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We present an implementation of a parton shower algorithm for hadron colliders and electron-positron
colliders based on the dipole factorization formulas. The algorithm treats initial-state partons on equal
footing with final-state partons. We implemented the algorithm for massless and massive partons.
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I. INTRODUCTION

Event generators like Pythia [1,2], Herwig [3,4] or
Sherpa [5] are a standard tool in high energy particle
physics. In these tools the physics of particle collisions is
modeled by a simulation with different stages—hard scat-
tering, parton showering, hadronization—to name the
most important ones. The hard scattering process is calcu-
lable in perturbation theory. The same holds—in theory at
least—for the parton showering process, the relevant
scales are still large enough for perturbation theory to be
applicable. In practice, however, one is forced into approx-
imations due to the large parton multiplicities. These ap-
proximations are derived from the behavior of the matrix
elements in singular regions. The matrix elements become
singular in phase space regions corresponding to the emis-
sion of collinear or soft particles. The first showering
algorithms started from the collinear factorization of the
matrix elements and approximated color interference ef-
fects through angular ordering [6,7]. An exception is the
algorithm implemented in Ariadne [8–12], which is based
on a dipole cascade picture. Most shower algorithms are in
the collinear limit accurate to the leading-logarithmic ap-
proximation. Extensions to the next-to-leading logarithmic
approximation have been studied in [13–16].

Recent years have witnessed significant developments
related to shower algorithms, including procedures to
match parton showers to fixed-order tree-level matrix ele-
ments [17–21] and methods to combine parton showers
with next-to-leading-order (NLO) matrix elements [22–
45]. The shower algorithms in Pythia, Herwig, and
Ariadne have been improved [46–48] and new programs
like the shower module Apacic�� [49,50] of Sherpa have
become available. Other improvements include the study
of uncertainties in parton showers [51–53], as well as
showers in the context of the soft-collinear effective theory
[54].

Of particular importance is the matching of parton
showers with next-to-leading-order matrix elements. The
pioneering project MC@NLO [31,55–58] used an existing
shower program (Herwig) and adapted the NLO calcula-
tion to the shower algorithm, at the expense of sacrificing
the correctness in certain soft limits. It is clear that a better
but more labor-intensive approach would adapt the shower
algorithm to NLO calculations. Nowadays in NLO com-

putations the dipole subtraction method [59–63] is widely
used. Nagy and Soper [35,36] proposed to build a shower
algorithm from the dipole subtraction terms.

In this paper we report on an implementation of a shower
algorithm based on the dipole formalism as suggested by
Nagy and Soper. We take the dipole splitting functions as
the splitting functions which generate the parton shower. In
the dipole formalism, a dipole consists of an emitter-
spectator pair, which emits a third particle, soft or collinear
to the emitter. The formalism treats initial- and final-state
partons on the same footing. In contrast to other shower
algorithms, no distinction is made between final- and
initial-state showers. The only difference between initial-
and final-state particles occurs in the kinematics. In the
implementation we have the four cases final-final, final-
initial, initial-final, and initial-initial corresponding to the
possibilities of the particles of the emitter-spectator pair to
be in the initial or final state. All four cases are included;
therefore, the shower can be used for hadron colliders and
electron-positron colliders. We implemented the shower
for massless and massive partons. Initial-state partons
are, however, always assumed to be massless. We use
spin-averaged dipole splitting functions. The shower algo-
rithm is correct in the leading-color approximation. As the
evolution variable we use the transverse momentum in the
massless case, and a variable suggested in [47,64] for the
massive case. The variable for the massive case reduces to
the transverse momentum in the massless limit. Schumann
and Krauss report on a similar but separate implementation
of a parton shower algorithm based on the dipole formal-
ism [65].

This paper is organized as follows: In Sec. II we review
basic facts about the color decomposition of QCD ampli-
tudes and the dipole formalism. In Sec. III we discuss the
shower algorithm. In Sec. IV we present numerical results
from the parton shower simulation program. Finally,
Sec. V contains the summary. Technical details can be
found in the appendices. Appendix A discusses the case
of a massless final-state emitter and a massless final-state
spectator in detail. Appendix B describes the construction
of the four-momenta of the �n� 1�-particle state in all
cases. This appendix is also useful in the context of a phase
space generator for the real emission part of NLO
computations.
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II. QCD AMPLITUDES AND THE DIPOLE
FORMALISM

In this section we briefly review the color decomposition
of QCD amplitudes and the dipole formalism.

A. Color decomposition

In this paper we use the normalization

 TrTaTb � 1
2�

ab (1)

for the color matrices. Amplitudes in QCD may be decom-
posed into group-theoretical factors (carrying the color
structures) multiplied by kinematic functions called partial
amplitudes [66–70]. The partial amplitudes are gauge-
invariant objects. In the pure gluonic case tree-level am-
plitudes with n external gluons may be written in the form
 

An�1; 2; . . . ; n� �
�
g���
2
p

�
n�2 X

�2Sn=Zn

�i�1
j�2
�i�2

j�3
. . .�i�n j�1

� An��1; . . . ; �n�; (2)

where the sum is over all noncyclic permutations of the
external gluon legs. The quantities An��1; . . . ; �n�, called
the partial amplitudes, contain the kinematic information.
They are color-ordered, e.g. only diagrams with a particu-
lar cyclic ordering of the gluons contribute. The choice of
the basis for the color structures is not unique, and several
proposals for bases can be found in the literature [71,72].
Here we use the ‘‘color-flow decomposition’’ [72,73]. This
basis is obtained by replacing every contraction over an
index in the adjoint representation by two contractions over
indices i and j in the fundamental representation:

 VaEa � Va�abEb � Va�2TaijT
b
ji�E

b

� �
���
2
p
TaijV

a��
���
2
p
TbjiE

b�: (3)

As a further example we give the color decomposition for a
tree amplitude with a pair of quarks:
 

An�2�q; 1; 2; . . . ; n; �q� �
�
g���
2
p

�
nX
Sn

�iqj�1
�i�1

j�2
. . .�i�n j �q

� An�2�q;�1; �2; . . . ; �n; �q�;

(4)

where the sum is over all permutations of the gluon legs.
The tree amplitude with a pair of quarks, n gluons and an
additional lepton pair has the same color structure as in
Eq. (4). In squaring these amplitudes a color projector

 ��ii�j �j �
1

Nc
��i �j�ji (5)

has to be applied to each gluon. In these examples we have
two basic color structures, a color cluster described by the
‘‘closed string’’

 �i�1
j�2
�i�2

j�3
. . .�i�n j�1

(6)

and a color cluster corresponding to the ‘‘open string’’

 �iqj�1
�i�1

j�2
. . .�i�n j �q

: (7)

Born amplitudes with additional pairs of quarks have a
decomposition in color factors, which are products of the
two basic color clusters above. The color factors in Eqs. (2)
and (4) are orthogonal to leading order in 1=Nc.

B. The dipole formalism

The starting point for the calculation of an observable O
in hadron-hadron collisions in perturbation theory is the
following formula:
 

hOi �
Z
dx1f�x1�

Z
dx2f�x2�

1

2K�ŝ�
1

�2J1 � 1�

1

�2J2 � 1�

�
1

n1n2

Z
d�n�p1; p2;p3; . . . ; pn�2�

�O�p1; . . . ; pn�2�jAn�2j
2: (8)

This equation gives the contribution from the n-parton final
state. The two incoming particles are labeled p1 and p2,
while p3 to pn�2 denote the final-state particles. f�x� gives
the probability of finding a parton a with momentum
fraction x inside the parent hadron h. A sum over all
possible partons a is understood implicitly. 2K�s� is the
flux factor, 1=�2J1 � 1� and 1=�2J2 � 1� correspond to an
averaging over the initial helicities and n1 and n2 are the
number of color degrees of the initial-state particles. d�n is
the phase space measure for n final-state particles, includ-
ing (if appropriate) the identical particle factors. The ma-
trix element jAn�2j

2 is calculated perturbatively. At
leading and next-to-leading order one has the following
contributions:

 hOiLO �
Z
n
Ond�

B;

hOiNLO �
Z
n�1

On�1d�
R �

Z
n
Ond�

V �
Z
n
Ond�

C:
(9)

Here we used a rather condensed notation. d�B denotes the
Born contribution, while d�R denotes the real emission
contribution, whose matrix element is given by the square
of the Born amplitudes with �n� 3� partons jA�0�

n�3j
2. d�V

gives the virtual contribution, whose matrix element is
given by the interference term of the one-loop amplitude
A�1�

n�2 with �n� 2� partons with the corresponding Born
amplitude A�0�

n�2. d�C denotes a collinear subtraction
term, which subtracts the initial-state collinear singular-
ities. Within the subtraction method one constructs an
approximation term d�A with the same singularity struc-
ture as d�R. The NLO contribution is rewritten as
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hOiNLO �
Z
n�1
�On�1d�

R �Ond�
A�

�
Z
n

�
Ond�V �Ond�C �

Z
1
Ond�A

�
; (10)

such that the terms inside the two brackets are separately
finite. The matrix element corresponding to the approxi-
mation term d�A is given as a sum over dipoles [59–63]:
 X

pairs i;j

X
k�i;j

Dij;k �

� X
pairs i;j

Da
ij �

X
j

X
k�j

Daj
k

�
X
j

Daj;b � �a$ b�
�
: (11)

In Eq. (11) the labels i, j, and k denote final-state particles,
while a and b denote initial-state particles. The first term
describes dipoles where both the emitter and the spectator
are in the final state. Da

ij denotes a dipole where the emitter
is in the final state, while the spectator is in the initial state.
The reverse situation is denoted by Daj

k : Here the emitter is
in the initial state and the spectator is in the final state.
Finally, Daj;b denotes a dipole where both the emitter and
the spectator are in the initial state. The full complexity is
only needed for hadron colliders; for electron-positron
annihilation the subtraction terms inside the square bracket
are absent. The dipole subtraction terms for a final-state
emitter-spectator pair have the following form:

 D ij;k �A�0��
n�2�p1; . . . ; ~p�ij�; . . . ; ~pk; . . .�

��Tk � Tij�

T2
ij

�
Vij;k

2pi � pj
A�0�

n�2�p1; . . . ; ~p�ij�; . . . ; ~pk; . . .�:

(12)

The structure of the dipole subtraction terms with initial-
state partons is similar. Here Ti denotes the color charge
operator for parton i and Vij;k is a matrix in the spin space
of the emitter parton �ij�. In general, the operators Ti lead
to color correlations, while the Vij;k’s lead to spin correla-
tions. The color charge operators Ti for a quark, gluon, and
antiquark in the final state are

 quark : A��. . . qi . . .��Taij�A�. . . qj . . .�;

gluon : A��. . . gc . . .��ifcab�A�. . . gb . . .�;

antiquark : A��. . . �qi . . .���Taji�A�. . . �qj . . .�:

(13)

The corresponding color charge operators for a quark,
gluon, and antiquark in the initial state are

 quark : A��. . . �qi . . .���Taji�A�. . . �qj . . .�;

gluon : A��. . .gc . . .��ifcab�A�. . . gb . . .�;

antiquark : A��. . . qi . . .��Taij�A�. . .qj . . .�:

(14)

In the amplitude an incoming quark is denoted as an out-
going antiquark and vice versa.

In this paper we neglect spin correlations and work to
leading order in 1=Nc. Therefore we replace the splitting
functions Vij;k by the spin-averaged splitting functions:

 Vij;k ! hVij;ki: (15)

In the leading-color approximation we only have to take
into account emitter-spectator pairs, which are adjacent
inside a color cluster. For those pairs we obtain for the
color charge operators

 

��Tk � Tij�

T2
ij

�

�
1=2 emitter �ij� is a gluon;
1 emitter �ij� is a quark or antiquark:

(16)

We introduce the notation

 P ij;k �
hVij;ki

�pi � pj�
2 �m2

ij

� ��hVij;ki�;

P ij;a �
hVaiji

�pi � pj�2 �m2
ij

�
1

x
� ��hVaiji�;

P aj;k �
hVajk i
j2pa � pjj

�
1

x
� ��hVajk i�;

P aj;b �
hVaj;bi
j2pa � pjj

�
1

x
� ��hVaj;bi�:

(17)

The functions P will govern the emission of additional
particles in the shower algorithm. The spin-averaged di-
pole splitting functions hVi can be found in [59,63]. The
Heaviside theta functions ensure that the functions P will
be nonnegative. They are needed for splittings between an
initial- and a final-state particle, since the dipole splitting
functions hVaiji and hVajk i may take negative values in
certain regions of phase space. In addition, the spin-
averaged dipole splitting functions for massive partons
are slightly modified: Terms related to the soft singularity
are rearranged between the two dipoles forming an an-
tenna, in order to ensure positivity of the individual dipole
splitting functions in the singular limit.

III. THE SHOWER ALGORITHM

In this section we describe the shower algorithm. We
first discuss the color treatment in Sec. III A. The shower
algorithm for massless final-state partons is discussed in
Sec. III B. The necessary modifications for initial-state
partons are discussed in Sec. III C. Finally, massive partons
are discussed in Sec. III D.

A. Color treatment

Before starting the parton showers, the partons from the
hard matrix element have to be assigned to color clusters.
For the simplest matrix elements, like e�e� ! q �q, the
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choice is unique: The quark-antiquark pair forms a color
cluster. For the parton shower we work in the leading-color
approximation. In the leading-color approximation we
have to take into account only emitter-spectator pairs,
which are adjacent inside a color cluster. We have imple-
mented two options: In the first one, which we call the
‘‘strict leading-color approximation,’’ we take exactly the
terms which are leading in an expansion in 1=Nc and only
those. As a consequence, all splittings g! q �q are ignored,
as they are color-suppressed compared to g! gg. In this
approximation CF is replaced by

 CF !
3
2: (18)

For the second option, which we call the ‘‘modified
leading-color approximation,’’ we include the splitting
g! q �q and keep CF as �N2

c � 1�=2=Nc. In this case, if a
gluon in a closed string splits into a quark-antiquark pair,
the closed string becomes an open string. If a gluon in an
open string splits into a quark-antiquark pair, the open
string splits into two open strings.

B. The shower algorithm for massless final-state
partons

We first describe the shower algorithm for electron-
positron annihilation. The extension to initial-state partons
is treated in Sec. III C. For the shower algorithm we use as
an evolution variable

 t � ln
�k2
?

Q2 ; (19)

where Q2 is a fixed reference scale and k? is the transverse
momentum of a splitting. During the shower evolution we
move towards smaller (more negative) values of t. We start
from a given n-parton configuration. In the dipole formal-
ism, emission of additional partons is described by an
emitter-spectator pair. In the leading-color approximation
emitter and spectator are always adjacent in the cyclic
order. The probability to evolve from t1 to t2 (with t1 >
t2) without any resolvable branching is given by the
Sudakov factor. For the algorithm considered here, the
Sudakov factor is given as a product of factors correspond-
ing to the no-emission probabilities for individual dipoles’
emissions:

 ��t1; t2� �
Y
~i;~k

�~i;~k�t1; t2�: (20)

If parton ~i can emit different partons, �~i;~k�t1; t2� factorizes
in turn into different contributions:

 �~i;~k�t1; t2� �
Y
j

�ij;k�t1; t2�: (21)

An example is the possibility of a gluon to split either into
two gluons or into a �qq pair. We denote the emitter before
the splitting by ~i, while the emitter after a splitting is

denoted by i. This notation takes into account that the
emitter might change its ‘‘flavour’’ due to a splitting, like
in the case of a g! �qq splitting. �ij;k�t1; t2� is the proba-
bility that the dipole formed by the emitter ~i and spectator ~k
does not emit a parton j. It is given by
 

�ij;k�t1; t2� � exp
�
�
Z t1

t2
dtC~i;~k

�
Z
d�unres��t� T~i;~k�P ij;k

�
; (22)

where C~i;~k is a color factor. In the leading color approxi-
mation this factor is nonzero only if ~i and ~k are adjacent in
a color cluster. Then C~i;~k is obtained from Eq. (16) and
given by

 C~i;~k �

� 1
2 for ~i � g;
1 for ~i � q; �q:

(23)

The dipole phase space is given by
 Z
d�unres �

�p~i � p~k�
2

16�2

Z 1

0
d�

Z z����

z����
dz

1

4z�1� z�

�

�
1�

�
4z�1� z�

�
; (24)

with

 z	��� �
1
2�1	

�������������
1� �
p

�: (25)

The variable � is proportional to the transverse momentum
of the splitting

 � � 4
��k2

?�

�p~i � p~k�
2 : (26)

T~i;~k depends on the dipole invariant mass �p~i � p~k�
2 and

the phase space variable � for the emission of an additional
particle and is given by

 T~i;~k � ln
�
4

�p~i � p~k�
2

Q2 : (27)

With the help of the delta-function we may perform the
integration over �, while keeping the integration over t and
z. Then

 ��t� �
4Q2et

�p~i � p~k�
2 : (28)

P ij;k is the dipole splitting function. As an example we
quote the splitting function for the q! qg splitting:
 

P q!qg � CF
8��s��

2�

�p~i � p~k�
2

1

y

�
2

1� z�1� y�
� �1� z�

�
;

y �
��t�

4z�1� z�
: (29)

�s is evaluated at the scale�2 � �k2
? �

�
4 �p~i � p~k�

2. The
probability that a branching occurs at t2 is given by
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X
~i;~k

X
j

C~i;~k

Z
d�unres��t2 � T~i;~k�P ij;k��t1; t2�: (30)

We can now state the shower algorithm. Starting from an
initial evolution scale t1 we proceed as follows:

(1) Select the next dipole to branch and the scale t2 at
which this occurs. This is done as follows: For each
dipole we generate the scale t2;ij;k of the next split-
ting for this dipole from a uniformly distributed
number r1;ij;k in [0, 1] by solving (numerically) the
equation

 �ij;k�t1; t2;ij;k� � r1;ij;k: (31)

We then set

 t2 � max�t2;ij;k�: (32)

The dipole which has the maximal value of t2;ij;k is
the one which radiates off an additional particle.

(2) If t2 is smaller than a cutoff scale tmin, the shower
algorithm terminates.

(3) Next we have to generate the value of z. Again,
using a uniformly distributed random number r2 in
[0, 1] we solve

 

Z z

z��t2�
dz0J�t2; z0�P ij;k � r2

Z z��t2�

z��t2�
dz0J�t2; z0�P ij;k;

(33)

where the Jacobian factor J�t2; z� is given by

 J�t2; z� �
��t2�

4z�1� z�

�
1�

��t2�
4z�1� z�

�
: (34)

(4) Select the azimuthal angle �. Finally we generate
the azimuthal angle from a uniformly distributed
number r3 in [0, 1] as follows:

 � � 2�r3: (35)

(5) With the three kinematical variables t2, z, and� and
the information, that parton ~i emits a parton j, with
parton ~k being the spectator, we insert the new
parton j. The momenta p~i and p~k of the emitter
and the spectator are replaced by new momenta pi
and pk. The details of how the momenta pi, pj, and
pk are constructed are given in Appendix B.

(6) Set t1 � t2 and go to step 1.
Remark: Step 1 of the algorithm is equivalent to first

generating the point t2 from a uniformly distributed num-
ber r1 in [0, 1] by solving (numerically) the equation for
the full Sudakov factor

 ��t1; t2� � r1; (36)

and then selecting an individual dipole with emitter ~i,
emitted particle j, and spectator k with probability [74]

 Pij;k �
C~i;~k

R
d�unres��t2 � T~i;~k�P ij;kP

~l;~n

P
m
C~l;~n

R
d�unres��t2 � T~l;~n�P lm;n

: (37)

C. The shower algorithm with initial-state partons

In this subsection we discuss the necessary modifica-
tions for the inclusion of initial-state partons. In the pres-
ence of initial-state partons there is no separation into final-
state showers and initial-state showers. Initial-state radia-
tion is treated on the same footing as final-state radiation.
The algorithm generates initial-state radiation through
backward evolution, starting from a hard scale and moving
towards softer scales. Therefore the shower evolves in all
cases from a hard scale towards lower scales.

1. Final-state emitter and initial-state spectator

For an initial-state spectator we modify the Sudakov
factor in Eq. (22) to

 

�ij;a�t1; t2� � exp
�
�
Z t1

t2
dtC~i;~a

Z
d�unres��t� T~i;~a�

�
xaf�xa; t�
x~af�x~a; t�

P ij;a

�
; (38)

where x~a is the momentum fraction of the initial hadron
carried by ~a, while xa is the momentum fraction carried by
a. The initial parton of the n-particle state is denoted by ~a,
while the initial parton of the �n� 1�-particle state is
denoted by a. We set

 x �
x~a

xa
: (39)

The unresolved phase space is given by

 

Z
d�unres �

j2p~ip~aj

16�2

Z 1

x~a

dx
x

Z 1

0
dz: (40)

The transverse momentum between i and j is expressed as

 � k2
? �

�1� x�
x

z�1� z���2p~ip~a� (41)

and T~i;~a is therefore given by

 T~i;~a � ln
�k2
?

Q2 � ln
��2p~ip~a��1� x�z�1� z�

xQ2 : (42)

A subtlety occurs for the emission between a final-state
spectator and an initial-state emitter. We discuss this for the
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splitting q! qg. The spin-averaged splitting function for
the q! qg splitting is given by

 hVkqgi � 8��sCF

�
2

1� z� �1� x�
� �1� z�

�
: (43)

In contrast to the final-final case this function is not a
positive function on the complete phase space. It can
take negative values in certain (nonsingular) regions of
phase space. This is no problem for its use as a subtraction
terms in NLO calculations, but prohibits a straightforward
interpretation as a splitting probability for a shower algo-
rithm. However, since negative values occur only in non-
singular regions, we can ensure positiveness by modifying
the splitting functions through nonsingular terms. The
simplest choice is to set

 P ij;a �
hVaiji

�pi � pj�2
�

1

x
� ��hVaiji�: (44)

For a final-state emitter we eliminate the x-integration with

the help of the delta function:

 

Z 1

x~a

dx
x
��t� T~i;~a� �

1

1� 4z�1�z�
��t�

;

x �
1

1� ��t�
4z�1�z�

; ��t� �
4Q2et

��2p~ip~a�
:

(45)

For the boundaries we obtain

 ��t�<
1� x~a

x~a
; z��t�< z< z��t�;

z	�t� �
1

2

�
1	

��������������������������������
1� ��t�

x~a

1� x~a

s �
:

(46)

The modifications to the shower algorithm are as follows:
The dipoles for the emission from a final-state emitter with
an initial-state spectator are included in the Sudakov factor
in Eq. (20). With this modification steps 1 and 2 are as
above. Let us define

 

flm;n �

8>>>><>>>>:
1; if l and n are final-state particles;
xaf�xa;t�
x~af�x~a;t�

; if l � a is an initial-state particle;

xbf�xb;t�
x~bf�x~b;t�

; if n � b is an initial-state particle and l is a final-state particle:

(47)

In step 3 we replace formula (33) by

 

Z z

z��t2�
dz0J�t2; z

0�fij;aP ij;a� r2

Z z��t2�

z��t2�
dz0J�t2; z

0�fij;aP ij;a;

(48)

with the Jacobian

 J�t; z� �
1

1� 4z�1�z�
��t�

: (49)

Steps 4 to 6 proceed as in the case described above.

2. Initial-state emitter and final-state spectator

For an initial-state emitter ~a with a final-state spectator ~i
the Sudakov factor is given by
 

�aj;i�t1; t2� � exp
�
�
Z t1

t2
dtC~a;~i

Z
d�unres��t� T~a;~i�

�
xaf�xa; t�
x~af�x~a; t�

P aj;i

�
: (50)

The unresolved phase space is again given by Eq. (40). The
transverse momentum between a and j is given by

 � k2
? �

�1� x�
x
�1� z���2p~ip~a� (51)

and T~a;~i is given by

 T~a;~i � ln
��2p~ip~a��1� x��1� z�

xQ2 : (52)

For an initial-state emitter we eliminate the z-integration
with the help of the delta function:

 

Z 1

0
dz��t� T~a;~i� �

��t�
4

x
�1� x�

;

z � 1�
��t�

4

x
�1� x�

; ��t� �
4Q2et

��2p~ip~a�
:

(53)

For the boundaries we obtain

 ��t�< 4
1� x~a

x~a
; x < x��t�; x��t� �

1

1� ��t�
4

:

(54)

There are no new modifications to the shower algorithms
compared to the case for a final-state emitter and an initial-
state spectator, except that in step 3 we now generate the
value of x according to

 

Z x

x~a

dx0J�t2; x
0�faj;iP aj;i � r2

Z x��t2�

x~a

dx0J�t2; x
0�faj;iP aj;i;

(55)
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with the Jacobian

 J�t; x� �
��t�

4�1� x�
: (56)

3. Initial-state emitter and initial-state spectator

For an initial-state emitter ~a with an initial-state specta-
tor ~b the Sudakov factor is given by
 

�aj;b�t1; t2� � exp
�
�
Z t1

t2
dtC~a;~b

Z
d�unres��t� T~a;~b�

�
xaf�xa; t�
x~af�x~a; t�

P aj;b

�
: (57)

In this case we do not rescale the momentum of the
spectator, but transform all final-state momenta.
Therefore no factor

 

xbf�xb; t�
x~bf�x~b; t�

(58)

appears in the Sudakov factor. The unresolved phase space
is given by

 

Z
d�unres �

j2p~ap~bj

16�2

Z 1

x~a

dx
x

Z 1�x

0
dv: (59)

The transverse momentum between a and j is given by

 � k2
? �

�1� x�
x

v�2p~ap~b� (60)

and T~a;~b is given by

 T~a;~b � ln
�2p~ap~b��1� x�v

xQ2 : (61)

We integrate over v with the help of the delta-function:

 

Z 1�x

0
dv��t� T~a;~b� �

��t�
4

x
�1� x�

;

v �
��t�

4

x
�1� x�

; ��t� �
4Q2et

�2p~ap~b�
:

(62)

For the boundaries we obtain

 ��t�< 4
�1� x~a�

2

x~a
; x < x��t�;

x��t� �
1

2

�
2�

��t�
4
�

�������������������������
��t� �

��t�2

16

s �
:

(63)

In step 3 of the shower algorithm we again select x accord-
ing to

 

Z x

x~a

dx0J�t2; x
0�faj;bP aj;b � r2

Z x��t2�

x~a

dx0J�t2; x
0�faj;bP aj;b;

(64)

with the Jacobian

 J�t; x� �
��t�

4�1� x�
: (65)

D. The shower algorithm for massive partons

In this subsection we discuss the modifications of the
shower algorithms due to the presence of massive partons.
We first address the issue of a splitting of a gluon into a
heavy quark pair. This mainly concerns the splitting of a
gluon into b-quarks. We will always require that initial-
state particles are massless. Therefore for processes with
initial-state hadrons we do not consider g! Q �Q splittings.
Calculations for initial-state hadrons should be done in the
approximation of a massless b-quark. In the case of
electron-positron annihilation the parton shower affects
only the final state. Here we can consistently allow split-
tings of a gluon into a pair of massive quarks. As an
evolution variable we use in the massive case

 t � ln
�k2
? � �1� z�

2m2
i � z

2m2
j

Q2 : (66)

This choice reduces to Eq. (19) in the massless limit and is
suggested by dispersion relations for the running coupling
[47,64].

1. Final-state emitter and final-state spectator

The unresolved phase space is given by

 

Z
d�unres �

�p~i � p~k�
2

16�2 �1��2
i ��

2
j ��

2
k�

2

�
	�1; �2
ij; �

2
k��
��1=2�

Z y�

y�
dy�1� y�

�
Z z��y�

z��y�
dz; (67)

where the reduced masses �l and the boundaries on the
integrations are defined in Appendix B in Eqs. (B18)–
(B21). T~i;~k is given by

 T~i;~k � ln
��p~i � p~k�

2 �m2
i �m

2
j �m

2
k�yz�1� z�

Q2 : (68)

Again, we have to ensure that the splitting functions are
positive. The original spin-averaged dipole splitting func-
tions can take negative values in certain regions of phase
space. In the massive case the negative region can extend
into the singular region. The problem is related to the soft
behavior of the dipole splitting functions. Since a squared
Born matrix element is positive in the soft gluon limit, the
negative contribution from a particular dipole is compen-
sated by the contribution from the dipole, where emitter
and spectator are exchanged. The sum of the two contri-
butions is positive in the singular region. Therefore we can
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cut out the negative region from the first dipole and add it
to the second dipole. The second dipole will stay positive.

As in the massless case we eliminate the y-integration:

 

Z y�

y�
dy�1� y�

Z z��y�

z��y�
dz��t� T~i;~k� �

Z zmax

zmin

dzy�1� y�;

y �
��t�

4z�1� z�
; ��t� �

4Q2et

�p~i � p~k�
2 �m2

i �m
2
j �m

2
k

:

(69)

The physical region is defined by
 �

1�
�

4z�1� z�

�
2
�
�
4
� �1� z�2 �m2

i � z
2 �m2

j

�

�

�
�

4z�1� z�

�
2

�m2
k � 4 �m2

i �m2
j �m2

k � 0; (70)

with

 �m 2
l �

m2
l

�p~i � p~k�
2 �m2

i �m
2
j �m

2
k

for l 2 fi; j; kg:

(71)

This equation is solved numerically for zmin and zmax. Then
z is generated according to

 

Z z

zmin�t2�
dz0J�t2; z

0�P ij;k � r2

Z zmax�t2�

zmin�t2�
dz0J�t2; z

0�P ij;k;

(72)

with the Jacobian

 J�t; z� � �1��2
i ��

2
j ��

2
k�

2
	�1; �2
ij; �

2
k��
��1=2�

�
��t�

4z�1� z�

�
1�

��t�
4z�1� z�

�
: (73)

2. Final-state emitter and initial-state spectator

The unresolved phase space is given by

 

Z
d�unres �

j2p~ip~aj

16�2

Z 1

x~a

dx
x

Z 1

z��x�
dz

�
j2p~ip~aj

16�2

Z 1

z��x~a�
dz
Z x��z�

x~a

dx
x
: (74)

The integration boundary is given by
 

z��x� �
x ~�2

1� x�1� ~�2�
; x��z� �

z

~�2 � z�1� ~�2�
;

~�2 �
m2
i

j2p~ip~aj
: (75)

T~i;~a is given by

 T~i;~a � ln
�k2
? � �1� z�

2m2
i

Q2

� ln
��2p~ip~a��1� x�z�1� z�

xQ2 : (76)

For a final-state emitter we eliminate the x-integration with
the help of the delta function:

 

Z 1

x~a

dx
x
��t� T~i;~a� �

1

1� 4z�1�z�
��t�

;

x �
1

1� ��t�
4z�1�z�

; ��t� �
4Q2et

��2p~ip~a�
:

(77)

For the boundaries we obtain
 

z��t� �
1

2

�
1�

��������������������������������
1� ��t�

x~a

1� x~a

s �
;

z��t� � max
�

x~a ~�2

1� x~a�1� ~�2�
;

1

2

�
1�

��������������������������������
1� ��t�

x~a

1� x~a

s �
; 1�

���������
��t�

4 ~�2

s �
: (78)

The boundary on ��t� is given for ~�2 < �1� x~a�=x~a by

 ��t�<
1� x~a

x~a
: (79)

For �1� x~a�=x~a < ~�2 we have

 ��t�<
1� x~a

x~a

�
1�

�1� 1�x~a

x~a ~�2

1� 1�x~a

x~a ~�2

�
2
�
�

4 ~�2

�1� x~a ~�2

1�x~a
�2
: (80)

z is generated according to

 

Z z

z��t2�
dz0J�t2; z0�fij;aP ij;a � r2

Z z��t2�

z��t2�
dz0J�t2; z0�fij;aP ij;a;

(81)

with the Jacobian

 J�t; z� �
1

1� 4z�1�z�
��t�

: (82)

3. Initial-state emitter and final-state spectator

T~a;~i is given by

 T~a;~i � ln
��2p~ip~a��1� x��1� z�

xQ2 : (83)

For an initial-state emitter we eliminate the z-integration
with the help of the delta function:
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Z 1

z��x�
dz��t� T~a;~i� �

��t�
4

x
�1� x�

;

z � 1�
��t�

4

x
�1� x�

; ��t� �
4Q2et

��2p~ip~a�
:

(84)

For the boundaries we obtain

 ��t�<
4�1� x~a�

2

x~a
1� x~a�1� ~�2��
; x < x��t�;

x��t� �
2� ��t�

4 �
����������������������������
��t�2

16 � ~�2��t�
q

2�1� ��t�
4 �1� ~�2��

:

(85)

The value of x is generated according to

 

Z x

x~a

dx0J�t2; x0�faj;iP aj;i � r2

Z x��t2�

x~a

dx0J�t2; x0�faj;iP aj;i;

(86)

with the Jacobian

 J�t; x� �
��t�

4�1� x�
: (87)

IV. NUMERICAL RESULTS

In this section we show numerical results obtained from
the parton shower. We first discuss in Sec. IVA observables
related to electron-positron annihilation and then in
Sec. IV B the shower in hadron collisions. The shower
algorithm depends on two parameters, the strong coupling
�s and the scale Qmin. For the strong coupling we use the
leading-order formula

 �s��� �
4�


0 ln�
2

�2

; 
0 � 11�
2

3
Nf: (88)

The cutoff scale Qmin gives the scale at which the shower
terminates. As our shower is correct in the leading-color
approximation, we also study the effects of different treat-
ments of subleading color contributions. As described in
Sec. III A we have implemented two options: The strict
leading-color approximation and the modified leading-
color approximation. Numerical differences from these
two options will give an estimate of uncertainties due to
subleading-color effects.

A. Electron-positron annihilation

For electron-positron annihilation we use �s�mZ� �
0:118 corresponding to �5 � 88 MeV. We start the
shower from the 2! 2 hard matrix element e�e� ! q �q.
We first study the event shape variables thrust, the C-
parameter and the D-parameter. The distributions of the
first moments of these observables are shown in Fig. 1 for
two choices of the cutoff parameter: Qmin � 1 GeV and
Qmin � 2 GeV. The distributions are normalized to unity.
The different prescriptions for the color-treatment do not

change the distributions significantly. In Fig. 2 we show the
distributions for the four-jet angles. Again we start from
the 2! 2 hard matrix element. The particles in an event
are first clustered into jets, defined according to the
Durham algorithm [75] with ycut � 0:008 and the
E-scheme for the recombination. Then events with exactly
four jets are selected. We consider the modified
Nachtmann-Reiter angle [76], the Körner-Schierholz-
Willrodt angle [77], the Bengtsson-Zerwas angle [78],

Qmin = 2GeV
Qmin = 1GeV

1 − T

1−
T

σ
1−

T
dσ

d(
1−

T
)

0.50.450.40.350.30.250.20.150.10.050

6

5

4

3

2

1

0

Qmin = 2GeV
Qmin = 1GeV

C

C σ
C

dσ dC

10.90.80.70.60.50.40.30.20.10

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Qmin = 2GeV
Qmin = 1GeV

D

D
σ

D
dσ dD

10.90.80.70.60.50.40.30.20.10

3.5

3

2.5

2

1.5

1

0.5

0

FIG. 1 (color online). The first moments of the thrust distri-
bution, the C-parameter distribution and the D-parameter distri-
bution. The results are from the parton shower for two different
values of the cutoff scale Qmin.
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and the angle �34 between the jets with the smallest energy
[79]. In the plots we show the results from the different
options for the color treatment for Qmin � 1 GeV. A varia-
tion of the cutoff scale does not change the distributions
significantly.

B. Hadron colliders

For the Tevatron and the LHC we study
Z=��-production. We start from the 2! 2 hard matrix
element q �q! Z=�� ! l�l�. As parton distribution func-
tions we use the CTEQ 6L1 set [80,81]. For consistency we

mod
strict

|cosθ*
NR|

1 σ
d σ

d |
co

sθ
* N

R|

10.90.80.70.60.50.40.30.20.10

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

mod
strict

cosθKSW

1 σ
d σ

d
co

sθ
K

SW

10.80.60.40.20-0.2-0.4-0.6-0.8-1

1

0.9

0.8

0.7

0.6

0.5

0.4

mod
strict

|cosχBZ |

1 σ
dσ

d|
co

sχ
B

Z
|

10.90.80.70.60.50.40.30.20.10

3

2.5

2

1.5

1

0.5

mod
strict

cosα34

1 σ
dσ

d
co

sα
34

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

FIG. 2 (color online). The distributions for the four-jet angles. From top left to bottom right: The modified Nachtmann-Reiter angle,
the Körner-Schierholz-Willrodt angle, the Bengtsson-Zerwas angle, and the angle �34 between the smallest energy jets. As cutoff
parameter Qmin � 1 GeV is used. Shown are the result from the ‘‘strict leading-color approximation’’ and the ‘‘modified leading-color
approximation.’’

p⊥ [GeV]

1 σ
dσ d
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]
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FIG. 3 (color online). The transverse momentum distribution and the rapidity distribution of the lepton pair for Z=��-production for
the Tevatron and the LHC. As cutoff parameter Qmin � 1 GeV is used.
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use here �s�mZ� � 0:130 corresponding to �5 �
165 MeV. The center-of-mass energy we set to

���
s
p
�

1:96 TeV for the Tevatron and to
���
s
p
� 14 TeV for the

LHC. We require a cut on the invariant mass of the lepton
pair of

 ml�l� > 80 GeV: (89)

As cutoff parameter for the parton shower we use Qmin �
1 GeV. In Fig. 3 we show the transverse momentum dis-
tribution and the rapidity distribution of the lepton pair for
the Tevatron and the LHC.

V. SUMMARY

In this paper we presented an implementation of a
shower algorithm based on the dipole formalism. The
formalism treats initial- and final-state partons on the
same footing. The shower can be used for hadron colliders
and electron-positron colliders. We also included in the
shower algorithm massive partons in the final state. We
studied numerical results for electron-positron annihila-
tion, the Tevatron and the LHC.
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APPENDIX A: SUDAKOV FACTORS FOR
MASSLESS FINAL-STATE PARTONS

In this appendix we discuss in more detail the Sudakov
factors for massless final-state partons. This case is simple
enough that one integration can be done analytically. The
spin-averaged dipole subtraction terms in four dimensions
are
 

P q!qg � CF
8��s��2�

sijk

1

y

�
2

1� z�1� y�
� �1� z�

�
;

P g!gg � CA
8��s��

2�

sijk

1

y

�
2

1� z�1� y�

�
2

1� �1� z��1� y�
� 4� 2z�1� z�

�
;

P g!q �q � TR
8��s��2�

sijk

1

y

1� 2z�1� z��; (A1)

with

 sijk � �pi � pj � pk�2 � �p~i � p~k�
2: (A2)

The dipole phase space measure is
 Z

d�unres �
sijk

16�2

Z 1

0
d�

Z z����

z����
dz

1

4z�1� z�

�

�
1�

�
4z�1� z�

�
; (A3)

with

 z	��� �
1
2�1	

�������������
1� �
p

�: (A4)

The strong coupling is evaluated at the scale �2 � �k2
?:

 �s��
2� � �s

�
1

4
�sijk

�
: (A5)

The Sudakov factor is given by
 

�ij;k�t1; t2� � exp
�
�
Z t1

t2
dtC~i;~k

Z
d�unres

� ��t� T~i;~k�P ij;k

�
: (A6)

For the splitting q! qg we obtain
 

�ij;k�t1; t2� � exp
�
�C~i;~kCF

Z ��

��

d�
�
�s��

2�

2�

Z z����

z����
dz

� �1� y�
�

2

1� z�1� y�
� �1� z�

��
; (A7)

with

 �� � 4
Q2

sijk
et2 ; �� � min

�
1; 4

Q2

sijk
et1
�
;

y �
�

4z�1� z�
; �2 �

1

4
�sijk:

(A8)

The integration over z can be done analytically:

 

Z
dz�1� y�

�
2

1� z�1� y�
� �1� z�

�

� �
1

2
z2 � z�

�
4

lnz� 2 ln�1� z�� �

4

4� �

�
1

2
� lnz

� ln��� 4�1� z�2� �
����
�
p

arctan
�

2����
�
p �1� z�

��
:

(A9)

The same holds for the other splittings. Therefore we
obtain for the Sudakov factors

 �ij;k�t1; t2� � exp
�
�C~i;~kC

Z ��

��

d�
�

�s�
1
4�sijk�

2�

��V ij;k��; z�� �V ij;k��; z���
�
; (A10)

where C is a color factor and equal to
 

C �

8>><>>:
CF for q! qg;

CA for g! gg;

TR for g! q �q:

(A11)

The functions V ij;k��; z� are given by
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V qg;k��; z� � �
1

2
z2 � z�

�
4

lnz� 2 ln�1� z�� �

4

4� �

�
1

2
� lnz� ln��� 4�1� z�2� �

����
�
p

arctan
�

2����
�
p �1� z�

��
;

V gg;k��; z� � �
2

3
z3 � z2 � 4z�

1

2
�z� � ln

z
1� z

�
4

4� �

�
1

2
� ln

1� z
z
� ln

�� 4z2

�� 4�1� z�2

�
����
�
p

arctan
�

2z����
�
p

�
�

����
�
p

arctan
�
2�1� z�����

�
p

��
;

V gq;k��; z� �
2

3
z3 � z2 � z�

�
2
z�

�
4

ln
z

1� z
: (A12)

APPENDIX B: INSERTION OF EMITTED
PARTICLES

In this appendix we list the relevant formulas for the
insertion of one additional four-vector into a set of n four-
vectors. This insertion satisfies momentum conservation
and can be considered as the inverse of the �n� 1� ! n
phase space mapping of Catani and Seymour. These in-
sertion mappings are also useful for an efficient phase
space integration of the real emission contribution in
NLO calculations. Therefore we quote in addition the
relevant phase space weights. For the shower algorithm,
these weights are not needed, as they are taken into account
through the generation of the shower.

1. Insertion for final-state particles

a. The massless case

We start with the simplest case, where both the emitter
and the spectator are in the final state and all particles
involved in the dipole splitting are massless. The insertion
procedure is identical to the one used in [82]. Given the
four-vectors ~pij and ~pk together with the three variables y,
z, and �s we would like to construct pi, pj, and pk, such
that

 pi � pj � pk � ~pij � ~pk; p2
i � p2

j � p2
k � 0:

(B1)

In four dimensions we have for the phase space measure

 d�unres �
sijk

32�3

Z 1

0
dy�1� y�

Z 1

0
dz
Z 2�

0
d�s; (B2)

where sijk � �~pij � ~pk�
2 � �pi � pj � pk�

2. It is conve-
nient to work in the rest frame of P � ~pij � ~pk � pi �
pj � pk. We shall orient the frame in such a way, that the
spatial components of ~pk are along the z direction. When
used as a phase space generator we set

 y � u1; z � u2 �s � 2�u3; (B3)

where u1, u2, and u3 are three uniformly distributed ran-
dom numbers in [0, 1]. From

 y �
sij

sij � sik � sjk
; z �

sik
sik � sjk

(B4)

we obtain

 sij � yP2; sik � z�1� y�P2;

sjk � �1� z��1� y�P
2:

(B5)

If sij < sjk we want to have p0k ! pk as sij ! 0. Define

 Ei �
sij � sik
2
�������sijk
p ; Ej �

sij � sjk
2
�������sijk
p ; Ek �

sik � sjk
2
�������sijk
p ;

(B6)

 �ik � arccos
�
1�

sik
2EiEk

�
;

�jk � arccos
�
1�

sjk
2EjEk

�
:

(B7)

In our coordinate system we have
 

p0i � Ei�1; sin�ik cos��s � ��; sin�ik sin��s � ��; cos�ik�;

p0j � Ej�1; sin�jk cos�s; sin�jk sin�s; cos�jk�;

p0k � Ek�1; 0; 0; 1�: (B8)

The momenta p0i, p
0
j, and p0k are related to the momenta pi,

pj, and pk by a sequence of Lorentz transformations back
to the original frame

 pi � �boost�xy����xz���p0i (B9)

and analogously for the other two momenta. The explicit
formulas for the Lorentz transformations are obtained as

follows: Let jPj �
�����������������������
�~pij � ~pk�2

q
and denote by p̂k the

coordinates of the hard momentum ~pk in the center of
mass system of ~pij � ~pk. p̂k is given by
 

p̂k �
�
EP
jPj

~Ek �
~~pk � ~P
jPj

;

~~pk �
� ~~pk � ~P
jPj�EP � jPj�

�
~Ek
jPj

�
~P
�
: (B10)

The angles are then given by

 � � arccos
�
2ÊkE

0
k � 2p̂k � p

0
k

2j ~̂pkjj ~p0kj

�
; � � arctan

�
p̂yk
p̂xk

�
:

(B11)

For the case considered here particle k is massless and the
formula for � reduces to
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 � � arccos
�
1�

2p̂k � p0k
2p̂tkp

t0
k

�
: (B12)

The explicit form of the rotations is

 �xz��� �

1 0 0 0
0 cos� 0 sin�
0 0 1 0
0 � sin� 0 cos�

0BBB@
1CCCA;

�xy��� �

1 0 0 0
0 cos� � sin� 0
0 sin� cos� 0
0 0 0 1

0BBB@
1CCCA:

(B13)

The boost p � �boostq is given by

 p �
�
EP
jPj

Eq �
~q � ~P
jPj

; ~q�
�

~q � ~P
jPj�EP � jPj�

�
Eq
jPj

�
~P
�
:

(B14)

The weight is given by

 w �
sijk

16�2 �1� y�: (B15)

b. The massive case

We now consider the case of final-state particles with
arbitrary masses:

 ~p 2
ij � m2

ij; p2
i � m2

i ;

p2
j � m2

j ; ~p2
k � p2

k � m2
k:

(B16)

The dipole phase space reads [63]
 

d�unres �
sijk

32�3 �1��
2
i ��

2
j ��

2
k�

2
	�1; �2
ij; �

2
k��
��1=2�

�
Z y�

y�
dy�1� y�

Z z�

z�
dz
Z 2�

0
d�s; (B17)

where

 sijk � �~pij � ~pk�2; �l �
ml�������sijk
p ;

	�x; y; z� � x2 � y2 � z2 � 2xy� 2yz� 2zy:

(B18)

The integration boundaries are given by

 y� � 1�
2�k�1��k�

1��2
i ��

2
j ��

2
k

;

y� �
2�i�j

1��2
i ��

2
j ��

2
k

;

(B19)

 

z	 �
2�2

i � �1��
2
i ��

2
j ��

2
k�y

2
�2
i ��

2
j � �1��

2
i ��

2
j ��

2
k�y�

� �1	 vij;ivij;k�: (B20)

The general formula for the relative velocities is vp;q ��������������������������������
1� p2q2=�pq�

p
. In our case the relative velocities are

given by
 

vij;k �

���������������������������������������������������������������������������������������������

2�2

k � �1��
2
i ��

2
j ��

2
k��1� y��

2 � 4�2
k

q
�1��2

i ��
2
j ��

2
k��1� y�

;

vij;i �

�����������������������������������������������������������������������
�1��2

i ��
2
j ��

2
k�

2y2 � 4�2
i �

2
j

q
�1��2

i ��
2
j ��

2
k�y� 2�2

i

: (B21)

For the phase space generation we set
 

y � �y� � y��u1 � y�; z � �z� � z��u2 � z�;

�s � 2�u3: (B22)

We again work in the rest frame of P � ~pij � ~pk � pi �
pj � pk, such that the spatial components of ~pk are along
the z direction:

 ~p ij � � ~Eij; 0; 0;�j ~~pkj�; ~pk � � ~Ek; 0; 0; j ~~pkj�:

(B23)

For the invariants we have

 2pipj � y�P2 �m2
i �m

2
j �m

2
k�;

2pipk � z�1� y��P2 �m2
i �m

2
j �m

2
k�;

2pjpk � �1� z��1� y��P2 �m2
i �m

2
j �m

2
k�:

(B24)

The invariants are related to y and z as follows:

 y �
2pipj

2pipj � 2pipk � 2pjpk
; z �

2pipk
2pipk � 2pjpk

:

(B25)

In our chosen frame
 

p0i � j ~pij
�
Ei
j ~pij

; sin�ik cos��s � ��;

sin�ik sin��s � ��; cos�ik

�
;

p0j � j ~pjj
� Ej
j ~pjj

; sin�jk cos�s; sin�jk sin�s; cos�jk

�
;

p0k � j ~pkj
�
Ek
j ~pkj

; 0; 0; 1
�
: (B26)

The energies are obtained from the invariants as follows:

 Ei �
sijk � 2pjpk �m

2
i �m

2
j �m

2
k

2
�������sijk
p ;

Ej �
sijk � 2pipk �m2

i �m
2
j �m

2
k

2
�������sijk
p ;

Ek �
sijk � 2pipj �m2

i �m
2
j �m

2
k

2
�������sijk
p :

(B27)
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For the angles we have

 �ik � arccos
�
2EiEk � 2pipk

2j ~pijj ~pkj

�
;

�jk � arccos
�
2EjEk � 2pjpk

2j ~pjjj ~pkj

�
:

(B28)

The momenta p0i, p
0
j, and p0k are related to the momenta pi,

pj, and pk by the same sequence of Lorentz transforma-
tions as in Eq. (B9). The weight is
 

w �
sijk

16�2 �1��
2
i ��

2
j ��

2
k�

2
	�1; �2
ij; �

2
k��
��1=2�

� �1� y��y� � y���z� � z��: (B29)

2. Insertion for an antenna between an initial state and
a final state

a. The massless case

Here the �n� 1�-particle phase space is given by a
convolution:

 d�n�1 �
Z 1

0
dx d�n�xpa� d�dipole: (B30)

The dipole phase space reads:

 d�dipole �
j2~pijpaj

32�3

Z 1

0
dz
Z 2�

0
d�s: (B31)

The angle �s parametrizes the solid angle perpendicular to
~pij and xpa. Therefore we can treat the case of a final-state
emitter with an initial-state spectator as well as the case of
an initial-state emitter with a final-state spectator at the
same time. x and z are related to the invariants as follows:

 x �
�2pipa � 2pjpa � 2pipj
�2pipa � 2pjpa

;

z �
�2pipa

�2pipa � 2pjpa
:

(B32)

For the phase space generation we set

 x � 1� u1; z � u2; �s � 2�u3: (B33)

We denote Q � ~pij � xpa � pi � pj � pa. It is conve-
nient to work in the rest frame of P � pi � pj � Q� pa
and to orient the frame such that pa is along the z axis. For
the invariants we have

 2pipj � ��Q2�
1� x
x

; 2pipa �
z
x
Q2;

2pjpa �
1� z
x

Q2:

(B34)

In this frame

 

p0i � Ei�1; sin�ia cos�s; sin�ia sin�s; cos�ia�;

p0j � Ei�1;� sin�ia cos�s;� sin�ia sin�s;� cos�ia�;

p0a � ��jEaj; 0; 0; jEajsign�pz0a ��: (B35)

We have

 Ei �
1

2
jPj; Ea �

1

jPj
�P � pa�;

�ia � arccos
�

sign�pz0a �
�
�1�

2pipa
2EiEa

��
:

(B36)

The momenta p0i, p
0
j are again related to the momenta pi,

pj by a sequence of Lorentz transformations as in Eq. (B9).
The weight is given by

 w �
jQ2j

16�2x
: (B37)

b. The massive case

The dipole phase space now reads

 d�dipole �
j2~pijpaj

32�3

Z z�

z�
dz
Z 2�

0
d�s: (B38)

The integration boundaries are given by

 z� � 1; z� �
�2

1� x��2 ; (B39)

where

 �2 �
m2
i

j2~pijpaj
�

xm2
i

jQ2 �m2
i j
: (B40)

We consider only the case where m~ij � mi � m and all
other masses are zero. For the phase space generation we
set

 x� 1�u1; z� �z�� z��u2� z�; �s� 2�u3:

(B41)

For the invariants we have now
 

2pipj � ��Q2 �m2
i �

1� x
x

; 2pipa �
z
x
�Q2 �m2

i �;

2pjpa �
1� z
x
�Q2 �m2

i �: (B42)

We parametrize the momenta as
 

p0i � j ~pij
�
Ei
j ~pij

; sin�ia cos�s; sin�ia sin�s; cos�ia

�
;

p0j � j ~pij�1;� sin�ia cos�s;� sin�ia sin�s;� cos�ia�;

p0a � ��jEaj; 0; 0; jEajsign�pz0a ��: (B43)

Then
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 Ei �
P2 �m2

i

2jPj
; Ea �

1

jPj
�P � pa�;

�ia � arccos
�

sign�pz0a �
�2EiEa � 2pipa�

2j ~pij��Ea�

�
:

(B44)

The momenta p0i, p
0
j are again related to the momenta pi,

pj by a sequence of Lorentz transformations as in Eq. (B9).
The weight is given by

 w �
jQ2 �m2

i j

16�2x
�z� � z��: (B45)

3. Insertion for an initial-state antenna

Here we only have to consider the case where all parti-
cles are massless. In this case we transform all the final-
state momenta. The �n� 1�-particle phase space is given
by a convolution:

 d�n�1 �
Z 1

0
dx d�n�xpa� d�dipole: (B46)

The dipole phase space reads:

 d�dipole �
j2papbj

32�3

Z 1�x

0
dv

Z 2�

0
d�s: (B47)

The variable v is given by

 v �
�2papi
2papb

: (B48)

For the phase space generation we set

 x � 1� u1; v � �1� x��1� u2�; �s � 2�u3:

(B49)

We denote

 K � �pa � pb � pi; ~K � �~pai � pb: (B50)

We have
 

pa �
1

x
~pai;

pi � �boostEi�1; sin�ia cos�s; sin�ia sin�s; cos�ia�

pb � pb; (B51)

with Ei and �ia given in the rest frame of pa � pb by

 Ea � �
1

2

��������������
2papb

p
; Ei �

~K2 � 2papb
4Ea

;

�ia � arccos
�

sign�p̂za�
�
�1�

2pipa
2EiEa

��
:

(B52)

p̂a denotes pa in the rest frame of pa � pb. �boost trans-
forms from the rest frame of pa � pb to the lab frame. All
other final-state momenta are transformed with

 ��1 � g�� � 2
�K � ~K���K � ~K��

�K � ~K�2
� 2

K� ~K�

K2 : (B53)

The weight is given by

 w �
j ~K2j

16�2x
�1� x�: (B54)
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