contribution
(see Table VII). The calculated total rate is in good agree-
ment with experiment. Just as the pure penguin mode
KSKSKS, the decay B� ! K�KSKS also can be used to
constrain the nonresonant parameter NR.

As pointed out in [54], isospin symmetry implies the
relation

 A�B� ! K�K0 �K0� � �A� �B0 ! �K0K�K��: (2.32)

This leads to
 

B�B� ! K��K0 �K0�sym�

�
��B��

��B0�
B� �B0 ! K�K� �K0��Kexcluded: (2.33)

Experimentally, this relation is well satisfied: lhs �
�23:0
 2:6� � 10�6 and rhs � �22:1
 2:1� � 10�6.
Hence, the isospin relation Eq. (2.32) is well respected.

III. B! K�� DECAYS

In this section we shall consider five B! K�� decays,
namely, B� ! K�����, �K0���0, �B0 ! K����0,
�K0���� and �K0�0�0. They are dominated by b! s

penguin transition and consist of three decay processes:
(i) the current-induced process, hB! ��i � h0! Ki,

TABLE VII. Branching ratios (in units of 10�6) of resonant and nonresonant (NR) contribu-
tions to B� ! K�KSKS. For theoretical errors, see Table III.

Decay mode f0�980�K� X0�1550�K� NR Total

Theory 5:2�0:0�0:3�0:1
�0:0�0:5�0:1 0:92�0:00�0:16�0:00

�0:00�0:15�0:00 12:4�0:2�2:1�0:1
�0:3�2:0�0:1 12:2�0:0�1:5�0:0

�0:0�1:7�0:0
Expt. 11:5
 1:3

TABLE VI. Branching ratios (in units of 10�6) of resonant and nonresonant (NR) contribu-
tions to B� ! K�K�K�. For theoretical errors, see Table III.

Decay mode BABAR [8] Belle [9] Theory

�K� 4:14
 0:32
 0:33 4:72
 0:45
 0:35�0:39
�0:22 2:9�0:0�0:5�0:0

�0:0�0:5�0:0

f0�980�K� 6:5
 2:5
 1:6 <2:9 7:0�0:0�0:4�0:1
�0:0�0:7�0:1

X0�1550�K� 43
 6
 3 1:1�0:0�0:2�0:0
�0:0�0:2�0:0

f0�1710�K� 1:7
 1:0
 0:3
NR 50
 6
 4 24:0
 1:5
 1:8�1:9

�5:7 25:3�0:9�4:8�0:3
�1:0�4:4�0:3

Total 35:2
 0:9
 1:6 32:1
 1:3
 2:4 25:5�0:5�4:4�0:2
�0:6�4:1�0:2

4Belle [9] actually found two solutions for the fraction of
X0�1550�K�: �63:4
 6:9�% and �8:21
 1:94�%. The first so-
lution is preferred by Belle.
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(ii) the transition processes, hB! �i � h0! �Ki, and
hB! Ki � h0! ��i, and (iii) the annihilation process
hB! 0i � h0! K��i.

The factorizable amplitudes for B� ! K�����,
�K0���0, �B0 ! K����0, �K0���� and �K0�0�0 are

given in Eqs. (A10)–(A14), respectively. All five channels

have the three-body matrix element h��j� �qb�V�AjBi
which has the similar expression as Eqs. (2.3) and (2.4)
except that the pole B�s is replaced by B� and the kaon is
replaced by the pion. However, there are additional reso-
nant contributions to this three-body matrix element due to
the intermediate vector � and scalar f0 mesons

 h���p2��
��p3�j� �ub�V�AjB

�iR �
X
i

g�
0
i!�

���

m2
�i � s23 � im�i��i

X
pol

"� � �p2 � p3�h�
0
i j� �ub�V�AjB

�i

�
X
i

gf0i!����

m2
f0i
� s23 � imf0i

�f0i

hf0ij� �ub�V�AjB�i; (3.1)

where �i denote generic �-type vector mesons, e.g. � � ��770�; ��1450�; ��1700�; . . . . Applying Eqs. (B1) and (B6) we
are led to
 

h���p2��
��p3�j� �ub�V�AjB

�iRhK��p1�j��su�V�Aj0i �
X
i

fK
2

g�
0
i!�

���

m�2
i
� s23 � im�i��i

�s12 � s13�

�

�
�mB �m�i�A

B�i
1 �q

2� �
AB�i2 �q

2�

mB �m�i

�s12 � s13 � 3m2
��

� 2m�i�A
B�i
3 �q

2� � AB�i0 �q
2�

�

�
X
i

fKg
f0i!����

m2
f0i
� s23 � imf0i

�f0i

�m2
B �m

2
f0i
�F

Bfu0
0 �q2�: (3.2)

Likewise, the 3-body matrix element hK���j��sb�V�Aj �B0i appearing in �B0 ! K����0 also receives the following
resonant contributions

 hK��p1��
��p2�j� �sb�V�Aj �B

0iR �
X
i

gK
�
i!K

���

m2
K�i
� s12 � imK�i

�K�i

X
pol

"� � �p1 � p2�h �K�0i j� �sb�V�Aj �B
0i; (3.3)

with K�i � K��892�; K��1410�; K��1680�; . . . .
For the two-body matrix elements h��K�j��sd�V�Aj0i, h����j� �uu�V�Aj0i and h����j �ssj0i, we note that

 hK��p1��
��p2�j� �sd�V�Aj0i � h�

��p2�j� �sd�V�AjK
���p1�i

� �p1 � p2��F
K�
1 �s12� �

m2
K �m

2
�

s12
�p1 � p2����F

K�
1 �s12� � F

K�
0 �s12�; (3.4)

where we have taken into account the sign flip arising from interchanging the operators s$ d. Hence,

 hK��p1��
��p2�j� �sd�V�Aj0ih�

��p3�j� �db�V�AjB
�i � FB�1 �s12�F

K�
1 �s12�

�
s23 � s13 �

�m2
B �m

2
���m

2
K �m

2
��

s12

�

� FB�0 �s12�F
K�
0 �s12�

�m2
B �m

2
���m2

K �m
2
��

s12
: (3.5)

However, the form factor F1 also receives resonant contributions

 

X
i

�
A�K�i �K

1

m2
K�i
� s12 � imK�i

�K�i
mK�i

fK�i �
gK

�
0i!K�

m2
K�0i
� s12 � imK�0i

�K�0i
fK�0i�p1 � p2��

�
; (3.6)
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with

 "��A
�
K��K � hK

��p1����p2�jK�i

� gK
�!�K"� � �p1 � p2�; (3.7)

where K�0i � K�0�1430�; . . . . Hence, the resonant contribu-
tions to the form factor FK�1 are

 FK�1;R �s� �
X
i

� mK�i
fK�i g

K�i!K�

m2
K�i
� s� imK�i

�K�i

�
fK�0ig

K�0i!K�

m2
K�0i
� s� imK�0i

�K�0i

�
: (3.8)

In principle, the weak vector form factor F�
��� defined by

 h���p����
��p���j �u	�uj0i � �p�� � p����F

���� ;

(3.9)

can be related to the timelike pion electromagnetic form
factors. However, unlike the kaon case, the timelike e.m.
form factors of the pions are not well measured enough
allowing us to determine the resonant and nonresonant
parts. Therefore, we shall only consider the resonant part
which has the expression

 F��R �s� �
X
i

m�if�ig
�i!��

m2
�i � s� im�i��i

: (3.10)

Following Eq. (2.18), the relevant matrix elements of
scalar densities read

 h���p2��
��p3�j�ssj0i �

X
i

mf0i
�fsf0i
gf0i!����

m2
f0i
� s23 � imf0i

�f0i

� h���p2����p3�j �ssj0iNR;

(3.11)

and

 hK��p1����p2�j�sdj0i �
X
i

mK�0i
�fK�0ig

K�0i!K
���

m2
K�0i
� s12 � imK�0i

�K�0i

� hK��p1����p2�j �sdj0iNR:

(3.12)

Note that for the scalar meson, the decay constants fS and
�fS are defined in Eq. (B1) and they are related via Eq. (B2).
The nonresonant contribution h���p2����p3�j�ssj0iNR

vanishes under the OZI rule, while under SU(3) symmetry5

 

hK��p1��
��p2�j�sdj0i

NR � hK��p1�K
��p2�j �ssj0i

NR

� fNR
s �s12�; (3.13)

with the expression of fNR
s given in Eq. (2.18).

It is known that in the narrow width approximation, the
3-body decay rate obeys the factorization relation

 ��B! RP! P1P2P� � ��B! RP�B�R! P1P2�;

(3.14)

with R being a resonance. This means that the amplitudes
A�B! RP! P1P2P� and A�B! RP� should have the
same expressions apart from some factors. Hence, using
the known results for quasi-two-body decay amplitude
A�B! RP�, one can have a cross check on the three-
body decay amplitude of B! RP! P1P2P. For example,
from Eq. (A12) we obtain the factorizable amplitude
A� �B0 ! K�00 �1430��0;K�00 �1430� ! K���� as

 

hK��p1��
��p2��

0�p3�jTpj �B
0iK�00 �1430� �

1���
2
p

gK
�0
0 �1430�!K���

m2
K�0
� s12 � imK�0

�K�0

�

��
�ap4 � r

K�0
� a

p
6 �

1

2
�ap10 � r

K�0
� a

p
8 �

�
fK�0F

B�
0 �m

2
K�0
��m2

B �m
2
��

�

�
a2�pu �

3

2
�a9 � a7�

�
f�F

BK�0
0 �m2

���m2
B �m

2
K�0
�

�
; (3.15)

where

 r
K�0
� ��� �

2m2
K�0

mb����ms��� �mq����
: (3.16)

The expression inside f� � �g is indeed the amplitude of
�B0 ! K�00 �1430��0 given in Eq. (A6) of [48].

The strong coupling constants such as g�!�
��� and

gf0�980�!���� are determined from the measured partial
widths through the relations

 �S �
pc

8�m2
S

g2
S!P1P2

; �V �
2

3

p3
c

4�m2
V

g2
V!P1P2

;

(3.17)

5The matrix elements of scalar densities can be generally
decomposed into D-, F- and S (singlet)–type components.
Assuming that the singlet component is OZI suppressed, SU(3)
symmetry leads to, for example, the relation hK�j �sqj0iNR �
hK �Kj �ssj0iNR.
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for scalar and vector mesons, respectively, where pc is the
c.m. momentum. The numerical results are

 g�!�
��� � 6:0; gK

�!K��� � 4:59;

gf0�980�!���� � 1:33�0:29
�0:26 GeV;

gK
�
0!K

��� � 3:84 GeV:

(3.18)

In determining the coupling of f0 ! ����, we have used
the partial width

 ��f0�980� ! ����� � �34:2�13:9�8:8
�11:8�2:5� MeV (3.19)

measured by Belle [55]. The momentum dependence of the
weak form factor FK��q2� is parametrized as

 FK��q2� �
FK��0�

1� q2=�2
� � i�R=��

; (3.20)

where �� � 830 MeV is the chiral-symmetry breaking
scale [47] and �R is the width of the relevant resonance,
which is taken to be 200 MeV [38].

The results of the calculation are summarized in
Tables VIII, IX, X, XI, and XII. We see that except for
f0�980�K, the predicted rates for K��, K�0�1430�� and �K
are smaller than the data. Indeed, the predictions based on
QCD factorization for these decays are also generally
smaller than experiment by a factor of 2	 5. This will
be discussed in more detail in Sec. VI.

While Belle has found a sizable fraction of order �35	
40�% for the nonresonant signal in K����� and
�K0���� modes (see Table I), BABAR reported a small

fraction of order 4.5% in K�����. The huge disparity
between BABAR and Belle is ascribed to the different

parametrizations adopted by both groups. BABAR [6]
used the LASS parametrization to describe the K�
S-wave and the nonresonant component by a single ampli-
tude suggested by the LASS Collaboration to describe the
scalar amplitude in elastic K� scattering. As commented
in [7], while this approach is experimentally motivated, the
use of the LASS parametrization is limited to the elastic
region of M�K�� & 2:0 GeV, and an additional amplitude
is still required for a satisfactory description of the data. In
our calculations we have taken into account the nonreso-
nant contributions to the two-body matrix elements of
scalar densities, hK�j �sqj0i. Recall that a large nonresonant
contribution from hK �Kj �ssj0i is needed in order to explain

TABLE IX. Same as Table VIII except for the decay B� !
�K0���0.

Decay mode Theory Decay mode Theory

K���0 1:5�0:0�0:3�0:2
�0:0�0:3�0:2

�K�0�� 1:5�0:0�0:4�0:0
�0:0�0:3�0:0

K��0 �1430��0 5:5�0:0�1:6�0:1
�0:0�1:4�0:1

�K�00 �1430��� 5:2�0:0�1:6�0:0
�0:0�1:4�0:0

�� �K0 1:3�0:0�3:0�0:0
�0:0�0:9�0:0 NR 10:0�0:2�7:1�0:0

�0:2�3:7�0:0

Total 27:0�0:3�15:4�0:2
�0:2�8:8�0:2

TABLE VIII. Branching ratios (in units of 10�6) of resonant and nonresonant (NR) contri-
butions to B� ! K�����. For theoretical errors, see Table III.

Decay mode BABAR [6] Belle [7] Theory

�K�0�� 9:04
 0:77
 0:53�0:21
�0:37 6:45
 0:43
 0:48�0:25

�0:35 3:0�0:0�0:8�0:0
�0:0�0:7�0:0

�K�00 �1430��� 34:4
 1:7
 1:8�0:1
�1:4 32:0
 1:0
 2:4�1:1

�1:9 10:5�0:0�3:2�0:0
�0:0�2:7�0:1

�0K� 5:08
 0:78
 0:39�0:22
�0:66 3:89
 0:47
 0:29�0:32

�0:29 1:3�0:0�1:9�0:1
�0:0�0:7�0:1

f0�980�K� 9:30
 0:98
 0:51�0:27
�0:72 8:78
 0:82
 0:65�0:55

�1:64 7:7�0:0�0:4�0:1
�0:0�0:8�0:1

NR 2:87
 0:65
 0:43�0:63
�0:25 16:9
 1:3
 1:3�1:1

�0:9 18:7�0:5�11:0�0:2
�0:6�6:3�0:2

Total 64:4
 2:5
 4:6 48:8
 1:1
 3:6 45:0�0:3�16:4�0:1
�0:4�10:5�0:1

TABLE X. Same as Table VIII except for the decay �B0 !
�K0����.

Decay mode Belle [13] Theory

K���� 5:6
 0:7
 0:5�0:4
�0:3 2:1�0:0�0:5�0:3

�0:0�0:5�0:3

K��0 �1430��� 30:8
 2:4
 2:4�0:8
�3:0 10:1�0:0�2:9�0:1

�0:0�2:5�0:2

�0 �K0 6:1
 1:0
 0:5�1:0
�1:1 2:0�0:0�1:9�0:1

�0:0�0:9�0:1

f0�980� �K0 7:6
 1:7
 0:7�0:5
�0:7 7:7�0:0�0:4�0:0

�0:0�0:7�0:0

NR 19:9
 2:5
 1:6�0:7
�1:2 15:6�0:1�8:3�0:0

�0:1�4:9�0:0

Total 47:5
 2:4
 3:7 42:0�0:3�15:7�0:0
�0:2�10:8�0:0

TABLE XI. Branching ratios (in units of 10�6) of resonant and
nonresonant (NR) contributions to �B0 ! K����0. Note that the
branching ratios for K���� and �K�0�0 given in [14,15] are their
absolute ones. We have converted them into the product branch-
ing ratios, namely, B�B! Rh� �B�R! hh�. For theoretical
errors, see Table III.

Decay mode BABAR [14] Belle [15] Theory

K���� 3:6
 0:8
 0:5 4:9�1:5�0:5�0:8
�1:5�0:3�0:3 1:0�0:0�0:3�0:1

�0:0�0:3�0:1
�K�0�0 2:0
 0:6
 0:3 <2:3 1:0�0:0�0:3�0:2

�0:0�0:2�0:1

K��0 �1430���11:2
 1:5
 3:5 5:1
 1:5�0:6
�0:7 5:0�0:0�1:5�0:1

�0:0�1:3�0:1
�K�00 �1430��0 7:9
 1:5
 2:7 6:1�1:6�0:5

�1:5�0:6 4:2�0:0�1:4�0:0
�0:0�1:2�0:0

��K� 8:6
 1:4
 1:0 15:1�3:4�1:4�2:0
�3:3�1:5�2:1 2:5�0:0�3:6�0:2

�0:0�1:4�0:2

NR <4:6 5:7�2:7�0:5
�2:5�0:4 < 9:4 9:6�0:3�6:6�0:0

�0:2�3:5�0:0

Total 34:9
 2:1
 3:9 36:6�4:2
�4:1 
 3:0 28:9�0:2�16:1�0:2

�0:2�9:4�0:2
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the observed decay rates of B0 ! KSKSKS and B� !
K�KSKS. From Tables VIII, IX, X, XI, and XII we see
that our predicted nonresonant rates are in agreement with
the Belle measurements. The reason why the nonresonant
fraction is as large as 90% in KKK decays, but becomes
only �35	 40�% in K�� channels (see Table I) can be
explained as follows. Under SU(3) flavor symmetry, we
have the relation hK�j �sqj0iNR � hK �Kj �ssj0iNR. Hence, the
nonresonant rates in the K����� and �K0���� modes
should be similar to that in K�K� �K0 or K�K�K�. Since
the KKK channel receives resonant contributions only
from � and f0i mesons, while K�i , K

�
0i, �i, f0i resonances

contribute to K�� modes, this explains why the nonreso-
nant fraction is of order 90% in the former and becomes of
order 40% in the latter. Note that the predicted nonresonant
contribution in the K����0 mode is larger than the
BABAR’s upper bound and barely consistent with the
Belle limit. It is conceivable that the SU(3) breaking effect
in hK�j�sqj0iNR may lead to a result consistent with the
Belle limit.

It is interesting to notice that, based on a simple frag-
mentation model and SU(3) symmetry, Gronau and Rosner
[54] found the relations

 

��B� ! K�K�K��NR � 2�� �B0 ! K�K� �K0�NR

� 2��B� ! K������NR

� 2�� �B0 ! �K0�����NR

� 4�� �B0 ! K����0�NR: (3.21)

Again, a large nonresonant background in K����� and
�K0���� is favored by this model.

Although the �B0 ! KS�0�0 rate has not been measured,
its time-dependent CP asymmetries have been studied by
BABAR [56] with the results

 

sin2�eff � �0:72
 0:71
 0:08;

ACP � �0:23
 0:52
 0:13:
(3.22)

Note that this mode is a CP-even eigenstate. We found that
its branching ratio is not so small, of order 6� 10�6, in
spite of the presence of two neutral pions in the final state
(see Table XII). Theoretically, we obtain

 

sin2�eff � 0:729�0:000�0:001�0:009
�0:000�0:001�0:020;

ACP � �0:28�0:09�0:07�0:02
�0:06�0:06�0:02�%:

(3.23)

Finally, we consider the mode KS���� which is an
admixture of CP-even and CP-odd components. Results
for the decay rates and CP asymmetries are displayed in
Table XIII. We see that the effective sin2� is of order 0.718
and direct CP asymmetry of order 4.9% for KS����.

IV. B! KK� DECAYS

We now turn to the three-body decay modes dominated
by b! u tree and b! d penguin transitions, namely,
KK� and ���. We first consider the decay B� !
K�K��� whose factorizable amplitude is given by
Eq. (A9). Note that we have included the matrix element
hK�K�j �ddj0i. Although its nonresonant contribution van-
ishes as K� and K� do not contain the valence d or �d
quark, this matrix element does receive a contribution from
the scalar f0 pole

 hK��p2�K��p3�j �ddj0iR �
X
i

mf0i
�fdf0i
gf0i!����

m2
f0i
� s23 � imf0i

�f0i

;

(4.1)

where hf0j �ddj0i � mf0
�fdf0

. In the 2-quark model for

f0�980�, �fdf0�980� �
�ff0�980� sin�=

���
2
p

. Also note that the
matrix element hK��p3�j� �sb�V�AjB�i�
h���p1�K��p2�j� �ds�V�Aj0i has a similar expression as
Eq. (3.5) except for a sign difference

TABLE XII. Same as Table VIII except for the decay �B0 ! �K0�0�0.

Decay mode f0�980� �K0 �K�0�0 �K�00 �1430��0 NR Total

Theory 3:8�0:0�2:0�0:0
�0:0�0:4�0:0 0:55�0:00�0:16�0:00

�0:00�0:13�0:00 2:3�0:0�0:8�0:0
�0:0�0:6�0:0 5:3�0:0�1:8�0:0

�0:0�1:1�0:0 12:9�0:0�4:0�0:1
�0:0�3:0�0:1

TABLE XIII. Branching ratios, mixing-induced and direct CP
asymmetries for �B0 ! KS�

��� decays. Results for
�KL���CP
 are identical to those for �KS���CP�. For theoreti-
cal errors, see Table III.

Final state Branching ratio

�KS�
����CP� 13:52�0:02�4:03�0:01

�0:03�3:06�0:01

�KS�
����CP� 7:45�0:10�3:79�0:02

�0:08�2:32�0:02

f� 0:65�0:00�0:03�0:00
�0:00�0:04�0:00

Final state sin2�eff

�KS�����CP� 0:693�0:000�0:003�0:003
�0:000�0:002�0:014

�KS�
����full 0:718�0:001�0:017�0:008

�0:001�0:007�0:018

Final state Af (%)

�KS�����CP� 4:27�0:00�0:19�0:28
�0:00�0:12�0:35

�KS�
����full 4:94�0:03�0:03�0:32

�0:02�0:05�0:40
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 hK��p3�j� �sb�V�AjB
�ih���p1�K

��p2�j� �ds�V�Aj0i � �F
BK
1 �s12�F

K�
1 �s12�

�
s23 � s13 �

�m2
B �m

2
K��m

2
K �m

2
��

s12

�

� FBK0 �s12�F
K�
0 �s12�

�m2
B �m

2
K��m

2
K �m

2
��

s12
: (4.2)

As in Eq. (3.8), the form factor FK�1 receives a resonant
contribution for the K� pole.

The nonresonant and various resonant contributions to
B� ! K�K��� are shown in Table XVI. The predicted
total rate is consistent with upper limits set by BABAR and
Belle.

V. B! ��� DECAYS

The factorizable amplitudes of the tree-dominated decay
B� ! ������ and �B0 ! �����0 are given by

Eqs. (A15) and (A16), respectively. We see that the former
is dominated by the �0 pole, while the latter receives �


and �0 contributions (see Tables XV and XVI). As a
consequence, the �����0 mode has a rate larger than
������ even though the former involves a�0 in the final
state.

The ������ mode receives nonresonant contributions
mostly from the b! u transition as the nonresonant con-
tribution in the matrix element h����j �ddj0i is suppressed
by the smallness of penguin Wilson coefficients a6 and a8.
Therefore, the measurement of the nonresonant contribu-
tion in this decay can be used to constrain the nonresonant
parameter �NR in Eq. (2.8).

VI. DIRECT CP ASYMMETRIES

Direct CP asymmetries for various charmless three-
body B decays are collected in Table XVII. Mixing-
induced and direct CP asymmetries in B0 ! K�K�KS;L
and KSKSKS;L decays are already shown in Table V. It
appears that direct CP violation is sizable inK�K�K� and
K�K��� modes.

TABLE XIV. Same as Table VIII except for the decay B� ! K�K���.

Decay mode f0�980��� K�0K� K�00 �1430�K� NR Total

Theory 0:50�0:00�0:06�0:02
�0:00�0:04�0:02 0:23�0:00�0:04�0:02

�0:00�0:04�0:02 0:82�0:00�0:18�0:09
�0:00�0:16�0:08 1:8�0:5�0:4�0:2

�0:5�0:2�0:2 4:0�0:5�0:7�0:3
�0:6�0:5�0:3

Expt. <6:3 (BABAR) [64]
<13 (Belle) [11]

TABLE XV. Same as Table VIII except for B� ! ������.
The nonresonant background is used as an input to fix the
parameter �NR defined in Eq. (2.8).

Decay mode BABAR [5] Theory

�0�� 8:8
 1:0
 0:6�0:1
�0:7 7:7�0:0�1:7�0:3

�0:0�1:6�0:2
f0�980��� 1:2
 0:6
 0:1
 0:4< 3:0 0:39�0:00�0:01�0:03

�0:00�0:01�0:02

NR 2:3
 0:9
 0:3
 0:4< 4:6 Input
Total 16:2
 1:2
 0:9 12:0�1:1�2:0�0:4

�1:2�1:8�0:3

TABLE XVI. Same as Table VIII except for the decay �B0 ! �����0.

Decay mode ���� ���� �0�0 f0�980��0 NR Total

Theory 8:5�0:0�1:1�0:2
�0:0�1:0�0:1 15:5�0:0�4:0�0:3

�0:0�3:5�0:3 1:0�0:0�0:3�0:0
�0:0�0:2�0:0 0:010�0:000�0:003�0:000

�0:000�0:002�0:000 0:05�0:02�0:01�0:00
�0:02�0:01�0:00 26:3�0:0�5:6�0:2

�0:0�5:0�0:2

TABLE XVII. Direct CP asymmetries (in %) for various charmless three-body B decays. For theoretical errors, see Table III.
Experimental results are taken from [50].

Final state BABAR Belle Theory

K�K�K� �2
 3
 2 �10:4�1:7�0:9�0:9
�1:3�1:0�0:8

K�KSKS �4
 11
 2 �3:9�0:0�0:6�0:3
�0:0�0:8�0:3

K�K��� 0
 10
 3 17:5�1:9�2:2�0:0
�3:8�3:4�0:2

K����� �1:3
 3:7
 1:1 4:9
 2:6
 2:0 �3:3�0:7�0:4�0:3
�0:5�0:4�0:2

K����0 7
 11
 1 6:3�0:6�1:4�0:5
�0:7�1:4�0:5

�K0���� 4:9�0:0�0:0�0:3
�0:0�0:1�0:4

�K0�0�0 �23
 52
 13 �17
 24
 6 0:28�0:09�0:07�0:02
�0:06�0:06�0:02

�K0���0 0:4�0:0�0:4�0:0
�0:0�0:4�0:0

������ �1
 8
 3 4:4�0:8�1:2�0:0
�0:6�0:9�0:2

�����0 �3:0�0:1�0:2�0:3
�0:1�0:3�0:2
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The major uncertainty with direct CP violation comes
from the strong phases which are needed to induce partial
rate CP asymmetries. In this work, the strong phases arise
from the effective Wilson coefficients api listed in (A3) and
from the Breit-Wigner formalism for resonances. Since
direct CP violation in charmless two-body B decays can
be significantly affected by final-state rescattering [57], it
is natural to extend the study of final-state rescattering
effects to the case of three-body B decays. We will leave
this to a future investigation.

VII. TWO-BODY B! VPAND B! SP DECAYS

Thus far we have considered the branching ratio prod-
ucts B�B! Rh1�B�R! h2h3� with the resonance R
being a vector meson or a scalar meson. Using the experi-

mental information on B�R! h2h3� [4]
 

B�K�0 ! K���� � B�K�� ! K0���

� 2B�K�� ! K��0� �
2

3
;

B�K�00 �1430� ! K���� � 2B�K��0 �1430� ! K��0�

�
2

3
�0:93
 0:10�;

B��! K�K�� � 0:492
 0:006: (7.1)

one can extract the branching ratios of B! VP and B!
SP. The results are summarized in Table XVIII.

Two remarks about the experimental branching ratios
are in order: (i) The BABAR results for the branching ratios
of �B0 ! K����, �K�0�0, K��0 �1430��� are inferred from

TABLE XVIII. Branching ratios of quasi-two-body decays B! VP and B! SP obtained from the studies of three-body decays
based on the factorization approach. Unless specified, the experimental results are obtained from the 3-body Dalitz plot analyses given
in previous Tables. Theoretical uncertainties have been added in quadrature. QCD factorization (QCDF) predictions taken from [58]
for VP modes and from [48] for SP channels are shown here for comparison.

Decay mode BABAR Belle QCDF This work

�K0 8:4�1:5
�1:3 
 0:5 a 9:0�2:2

�1:8 
 0:7 b 4:1�0:4�1:7�1:8�10:6
�0:4�1:6�1:9�3:0 5:3�1:0

�0:9

�K� 8:4
 0:7
 0:7 9:60
 0:92�1:05
�0:84 4:5�0:5�1:8�1:9�11:8

�0:4�1:7�2:1�3:3 5:9�1:1
�1:0

�K�0�� 13:5
 1:2�0:8
�0:9 9:8
 0:9�1:1

�1:2 3:6�0:4�1:5�1:2�7:7
�0:3�1:4�1:2�2:3 4:4�1:1

�1:0
�K�0�0 3:0
 0:9
 0:5 <3:5 0:7�0:1�0:5�0:3�2:6

�0:1�0:4�0:3�0:5 1:5�0:5
�0:4

K���� 11:0
 1:5
 0:7 8:4
 1:1�0:9
�0:8 3:3�1:4�1:3�0:8�6:2

�1:2�1:2�0:8�1:6 3:1�0:9
�0:9

K���0 6:9
 2:0
 1:3 b 3:3�1:1�1:0�0:6�4:4
�1:0�0:9�0:6�1:4 2:2�0:6

�0:5

K�0K� 0:30�0:11�0:12�0:09�0:57
�0:09�0:10�0:09�0:19 0:35�0:06

�0:06

�0K� 5:1
 0:8�0:6
�0:9 3:89
 0:47�0:43

�0:41 2:6�0:9�3:1�0:8�4:3
�0:9�1:4�0:6�1:2 1:3�1:9

�0:7

�0 �K0 4:9
 0:8
 0:9 6:1
 1:0
 1:1 4:6�0:5�4:0�0:7�6:1
�0:5�2:1�0:7�2:1 2:0�1:9

�0:9

��K� 8:6
 1:4
 1:0 15:1�3:4�2:4
�3:3�2:6 7:4�1:8�7:1�1:2�10:7

�1:9�3:6�1:1�3:5 2:5�3:6
�1:4

�� �K0 8:0�1:4
�1:3 
 0:5 b 5:8�0:6�7:0�1:5�10:3

�0:6�3:3�1:3�3:2 1:3�3:0
�0:9

�0�� 8:8
 1:0�0:6
�0:9 8:0�2:3

�2:0 
 0:7 b 11:9�6:3�3:6�2:5�1:3
�5:0�3:1�1:2�1:1 7:7�1:7

�1:6

���� 21:2�10:3�8:7�1:3�2:0
�8:4�7:2�2:3�1:6 15:5�4:0

�3:5

���� 15:4�8:0�5:5�0:7�1:9
�6:4�4:7�1:3�1:3 8:5�1:1

�1:0

�0�0 1:4
 0:6
 0:3 3:1�0:9�0:6
�0:8�0:8 0:4�0:2�0:2�0:9�0:5

�0:2�0:1�0:3�0:3 1:0�0:3
�0:2

f0�980�K0; f0 ! ���� 5:5
 0:7
 0:6 7:6
 1:7�0:8
�0:9 6:7�0:1�2:1�2:3

�0:1�1:5�1:1
c 7:7�0:4

�0:7

f0�980�K�; f0 ! ���� 9:3
 1:0�0:6
�0:9 8:8
 0:8�0:9

�1:8 7:8�0:2�2:3�2:7
�0:2�1:6�1:2

c 7:7�0:4
�0:8

f0�980�K0; f0 ! K�K� 5:3
 2:2 5:8�0:1
�0:5

f0�980�K�; f0 ! K�K� 6:5
 2:5
 1:6 <2:9 7:0�0:4
�0:7

f0�980���; f0 ! ���� <3:0 0:5�0:0�0:2�0:1
�0:0�0:1�0:0

c 0:39�0:03
�0:02

f0�980���s; f0 ! K�K� 0:50�0:06
�0:04

f0�980��0; f0 ! ���� 0:02�0:01�0:02�0:04
�0:01�0:00�0:01

c 0:010�0:003
�0:002

�K�00 �1430��� 36:6
 1:8
 4:7 51:6
 1:7�7:0
�7:4 11:0�10:3�7:5�49:9

�6:0�3:5�10:1 16:9�5:2
�4:4

�K�00 �1430��0 12:7
 2:4
 4:4 9:8
 2:5
 0:9 6:4�5:4�2:2�26:1
�3:3�2:1�5:7 6:8�2:3

�1:9

K��0 �1430��� 36:1
 4:8
 11:3 49:7
 3:8�4:0
�6:1 11:3�9:4�3:7�45:8

�5:8�3:7�9:9 16:2�4:7
�4:0

K��0 �1430��0 5:3�4:7�1:6�22:3
�2:8�1:7�4:7 8:9�2:6

�2:2

K�00 �1430�K� <2:2 b 1:3�0:3
�0:3

aFrom the Dalitz plot analysis of B0 ! K�K�K0 decay measured by BABAR (see Table III), we obtain B�B0 ! �K0� � �6:2

0:9� � 10�6. The experimental value of BABAR cited in the table is obtained from a direct measurement of B0 ! �K0.
bNot determined directly from the Dalitz plot analysis of three-body decays.
cWe have assumed B�f0�980� ! ����� � 0:50 for the QCDF calculation.
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the three-body decays �B0 ! �K0���� (see Table XI) and
Belle results are taken from �B0 ! K����0 (see Table X).
(ii) Branching ratios of �B0 ! � �K0 shown in Table XVIII
are not inferred from the Dalitz plot analysis of B! KKK
decays.

For comparison, the predictions of the QCD factoriza-
tion approach for B! VP [58] and B! SP [48] are also
exhibited in Table XVIII. In order to compare theory with
experiment for B! f0�980�K ! ����K, we need an
input for B�f0�980� ! �����. To do this, we shall use
the BES measurement [45]

 

��f0�980� ! ���

��f0�980� ! ��� � ��f0�980� ! K �K�
� 0:75�0:11

�0:13:

(7.2)

Assuming that the dominance of the f0�980� width by ��
and K �K and applying isospin relation, we obtain
 

B�f0�980� ! ����� � 0:50�0:07
�0:09;

B�f0�980� ! K�K�� � 0:125�0:018
�0:022:

(7.3)

At first sight, it appears that the ratio defined by

 R �
B�f0�980� ! K�K��
B�f0�980� ! �����

� 0:25
 0:06 (7.4)

is not consistent with the value of 0:69
 0:32 inferred
from the BABAR data (see Tables VI and VIII)

 R �
��B� ! f0�980�K�; f0�980� ! K�K��
��B� ! f0�980�K�; f0�980� ! �����

�
6:5
 2:5
 1:6

9:3
 1:0�0:6
�0:9

; (7.5)

where we have applied the narrow width approximation
Eq. (3.14).

The above-mentioned discrepancy can be resolved by
noting that the factorization relation Eq. (3.14) for the
resonant three-body decay is applicable only when the
two-body decays B! RP and R! P1P2 are kinemati-
cally allowed and the resonance is narrow, the so-called
narrow width approximation. However, as the decay
f0�980� ! K�K� is kinematically barely or even not al-
lowed, the off resonance peak effect of the intermediate
resonant state will become important. Therefore, it is nec-
essary to take into account the finite width effect of the
f0�980� which has a width of order 40–100 MeV [4]. In
short, one cannot determine the ratio R by applying the
narrow width approximation to the three-body decays.
That is, one should employ the decays B! K�� rather
than B! KKK to extract the experimental branching ratio
for B! f0�980�K provided B�f0�980� ! ��� is
available.

We now compare the present work for B! VP andB!
SP with the approach of QCD factorization [34,48]. In this
work, our calculation of 3-body B decays is similar to the

simple generalized factorization approach [59,60] by as-
suming a set of universal and process independent effective
Wilson coefficients api with p � u, c in Eq. (A3). In
QCDF, the calculation of api is rather sophisticated. They
are basically the Wilson coefficients in conjunction with
short-distance nonfactorizable corrections such as vertex
corrections and hard spectator interactions. In general, they
have the expressions [34,58]
 

api �M1M2� �

�
ci �

ci
1

Nc

�
Ni�M2�

�
ci
1

Nc

CF�s
4�

�
Vi�M2� �

4�2

Nc
Hi�M1M2�

�

� Ppi �M2�; (7.6)

where i � 1; . . . ; 10, the upper (lower) signs apply when i
is odd (even), ci are the Wilson coefficients, CF � �N2

c �
1�=�2Nc� with Nc � 3, M2 is the emitted meson and
M1 shares the same spectator quark with the B meson.
The quantities Vi�M2� account for vertex corrections,
Hi�M1M2� for hard spectator interactions with a hard gluon
exchange between the emitted meson and the spectator
quark of the Bmeson and Pi�M2� for penguin contractions.
Hence, the effective Wilson coefficients api �M1M2� depend
on the nature of M1 and M2; that is, they are process
dependent. Moreover, they depend on the order of the
argument, namely, api �M2M1� � api �M1M2� in general. In
the above equation,Ni�M2� vanishes for i � 6, 8 andM2 �
V, and equals to unity otherwise. For three-body decays, in
principle one should also compute the vertex, gluon and
hard spectator-interaction corrections. Of course, these
corrections for the three-body case will be more compli-
cated than the two-body decay one. One possible improve-
ment of the present work is to utilize the QCDF results for
the effective parameters api �M1M2� in the vicinity of the
resonance region.

We next proceed to the comparison of numerical results.
For �K, K�� and K� �K modes, the QCDF and the present
work have similar predictions. For the � meson in the final
states, QCDF predicts slightly small �K and too large ��
compared to experiment.6 In contrast, in the present work
we obtain reasonable �� but too small �K. This is ascribed
to the form factor AB�0 �0� � 0:37
 0:06 employed in [58]
that is too large compared to ours AB�0 �0� � 0:28
 0:03
(see Table XIX). Recall that the recent QCD sum rule
calculation also yields a smaller one AB�0 �0� � 0:30�0:07

�0:03
[62].

For B! f0�980�K and B! f0�980��, QCDF [48] and
this work are in agreement with experiment. The large rate
of the f0�980�K mode is ascribed to the large f0�980�
decay constant, �ff0�980� � 460 MeV at the renormalization

6Recall that the world average of the branching ratio of B0 !
�
�� is �24:0
 2:5� � 10�6 [50], while QCDF predicts it to be
	36:6� 10�6 [58].
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scale � � 2:1 GeV [48]. In contrast, the predicted
�K�00 �1430��� and K��0 �1430��� are too small compared

to the data. The fact that QCDF leads to too small rates for
�K, K��s, �K and K�0�1430�� may imply the importance
of power corrections due to the nonvanishing �A and �H
parameters arising from weak annihilation and hard spec-
tator interactions, respectively, which are used to parame-
trize the endpoint divergences, or due to possible final-state
rescattering effects from charm intermediate states [57].
However, this is beyond the scope of the present work.

VIII. CONCLUSIONS

In this work, an exploratory study of charmless 3-body
decays of B mesons is presented using a simple model
based on the framework of the factorization approach. The
3-body decay process consists of resonant contributions
and the nonresonant signal. Since factorization has not
been proved for three-body B decays, we shall work in
the phenomenological factorization model rather than in
the established theories such as QCD factorization. That
is, we start with the simple idea of factorization and see if
it works for three-body decays. Our main results are as
follows:

(i) If heavy meson chiral perturbation theory
(HMChPT) is applied to the three-body matrix ele-
ments for B! P1P2 transitions and assumed to be
valid over the whole kinematic region, then the
predicted decay rates for nonresonant 3-body B de-
cays will be too large and even exceed the measured
total rate. This can be understood because chiral
symmetry has been applied beyond its region of
validity. We assume the momentum dependence of
nonresonant amplitudes in the exponential form
e��NRpB��pi�pj� so that the HMChPT results are re-
covered in the soft meson limit pi, pj ! 0. The
parameter �NR can be fixed from the tree-dominated
decay B� ! ������.

(ii) Besides the nonresonant contributions arising from
B! P1P2 transitions, we have identified another
large source of the nonresonant background in the
matrix elements of scalar densities, e.g. hK �Kj �ssj0i
which can be constrained from the KSKSKS (or
K�KSKS) mode in conjunction with the mass spec-
trum in the decay �B0 ! K�K� �K0.

(iii) All KKK modes are dominated by the nonresonant
background. The predicted branching ratios of
K�K�KS�L�, K�K�K� and K�KSKS modes are
consistent with the data within the theoretical and
experimental errors.

(iv) Although the penguin-dominated B0 ! K�K�KS
decay is subject to a potentially significant tree
pollution, its effective sin2� is very similar to that
of the KSKSKS mode. However, direct CP asym-
metry of the former, being of order �4%, is more
prominent than the latter,

(v) The role played by the unknown scalar resonance
X0�1550� in the decay B� ! K�K�K� should be
clarified in order to see if it behaves in the same way
as in the K�K� �K0 mode.

(vi) Applying SU(3) symmetry to relate the nonreso-
nant component in the matrix element hK�j �sqj0i to
that in hK �Kj �ssj0i, we found sizable nonresonant
contributions in K����� and �K0���� modes, in
agreement with the Belle measurements but larger
than the BABAR results. In particular, the predicted
nonresonant contribution in the K����0 mode is
consistent with the Belle limit and larger than the
BABAR’s upper bound. It will be interesting to have
a refined measurement of the nonresonant contri-
bution to this mode to test our model.

(vii) The �����0 mode is predicted to have a rate
larger than ������ even though the former in-
volves a �0 in the final state. This is because the
latter is dominated by the �0 pole, while the former
receives �
 and �0 resonant contributions.

(viii) Among the 3-body decays we have studied, the
decay B� ! K�K��� dominated by b! u tree
transition and b! d penguin transition has the
smallest branching ratio of order 4� 10�6. It is
consistent with the current bound set by BABAR
and Belle.

(ix) Decay rates and time-dependent CP asymmetries
in the decays KS�0�0, a purely CP-even state, and
KS�

���, an admixture of CP-even and CP-odd
components, are studied. The corresponding
mixing-induced CP violation is found to be of
order 0.729 and 0.718, respectively.

(x) Since the decay f0�980� ! K�K� is kinematically
barely or even not allowed, it is crucial to take into
account the finite width effect of the f0�980� when
computing the decay B! f0�980�K ! KKK.
Consequently, one should employ the Dalitz plot
analysis of K�� mode to extract the experimental
branching ratio for B! f0�980�K provided
B�f0�980� ! ��� is available. The large rate of
B! f0�980�K is ascribed to the large f0�980� de-
cay constant, �ff0�980� � 460 MeV.

(xi) The intermediate vector-meson contributions to
3-body decays e.g. �, �, K� are identified through
the vector current, while the scalar meson reso-
nances e.g. f0�980�,X0�1550�,K�0�1430� are mainly
associated with the scalar density. Their effects
are described in terms of the Breit-Wigner
formalism.

(xii) Based on the factorization approach, we have
computed the resonant contributions to 3-body
decays and determined the rates for the quasi-
two-body decays B! VP and B! SP. The pre-
dicted ��; f0�980�K and f0�980�� rates are con-
sistent with experiment, while the calculated �K,
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K��, �K and K�0�1430�� are too small compared
to the data.

(xiii) Direct CP asymmetries have been computed for
the charmless 3-body B decays. We found sizable
direct CP violation in K�K�K� and K�K���

modes.
(xiv) In this exploratory work we use the phenomeno-

logical factorization model rather than in the es-
tablished theories based on a heavy quark
expansion. Consequently, we do not have 1=mb
power corrections within this model. However,
systematic errors due to such model dependent
assumptions may be sizable and are not included
in the error estimates that we give.
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Note added.—After the paper was submitted for publi-
cation, [65] has reported the observation of the decay
B� ! K�K��� with the branching ratio �5:0
 0:5

0:5� � 10�6. Our prediction for this mode (see
Table XIV) is consistent with experiment.

APPENDIX A: DECAY AMPLITUDES OF
THREE-BODY B DECAYS

In this appendix we list the factorizable amplitudes of
the 3-body decays B! KKK, KK�, K��, ���. Under
the factorization hypothesis, the decay amplitudes are
given by

 hP1P2P3jH eff j �Bi �
GF���

2
p

X
p�u;c

��r�p hP1P2P3jTpj �Bi; (A1)

where ��r�p � VpbV
�
pr with r � d, s. For KKK and K��

modes, r � s and forKK� and ��� channels, r � d. The
Hamiltonian Tp has the expression [34]

 

Tp � a1�pu� �ub�V�A � � �su�V�A � a2�pu� �sb�V�A � � �uu�V�A � a3��sb�V�A �
X
q

� �qq�V�A � a
p
4

X
q

� �qb�V�A � ��sq�V�A

� a5� �sb�V�A �
X
q

� �qq�V�A � 2ap6
X
q

� �qb�S�P � � �sq�S�P � a7� �sb�V�A �
X
q

3

2
eq� �qq�V�A

� 2ap8
X
q

� �qb�S�P �
3

2
eq� �sq�S�P � a9� �sb�V�A �

X
q

3

2
eq� �qq�V�A � a

p
10

X
q

� �qb�V�A �
3

2
eq��sq�V�A; (A2)

with � �qq0�V
A � �q	��1
 	5�q
0, � �qq0�S
P � �q�1
 	5�q

0 and a summation over q � u, d, s being implied. For the
effective Wilson coefficients, we use

 a1 � 0:99
 0:037i; a2 � 0:19� 0:11i; a3 � �0:002� 0:004i; a5 � 0:0054� 0:005i;

au4 � �0:03� 0:02i; ac4 � �0:04� 0:008i; au6 � �0:06� 0:02i; ac6 � �0:06� 0:006i;

a7 � 0:54� 10�4i; au8 � �4:5� 0:5i� � 10�4; ac8 � �4:4� 0:3i� � 10�4; a9 � �0:010� 0:0002i;

au10 � ��58:3� 86:1i� � 10�5; ac10 � ��60:3� 88:8i� � 10�5;

(A3)

for typical ai at the renormalization scale � � mb=2 � 2:1 GeV which we are working on.
Various three-body B decay amplitudes are collected below.
B! KKK

 

h �K0K�K�jTpj �B0i � hK� �K0j� �ub�V�Aj �B0ihK�j� �su�V�Aj0i�a1�pu � a
p
4 � a

p
10 � �a

p
6 � a

p
8 �r

K
� 

� hK�K�j� �db�V�Aj �B
0ih �K0j��sd�V�Aj0i

�
ap4 �

1

2
ap10

�
� h �K0j��sb�V�Aj �B

0ihK�K�j� �uu�V�Aj0i

� �a2�pu � a3 � a5 � a7 � a9� � h �K0j��sb�V�Aj �B0ihK�K�j� �dd�V�Aj0i
�
a3 � a5 �

1

2
�a7 � a9�

�

� h �K0j� �sb�V�Aj �B0ihK�K�j��ss�V�Aj0i
�
a3 � a

p
4 � a5 �

1

2
�a7 � a9 � a

p
10�

�
� h �K0j �sbj �B0ihK�K�j�ssj0i��2ap6 � a

p
8 � � hK

�K�j �d�1� 	5�bj �B0ih �K0j �s�1� 	5�dj0i��2ap6 � a
p
8 �

� hK�K� �K0j��sd�V�Aj0ih0j� �db�V�Aj �B0i

�
ap4 �

1

2
ap10

�
� hK�K� �K0j�s	5dj0ih0j �d	5bj �B0i��2ap6 � a

p
8 �; (A4)
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with rP� �
2m2

P
mb����m2�m1����

.

 

hK�K�K�jTpjB
�i � hK�K�j� �ub�V�AjB

�ihK�j� �su�V�Aj0i�a1�pu � a
p
4 � a

p
10 � �a

p
6 � a

p
8 �r

K
� 

� hK�j� �sb�V�AjB
�ihK�K�j� �uu�V�Aj0i�a2�pu � a3 � a5 � a7 � a9�

� hK�j� �sb�V�AjB�ihK�K�j� �dd�V�Aj0i
�
a3 � a5 �

1

2
�a7 � a9�

�

� hK�j� �sb�V�AjB
�ihK�K�j��ss�V�Aj0i

�
a3 � a

p
4 � a5 �

1

2
�a7 � a9 � a

p
10�

�
� hK�j �sbjB�ihK�K�j�ssj0i��2ap6 � a

p
8 � � hK

�K�j �u�1� 	5�bj �B
0ihK�j�s�1� 	5�uj0i

� ��2ap6 � a
p
8 � � hK

�K�K�j��su�V�Aj0ih0j� �ub�V�AjB�i
�
ap4 �

1

2
ap10

�
� hK�K�K�j�s	5uj0ih0j �u	5bjB�i��2ap6 � a

p
8 �: (A5)

Since there are two identical K� mesons in this decay, one should take into account the identical particle effects. For
example,

 hK�K�j� �ub�V�AjB
�ihK�j��su�V�Aj0i � hK

��p1�K
��p2�j� �ub�V�AjB

�ihK��p3�j� �su�V�Aj0i

� hK��p1�K��p3�j� �ub�V�AjB�ihK��p2�j� �su�V�Aj0i; (A6)

and a factor of 1
2 should be put in the decay rate.

 

hK0 �K0 �K0jTpj �B
0i � hK0 �K0j� �db�V�Aj �B

0ih �K0j� �sd�V�Aj0i
�
ap4 �

1

2
ap10 �

�
ap6 �

1

2
ap8

�
rK�

�

� h �K0j� �sb�V�Aj �B0ihK0 �K0j� �dd�V�Aj0i
�
a3 � a5 �

1

2
�a7 � a9�

�
� h �K0j� �sb�V�Aj �B0ihK0 �K0j��ss�V�Aj0i

�

�
a3 � a

p
4 � a5 �

1

2
�a7 � a9 � a

p
10�

�
� h �K0j �sbj �B0ihK0 �K0j �ssj0i��2ap6 � a

p
8 �

� hK0 �K0 �K0j� �sd�V�Aj0ih0j� �db�V�Aj �B0i

�
ap4 �

1

2
�a7 � a9 � a

p
10�

�
� hK0 �K0 �K0j �s	5dj0ih0j �d	5bj �B

0i��2ap6 � a
p
8 �: (A7)

The second and third terms do not contribute to the purely CP -even decay �B0 ! KSKSKS.

 

hK�K0 �K0jTpjB
�i � hK0 �K0j� �ub�V�AjB

�ihK�j��su�V�Aj0i�a1�pu�a
p
4 �a

p
10��a

p
6 � a

p
8 �r

K
� 

� hK0K�j� �db�V�AjB�ih �K0j��sd�V�Aj0i
�
ap4 �

1

2
ap10�

�
ap6 �

1

2
ap8

�
rK�

�

�hK�j��sb�V�AjB
�ihK0 �K0j� �dd�V�Aj0i

�
a3� a5�

1

2
�a7� a9�

�

�hK�j��sb�V�AjB�ihK0 �K0j��ss�V�Aj0i
�
a3�a

p
4 � a5�

1

2
�a7� a9� a

p
10�

�
�hK�j�sbjB�ihK0 �K0j �ssj0i��2ap6 � a

p
8 �� hK

�K0 �K0j� �su�V�Aj0ih0j� �ub�V�Aj �B0i�a1�pu�a
p
4 � a

p
10�

� hK�K0 �K0j�s	5uj0ih0j �u�1�	5�bjB�i�2a
p
6 � 2ap8 �: (A8)

The third and fourth terms do not contribute to the decay B� ! K�KSKS.
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B! KK�

 

h��K�K�jTpjB�i � hK�K�j� �ub�V�AjB�ih��j� �du�V�Aj0i�a1�pu � a
p
4 � a

p
10 � �a

p
6 � a

p
8 �r

�
�

� h��j� �db�V�AjB�ihK�K�j� �uu�V�Aj0i�a2�pu � a3 � a5 � a7 � a9�

� h��j �dbjB�ihK�K�j �ddj0i��2ap6 � a
p
8 � � h�

�j� �db�V�AjB�ihK�K�j��ss�V�Aj0i

�

�
a3 � a5 �

1

2
�a7 � a9�

�
� hK�j��sb�V�AjB

�ihK���j� �ds�V�Aj0i
�
ap4 �

1

2
ap10

�
� hK�j �sbjB�ihK���j �dsj0i��2ap6 � a

p
8 � � hK

�K���j� �du�V�Aj0ih0j� �ub�V�AjB
�i�a1�pu � a

p
4

� ap10� � hK
�K���j �d	5uj0ih0j �u	5bjB

�i�2ap6 � a
p
8 �: (A9)

B! K��

 

hK�����jTpjB
�i � h����j� �ub�V�AjB

�ihK�j� �su�V�Aj0i�a1�pu � a
p
4 � a

p
10 � �a

p
6 � a

p
8 �r

K
� 

� hK�j��sb�V�AjB�ih����j� �uu�V�Aj0i
�
a2�pu �

3

2
�a7 � a9�

�

� hK�j �sbjB�ih����j �ssj0i��2ap6 � a
p
8 � � h�

�j� �db�V�AjB
�ihK���j� �sd�V�Aj0i

�
ap4 �

1

2
ap10

�
� h��j �dbjB�ihK���j �sdj0i��2ap6 � a

p
8 � � hK

�����j��su�V�Aj0ih0j� �ub�V�AjB
�i

� �a1�pu � a
p
4 � a

p
10� � hK

�����j �s	5uj0ih0j �u	5bjB
�i�2ap6 � 2ap8 �: (A10)

 

h �K0����jTpj �B
0i � h����j� �db�V�Aj �B

0ih �K0j� �sd�V�Aj0i
�
ap4 �

1

2
ap10 �

�
ap6 �

1

2
ap8

�
rK�

�

� h �K0j��sb�V�Aj �B
0ih����j� �uu�V�Aj0i

�
a2�pu �

3

2
�a7 � a9�

�
� h �K0j �sbj �B0ih����j�ssj0i��2ap6 � a

p
8 � � h�

�j� �ub�V�Aj �B
0ih �K0��j��su�V�Aj0i�a1 � a

p
4 � a

p
10�

� h��j �ubj �B0ih �K0��j �suj0i��2ap6 � 2ap8 � � h �K0����j��sd�V�Aj0ih0j� �db�V�Aj �B0i

� �a1�pu � a
p
4 � a

p
10� � h

�K0����j �s�1� 	5�dj0ih0j �d	5bj �B0i�2ap6 � a
p
8 �: (A11)

 

hK����0jTpj �B0i � h���0j� �ub�V�Aj �B0ihK�j� �su�V�Aj0i�a1�pu � a
p
4 � a

p
10 � �a

p
6 � a

p
8 �r

K
� 

� hK���j��sb�V�Aj �B0ih�0j� �uu�V�Aj0i
�
a2�pu �

3

2
��a7 � a9�

�
� h��j� �ub�V�Aj �B0ihK��0j��su�V�Aj0i�a1�pu � a

p
4 � a

p
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1

2
ap10

�
� h��j �ubj �B0ihK��0j �suj0i��2ap6 � 2ap8 � � h�
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� �2ap6 � a
p
8 �: (A12)
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h �K0���0jTpjB�i � h�0��j� �db�V�AjB�ih �K0j� �sd�V�Aj0i
�
ap4 �

1

2
ap10 �

�
ap6 �

1

2
ap8
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� h �K0��j��sb�V�AjB
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8 �
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p
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p
10� � h

�K0���0j �s�1� 	5�uj0i

� h0j �u	5bjB�i�2a
p
6 � 2ap8 �: (A13)

 

h �K0�0�0jTpj �B0i � h�0�0j� �db�V�Aj �B0ih �K0j� �sd�V�Aj0i
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6 �
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p
8 �: (A14)

B! ���

 

h������jTpjB�i � h����j� �ub�V�AjB�ih��j� �du�V�Aj0i�a1�pu � a
p
4 � a

p
10 � �a

p
6 � a

p
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�ih����j� �uu�V�Aj0i

�
a2�pu � a

p
4 �

3

2
�a7 � a9� �
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� �a1�pu � a
p
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p
10� � h�

�����j �d�1� 	5�uj0ih0j �u	5bjB�i�2a
p
6 � 2ap8 �: (A15)

 

h�0����jTpj �B0i � h���0j� �ub�V�Aj �B0ih��j� �du�V�Aj0i�a1�pu � a
p
4 � a

p
10 � �a

p
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p
8 �r
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r�� �
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4 � a

p
10 � h�
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p
8 �: (A16)

APPENDIX B: DECAY CONSTANTS, FORM
FACTORS AND OTHERS

In this appendix we collect the numerical values of the
decay constants, form factors, CKM matrix elements and
quark masses needed for the calculations. We first discuss
the decay constants of the pseudoscalar meson P and the
scalar meson S defined by
 

hP�p�j �q2	�	5q1j0i � �ifPp�;

hS�p�j �q2	�q1j0i � fSp�;

hSj �q2q1j0i � mS
�fS;

(B1)

and hV�p; "�jV�j0i � fVmV"�� for the vector meson. For
the scalar mesons, the vector decay constant fS and the
scale-dependent scalar decay constant �fS are related by
equations of motion

 �SfS � �fS; with �S �
mS

m2��� �m1���
; (B2)

where m2 and m1 are the running current quark masses.
The neutral scalar mesons, f0 and a0

0 cannot be produced
via the vector current owing to charge conjugation invari-
ance or conservation of vector current:
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 f � ff0
� fa0

0
� 0: (B3)

However, the decay constant �fS is nonvanishing. In [48] we
have applied the QCD sum rules to estimate this quantity.
In this work we follow [48] to use

 

�f f0�980� � 460 MeV; �fK�0�1430� � 550 MeV; (B4)

at � � 2:1 GeV. As for the decay constants of vector
mesons, we use (in units of MeV).

 f� � 216; fK� � 218; f� � 215: (B5)

Form factors for B! P transitions are defined by [41]

 

hP�p0�jV�jB�p�i �
�
�p� p0�� �

m2
B �m

2
P

q2 q�

�
FBP1 �q

2� �
m2
B �m

2
P

q2 q�FBP0 �q
2�;

hS�p0�jA�jB�p�i � �i
��
�p� p0�� �

m2
B �m

2
S

q2 q�

�
FBS1 �q

2� �
m2
B �m

2
S

q2 q�FBS0 �q
2�

�
;

hV�p0; "�jV�jB�p�i �
2

mB �mV

����"��p�p0�V�q2�;

hV�p0; "�jA�jB�p�i � i
�
�mB �mV�"��A

BV
1 �q

2� �
"� � p

mB �mV
�p� p0��A

BV
2 �q

2� � 2mV
"� � p

q2 q��A
BV
3 �q

2� � ABV0 �q
2�

�
;

(B6)

where q � p� p0, F1�0� � F0�0�, A3�0� � A0�0�, and

 A3�q2� �
mP �mV

2mV
A1�q2� �

mP �mV

2mV
A2�q2�; (B7)

where P� � �p� p0��, q� � �p� p0��. As shown in
[61], a factor of ��i� is needed in B! S transition in order
for the B! S form factors to be positive. This also can be
checked from heavy quark symmetry [61].

Various form factors for B! S transitions have been
evaluated in the relativistic covariant light-front quark
model [61]. In this model form factors are first calculated
in the spacelike region and their momentum dependence is
fitted to a 3-parameter form

 F�q2� �
F�0�

1� a�q2=m2
B� � b�q

2=m2
B�

2 : (B8)

The parameters a, b and F�0� are first determined in the
spacelike region. This parametrization is then analytically
continued to the timelike region to determine the physical
form factors at q2 � 0. The results relevant for our pur-
poses are summarized in Table XIX. In practical calcula-
tions, we shall assign the form factor error to be 0.03. For
example, FBK0;1 �0� � 0:35
 0:03.

The form factor for B to f0�980� is of order 0.25 at q2 �

0 [48]. In the q �q model for the f0�980�, FBf
u
0 �

FBf0 sin�=
���
2
p

.
For the heavy-flavor independent strong coupling g in

HMChPT, we use jgj � 0:59
 0:01
 0:07 as extracted
from the CLEO measurement of theD�� decay width [39].
The sign is fixed to be negative in the quark model [23].

For the CKM matrix elements, we use the Wolfenstein
parameters A � 0:806, � � 0:22717, �� � 0:195 and �� �
0:326 [63]. The corresponding CKM angles are
�sin2��CKM � 0:695�0:018

�0:016 and 	 � �59
 7�� [63]. For
the running quark masses we shall use

TABLE XIX. Form factors of B! �, K, K�0�1430�, � transitions obtained in the covariant
light-front model [61].

F F�0� F�q2
max� a b F F�0� F�q2

max� a b

FB�1 0.25 1.16 1.73 0.95 FB�0 0.25 0.86 0.84 0.10
FBK1 0.35 2.17 1.58 0.68 FBK0 0.35 0.80 0.71 0.04

F
BK�0
1 0.26 0.70 1.52 0.64 F

BK�0
0 0.26 0.33 0.44 0.05

VB� 0.27 0.79 1.84 1.28 AB�0 0.28 0.76 1.73 1.20
AB�1 0.22 0.53 0.95 0.21 AB�2 0.20 0.57 1.65 1.05
VBK

�
0.31 0.96 1.79 1.18 ABK

�

0 0.31 0.87 1.68 1.08
ABK

�

1 0.26 0.58 0.93 0.19 ABK
�

2 0.24 0.70 1.63 0.98
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mb�mb� � 4:2 GeV; mb�2:1 GeV� � 4:95 GeV;

mb�1 GeV� � 6:89 GeV; mc�mb� � 1:3 GeV;

mc�2:1 GeV� � 1:51 GeV; ms�2:1 GeV� � 90 MeV;

ms�1 GeV� � 119 MeV; md�1 GeV� � 6:3 MeV;

mu�1 GeV� � 3:5 MeV: (B9)

The uncertainty of the strange quark mass is specified as
ms�2:1 GeV� � 90
 20 MeV.
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