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We present the studies of the decays B! a1�1260�� and a1�1260�K within the framework of QCD
factorization. Because of the G-parity, unlike the vector meson, the chiral-odd two-parton light-cone
distribution amplitudes of the a1 are antisymmetric under the exchange of quark and antiquark momentum
fractions in the SU(2) limit. The branching ratios for a1� modes are sensitive to tree-penguin interference.
The resultant B�B0 ! a�1 �

�� are in good agreement with the data. However, using the current Cabibbo-
Kobayashi-Maskawa angles, � � 22:0� and � � 59:0�, our results for the mixing-induced parameter S
and �eff differ from the measurements of the time-dependent CP asymmetries in the decay B0 ! a�1 �

� at
about the 3:7� level. This puzzle may be resolved by using a larger � * 80�. For a1K modes, the
annihilation topologies give sizable contributions and are sensitive to the first Gegenbauer moment of the
leading-twist tensor (chiral-odd) distribution amplitude of the a1 meson. The B! a1K amplitudes
resemble the corresponding B! �K ones very much. Taking the ratios of corresponding CP-averaged
a1K and �K branching ratios, we can extract information relevant to the electroweak penguins and
annihilations. The existence of new physics in the electroweak penguin sector and final-state interactions
during decays can thus be explored.
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I. INTRODUCTION

The first charmless hadronic B decay involving a 13P1

axial-vector meson that has been observed is B0 !
a�1 �1260��� [1–5], which goes through b! u �ud. The
measurements of time-dependent CP asymmetries in had-
ronic B decays originating from b! u �ud can provide the
information directly related to the Cabibbo-Kobayashi-
Maskawa (CKM) weak phase � � arg��VtdV	tb=VudV

	
ub�

(or called �2), for which some results have been given
from the data of B! �
��, ����, and ���� [6]. The
BABAR collaboration recently reported the observation of
B0 ! a�1 �1260���, including CP violating parameters,
branching fractions, and �eff , where the bound on the
difference �� � �� �eff can be constrained by using
the broken SU(3) flavor symmetry [7,8] or isospin analysis
[9–11].

In this paper, we present the phenomenological studies
of B! a1� and a1K within the framework of QCD facto-
rization, where the former processes are tree dominated,
while the latter are penguin dominated. The a1�1260�,
which will be denoted by a1 for simplicity, is the 13P1

state. Because of the G-parity, the chiral-even two-parton
light-cone distribution amplitudes (LCDAs) of the a1 are
symmetric under the exchange of quark and antiquark
momentum fractions in the SU(2) limit, whereas, unlike
the vector meson, the chiral-odd two-parton LCDAs
are antisymmetric. Reference [12] is the only literature
so far for the calculation of LCDAs of 13P1 axial-vector
mesons. The large first Gegenbauer moment of the leading-
twist tensor distribution amplitude of the a1 meson [12]
could have a sizable impact on the annihilation amplitudes.
On the other hand, it is interesting to note that, for
the axial-vector mesons with quantum number 11P1, their

chiral-even LCDAs are antisymmetric under the ex-
change of quark and antiquark momentum fractions in
the SU(3) limit, while the chiral-odd two-parton LCDAs
are symmetric [12,13]. The hadronic B decays involving
such a meson are sensitive to the new-physics search
[14,15].

Because the axial-vector and pseudoscalar penguin con-
tributions interfere constructively in the dominant decay
amplitudes of �B! a1

�K, for which the �K is emitted and a1

shares the same spectator quark within the �B meson, the
�B! a1

�K amplitudes resemble very much the correspond-
ing �B! � �K ones. Moreover, larger CP asymmetries
could be expected in the a0

1K
� and a0

1
�K0 modes due to

the much larger decay constant of the a1�1260�, as com-
pared with � �K channels.

To resolve the puzzle about the observations of the
decays B! �K and �� within the standard model (SM)
[6], some approaches were proposed, including consider-
ations of final-state interactions (FSIs) [16–18], and use of
SU(3) flavor symmetry to extract hadronic parameters
from the �� data and then to predict K� channels [19–
21]. On the other hand, it was argued that new physics with
a large CP-violating phase may exist in the electroweak
penguin sector [19,20,22]. The present studies for B!
a1� and a1K modes can offer further tests for the above
theories.

The layout of the present paper is as follows. In Sec. II,
we discuss light-cone distribution amplitudes for an axial-
vector meson. A brief description for applying QCD facto-
rization to the decays B! a1� and a1K is given in
Sec. III, where some relevant formulas are collected in
Appendices A and B. In terms of the notations �pi and �pi ,
which were given in Ref. [23], one can find that the

PHYSICAL REVIEW D 76, 094002 (2007)

1550-7998=2007=76(9)=094002(12) 094002-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.094002


amplitudes for AP modes have the same expressions with
those for PP and VP modes (where A� the axial-
vector meson, P � the pseudoscalar meson, and A �
the vector meson). Section IV contains the numerical
analysis for the branching ratios and CP asymmetries.
Our conclusions are summarized in Sec. V.

II. TWO-PARTON LCDAs OF THE a1 AND
PROJECTION OPERATORS ON THE LIGHT CONE

For decays involving an axial-vector meson (denoted as
A) in the final state, the QCD corrections can turn the local
quark-antiquark operators into a series of nonlocal opera-
tors as

 

hA�P;��j �q1��y�q2	�x�j0i � �
i
4

Z 1

0
duei�upy
 �upx�

�
fAmA

�
p6 �5


	���z
pz

�k�u� 
 
6
	���
? �5g

�a�
? �u� 
 
����


	�
���p

�z���
g�v�? �u�

4

�

� f?A

�

6 	���? p6 �5�?�u� � i

m2
A

	���z

�pz�2
����5p�z�h

�t�
k
�u� � im2

A�

	���z�

h�p�
k
�u�

2

��
	�
; (2.1)

where the chiral-even LCDAs are given by

 hA�P; ��j �q1�y����5q2�x�j0i � ifAmA

Z 1

0
duei�upy
 �upx�

�
p�


	���z
pz

�k�u� 
 

	���
?�g

�a�
? �u�

�
; (2.2)

 hA�P; ��j �q1�y���q2�x�j0i � �ifAmA
����
	����p
�z�

Z 1

0
duei�upy
 �upx� g

�v�
? �u�

4
; (2.3)

with u� �u � 1� u� being the momentum fraction carried by q1� �q2�, and the chiral-odd LCDAs are given by

 hA�P; ��j �q1�y�����5q2�x�j0i � f?A
Z 1

0
duei�upy
 �upx�

�
�
	���?�p� � 


	���
?� p���?�u� 


m2
A

	���z

�pz�2
�p�z� � p�z��h

�t�
k
�u�
�
;

(2.4)

 hA�P; ��j �q1�y��5q2�x�j0i � f?A m
2
A

	���z

Z 1

0
duei�upy
 �upx�

h�p�
k
�u�

2
: (2.5)

Here, throughout the present discussion, we define z �
y� x with z2 � 0, and introduce the lightlike vector p� �
P� �m

2
Az�=�2Pz�with the meson’s momentum P2 � m2

A.
Moreover, the meson polarization vector 
	� has been
decomposed into longitudinal (
	

k�) and transverse (
	?�)
projections defined as

 
	
k� �


	z
Pz

�
P� �

m2
A

Pz
z�

�
; 
	?� � 
	� � 
	k�; (2.6)

respectively. The LCDAs �k, �? are of twist-2, and g�v�? ,
g�a�? , h�t�? , h�p�

k
of twist-3. For the a1 meson, due to G-parity,

�k, g
�v�
? , and g�a�? are symmetric with the replacement of

u$ 1� u, whereas �?, h�t�
k

, and h�p�
k

are antisymmetric in
the SU(2) limit [12]. Here, we restrict ourselves to two-
parton LCDAs with twist-3 accuracy.

Assuming that the axial-vector meson moves along the
negative z-axis, the derivation for the light-cone projection
operator of an axial-vector meson in the momentum space
is in complete analogy to the case of the vector meson. We
separate the longitudinal and transverse parts for the pro-
jection operator:

 MA
	� � MA

	�k 
M
A
	�?; (2.7)

where only the longitudinal part is relevant in the present

study and given by

 MA
k
� �i

fA
4

mA�
	n
�
2

n6 ��5�k�u� �
if?A mA

4

mA�
	n
�
2E

�

�
i
2
����5n��n�
h

�t�
k
�u� 
 iE

Z u

0
dv��?�v�

� h�t�
k
�v������5n��

@
@k?�

� �5

h0�p�
k
�u�

2

���������k�up
;

(2.8)

with the momentum of the quark q1 in the A meson being

 k�1 � uEn�� 
 k
�
? 


k2
?

4uE
n�
; (2.9)

for which E is the energy of the axial-vector meson and the
term proportional to k2

? is negligible. Here, for simplicity,
we introduce two lightlike vectors n�� � �1; 0; 0;�1�,
and n�
 � �1; 0; 0; 1�. In general, the QCD factorization
amplitudes can be written in terms of the formR

1
0 duTr �MA

k
� � ��.

In the following, we will give a brief summary for
LCDAs of the a1 mesons, for which the detailed properties
can be found in Ref. [12]. �a1

k;?�u� can be expanded in
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Gegenbauer polynomials:

 �a1

k�?�
�u� � 6u �u

�X1
i�0

ak�?�;a1
i C3=2

i �2u� 1�
�
: (2.10)

For the �a1

k�?�
�u�, due to the G-parity, only terms with even

(odd) Gegenbauer moments survive in the SU(2) limit. In
the present work, we consider the approximations:

 �a1

k
�u� � 6u �uf1
 ak;a1

2
3
25�2u� 1�2 � 1�g; (2.11)

 �a1

? �u� � 18a?;a1
1 u �u�2u� 1�: (2.12)

Note that we have defined f?a1
� fa1

since the product

f?a1
a?;a1

1 always appears together. Neglecting the three-
parton distributions and terms proportional to the light
quark masses, we can relate the twist-3 distribution ampli-
tudes to the twist-2 ones by Wandzura-Wilczek relations
[12,24] and then obtain:
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Z 1

v
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u

du
�
� v �v�a�v�:

(2.13)

The normalization conditions for LCDAs are

 

Z 1

0
du�k�u� � 1;

Z 1

0
du�?�u� � 0; (2.14)

 

Z 1

0
duh�t�

k
�u� � 0;

Z 1

0
duh�p�

k
�u� � 0: (2.15)

For the pseudoscalar meson (P) with the four-
momentum P�, the light-cone projection operator in the
momentum space reads

 MP � i
fP
4
En6 ��5�P�u� 


ifP�P

4

�
i
2
����5n

�
�n

�



�0��u�
6

� iE
��
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����5n��

@
@k?�
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�p�u�

2

���������k�up
;

(2.16)

where �P � m2
P=�m1 
m2� is proportional to the chiral

condensate (with m1;2 the masses of quarks) and the ap-
proximate forms of LCDAs that we use are
 

�P�u� � 6u �u
�
1
 3aP1 �2u� 1� 
 aP2

3

2
5�2u� 1�2 � 1�

�
;

�p�u� � 1;
���u�

6
� u�1� u�: (2.17)

III. DECAY AMPLITUDES

Within the framework of QCD factorization, in general
the effective weak Hamiltonian matrix elements for �B!
M1M2 decays can be expressed in the form [23]

 hM1M2jH effj �Bi �
GF���

2
p

X
p�u;c

�phM1M2jT
p
A 
T p

Bj
�Bi;

(3.1)

where �p � VpbV	pq with q � d or s, M2 is the emitted
meson, and M1 shares the same spectator quark within the
�B meson. Considering a generic b-quark decay, T p

A de-
scribe contributions from naive factorization, vertex cor-
rections, penguin contractions, and spectator scattering,
whereas T p

B contain the weak annihilation topologies.
For �B decay processes, the QCD factorization approach

advocated in [25,26] allows us to compute the nonfactor-
izable corrections in the heavy quark limit since only hard
interactions between the � �BM1� system and M2 survive in
the mb ! 1 limit. Naive factorization is recovered in the
heavy quark limit and to the zeroth order of QCD correc-
tions. In this approach, the LCDAs play an essential role. In
the present study using the notations �pi and �pi given in
Ref. [23], the amplitudes for AP modes have the same
expressions with those for PP and VP modes; �B! a1�,
a1

�K decay amplitudes in terms of �pi and �pi can be
obtained from �B! ��, � �K [23] by setting �! a1.
However, one should note that the determination of the
relative signs of the detailed amplitudes behind the coef-
ficients �pi and �pi is nontrivial.

A. Decay amplitudes due to T p
A

In general, T p
A can be expressed in terms of

c�pi �M1M2�X�
�BM1;M2�, where c contains factors of �1

and �1=
���
2
p

arising from flavor structures of final-state
mesons, �i are functions of the Wilson coefficients [see
Eq. (3.7)], and
 

X� �BA;P� � hP�q�j�V � A��j0ihA�p�j�V � A��j �B�pB�i

� �2ifPmAVBA0 �q
2��
	

���pB�; (3.2)

 

X� �BP;A� � hA�q�j�V � A��j0ihP�p�j�V � A�
�j �B�pB�i

� �2ifAmAF
BP
1 �q

2��
	���pB�: (3.3)
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Here the decay constants of the pseudoscalar meson P and the axial-vector meson A are defined by [27]
 

hP�p�j �q2���5q1j0i � �ifPp�; hA�p; ��j �q2���5q1j0i � ifA

���	
� : (3.4)

The form factors for the B! A and P transitions are defined as [27]
 

hA�p; ��jA�j �B�pB�i � i
2
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	����p
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2�
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�


 2mA

���	pB
q2 q�VBA3 �q

2� � VBA0 �q
2��;

hP�p�jV�j �B�pB�i �
�
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 p�� �
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2
P

q2 q�

�
FBP1 �q

2� 

m2
B �m

2
P

q2 q�FBP0 �q
2�; (3.5)

where q � pB � p, VBA3 �0� � VBA0 �0�, F
BP
1 �0� � FBP0 �0�, and

 VBA3 �q
2� �

mB 
mA

2mA
VBA1 �q

2� �
mB �mA

2mA
VBA2 �q

2�: (3.6)

The coefficients of the flavor operators �pi can be expressed in terms of api as follows:
 

�1�M1M2� � a1�M1M2�;

�2�M1M2� � a2�M1M2�;

�p3 �M1M2� � ap3 �M1M2� � a
p
5 �M1M2�;

�p4 �M1M2� �

(
ap4 �M1M2� 
 r

M2
 ap6 �M1M2� for M1M2 � AP;

ap4 �M1M2� � r
M2
 ap6 �M1M2� for M1M2 � PA;

�p3;EW�M1M2� � ap9 �M1M2� � a
p
7 �M1M2�;

�p4;EW�M1M2� �

(
ap10�M1M2� 
 r

M2
 ap8 �M1M2� for M1M2 � AP;

ap10�M1M2� � r
M2
 ap8 �M1M2� for M1M2 � PA;

(3.7)

where

 rP��� �
2m2

P

mb����m2 
m1����
; rA��� �

2mA

mb���
:

(3.8)

The effective parameters �pi in Eq. (3.7) to next-to-leading
order in �s can be expressed in forms of [23]:
 

api �M1M2� �

�
ci 


ci�1

Nc

�
Ni�M2�



ci�1

Nc

CF�s
4�

�
Vi�M2� 


4�2

Nc
Hi�M1M2�

�

 Ppi �M2�; (3.9)

where ci are the Wilson coefficients, p � u, c, CF �
�N2

c � 1�=�2Nc� with Nc � 3, the upper (lower) signs refer
to odd (even) i, M2 is the emitted meson, M1 shares the
same spectator quark within the B meson, and

 Ni �
�

0 for i � 6; 8; and M2 � a1;
1 for the rest:

(3.10)

Vi�M2� account for vertex corrections, Hi�M1M2� for hard-
spectator interactions with a hard gluon exchange between
the emitted meson and the spectator quark of the �B meson,
and Pi�M2� for penguin contractions. The detailed results
for the above quantities are collected in Appendix A. Note
that in the present case, some relative signs change inHi as
compared with the PP and VP modes.

B. Decay amplitudes due to T p
B —annihilation

topologies

The �B! AP amplitudes governed by the annihilation
topologies read
 

GF���
2
p

X
p�u;c

�phAPjT
p
Bj

�Bi � �i
GF���

2
p fBfAfP

�
X
p�u;c

�p

�X4

i�1

eibi 
 e5b3;EW


 e6b4;EW

�
; (3.11)

where the coefficients ei are process dependent and weak
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annihilation contributions are parametrized as

 

b1 �
CF
N2
c
c1Ai1;

b3 �
CF
N2
c
c3Ai1 
 c5�Ai3 
 A

f
3� 
 Ncc6A

f
3�;

b2 �
CF
N2
c
c2Ai1;

b4 �
CF
N2
c
c4Ai1 
 c6A

f
2�;

b3;EW �
CF
N2
c
c9Ai1 
 c7�Ai3 
 A

f
3� 
 Ncc8Ai3�;

b4;EW �
CF
N2
c
c10Ai1 
 c8Ai2�:

(3.12)

The subscripts 1, 2, and 3 of Ai;fn denote the annihilation
amplitudes induced from �V � A��V � A�, �V � A��V 

A�, and �S� P��S
 P� operators, respectively, and the
superscripts i and f refer to gluon emission from the initial
and final-state quarks, respectively. For decays B! AP,
the detailed expressions for Ai;fn are given in Appendix B.
�pi �M1M2� are defined as

 �pi �M1M2� �
�ifBfM1

fM2

X� �BM1;M2�
bpi :

IV. NUMERICAL RESULTS

A. Input parameters

In the numerical analysis, we use the next-to-leading
Wilson coefficients in the naive dimensional regularization
scheme [28]. The relevant parameters are summarized in
Table I [29,30,32–34]. The value of fB that we use is
consistent with the lattice average [35]. The current value
of FB��0� becomes a little smaller, and is more suitable to
explain the �� data [6]. We use the light-cone sum rule
results for the B! �, K [32], and B! a1 [33] transition
form factors, for which the momentum dependence is
parametrized as [36]

 f�q2� � f�0�
�

1

1� q2=m2
B	



rBZ�Y�q2=m2
B	

1� �BZ�Y�q2=m2
B

�
; (4.1)

where mB	 is the lowest resonance in the corresponding
channel. Note that, since the mass of the a1 meson is not
small, we have, for instance, FB�1 �m

2
a1
�=FB�1 �0��

2 ’ 1:2. It
means that the q2 dependence of B! �, K form factors
cannot be ignored in the prediction. As for the B! a1

form factor, its q2 dependence can be negligible due to the
small mass of pseudoscalar mesons. However, to be con-
sistent, I also consider its q2 dependence in the analysis.
Our light-cone sum rule result for VBa1

0 �0� is a little larger
than the previous QCD sum rule calculation, 0:23� 0:05
[37]. It is interesting to compare with other quark model
calculations in the literature. The magnitude of VBa1

0 �0� is

TABLE I. Summary of input parameters.

Running quark masses (GeV) and the strong coupling constant [23,29]

mc�mc� ms�2 GeV� �mu 
md�=�2ms� �s�1 GeV�
1.3 0:09� 0:01 0.0413 0.497

Wolfenstein parameters for the CKM matrix elements [30]

A � �� ��
0.806 0.2272 0.195 0.326

Decay constants for mesons (MeV) [12,29,31]

f� fK fB fa1

131 160 195� 10 238� 10

Form factors and parameters for their q2 dependence [32,33]

FB�1 �0� � 0:26� 0:03 �BZ � 0:40 rBZ � 0:64 m1 � mB	 � 5:32 GeV
FBK1 �0� � 0:33� 0:04 �BZ � 0:95 rBZ � 0:52 m1 � mB	s � 5:41 GeV
VBa1

0 �0� � 0:28� 0:03 �Y � 0:90 rY � 0:65 m1 � mB	 � 5:32 GeV

Gegenbauer moments for leading-twist LCDAs of mesons at scale 1 GeV [12,34]

a�2 aK1 aK2 =a
�
2 ak;a1

2 a?;a1
1

0:25� 0:15 0:06� 0:03 1:05� 0:15 �0:03� 0:02 �1:04� 0:34
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about 0.13 and 1:02� 1:22 in the quark model calculations
in Refs. [38–40], respectively. The magnitude of the for-
mer is too small and the latter is too large if using them to
compute the branching ratios of �B0 ! a�1 �

� and then
comparing with the data. The values of the Gegenbauer
moments of leading-twist LCDAs for the a1 meson are
quoted from Ref. [12]. The integral of the B meson wave
function is parametrized as [25]

 

Z 1

0

d�
1� �

�B
1 ��� �

mB

�B
; (4.2)

where 1� � is the momentum fraction carried by the light
spectator quark in the Bmeson. Here we use �B�1 GeV� �
�350� 100� MeV.

There are three independent renormalization scales for
describing the decay amplitudes. The corresponding scale
will be specified as follows: (i) the scale �v � mb=2 for
loop diagrams contributing to the vertex and penguin con-
tributions to the hard-scattering kernels, (ii)�H �

�������������
�v�h

p
for hard-spectator scattering, and (iii) �A �

�������������
�v�h

p
for

the annihilation with the hadronic scale �h � 500 MeV.
We follow [25] to parametrize the end point divergences
XA �

R
1
0 dx= �x and XH �

R
1
0 dx= �x in the annihilation and

hard-spectator diagrams, respectively, as

 XA�H� � ln
�
mB

�h

�
�1
 �A�H�e

i�A�H� �; (4.3)

with the unknown real parameters �A, �H and �A, �H. We
adopt the moderate value �A;H � 0:5 and arbitrary strong
phases �A;H with �A;H � 0 by default, i.e., we assign a
50% uncertainty to the default value of XA�H� (with �A;H �
0� [31,41]; with the allowed ranges of �A;H, the theoretical
predictions for �K modes are consistent with the data.
Note that the a1K rates could be sensitive to the magnitude
of �A.

B. Results

We follow the standard convention for the direct CP
asymmetry

 ACP� �f� �
B� �B0 ! �f� �B�B0 ! f�

B� �B0 ! �f� 
B�B0 ! f�
: (4.4)

The branching ratios given in the present paper are
CP-averaged and simply denoted by B� �B! f�. The nu-
merical results forCP-averaged branching ratios and direct
CP asymmetries are summarized in Tables II and III,
respectively. The results for time-dependent CP parame-
ters of the decay B�t� ! a�1 �

� are shown in Table IV.

TABLE II. CP-averaged branching fractions for the decays B! a1�1260�� and a1�1260�K
(in units of 10�6). The theoretical errors correspond to the uncertainties due to variation of
(i) Gegenbauer moments, decay constants, (ii) quark masses, form factors, and (iii) �B, �A;H,
�A;H, respectively, added in quadrature.

Mode Theory Experiment (BABAR) [4,5] Experiment (Belle) [3]

�B0 ! a
1 �
� 8:7
0:2
2:4
2:1

�0:2�2:0�1:3 12:2� 4:5
�B0 ! a�1 �


 25:1
2:5
6:5
2:6
�2:4�5:8�1:6 21:0� 5:4

�B0 ! a�1 �
� 33:8
2:6
8:9
4:7

�2:6�7:8�2:9 33:2� 5:0 48:6� 5:6
�B0 ! a0

1�
0 0:7
0:1
0:2
0:7

�0:1�0:1�0:3

B� ! a�1 �
0 14:9
1:9
3:7
2:4

�1:7�3:3�2:1

B� ! a0
1�
� 7:3
0:3
1:7
1:3

�0:3�1:5�0:9
�B0 ! a
1 K

� 15:1
1:2
12:7
21:2
�1:2�6:3�7:2

�B0 ! a0
1

�K0 6:0
0:4
5:6
9:7
�0:4�2:6�3:1

B� ! a�1 �K0 19:1
1:3
15:5
24:5
�1:3�7:8�11:0

B� ! a0
1K
� 11:8
1:0
8:7
13:1

�1:0�4:6�4:8

TABLE III. Direct CP asymmetries for the decays B! a1�1260�� and a1�1260�K (in
percent). See Table II for errors.

Mode Theory BABAR [5,6] Mode Theory

�B0 ! a
1 �
� �3:2
0:1
0:3
20:1

�0:0�0:5�19:5 7� 21� 15 �B0 ! a
1 K
� 2:7
0:2
0:9
11:8

�0:2�0:8�11:9
�B0 ! a�1 �


 �1:7
0:1
0:1
13:6
�0:1�0:0�13:4 15� 15� 7 �B0 ! a0

1
�K0 �7:9
0:7
2:1
7:6

�0:7�2:2�8:3
�B0 ! a0

1�
0 69:3
5:4
6:9
25:0

�6:1�8:9�74:7 B� ! a�1 �K0 0:7
0:0
0:1
0:6
�0:0�0:1�0:1

B� ! a�1 �
0 �0:4
0:4
0:2
11:1

�0:4�0:1�11:1 B� ! a0
1K
� 8:8
0:5
1:5
12:1

�0:5�1:7�13:4

B� ! a0
1�
� �0:5
0:5
1:5
13:0

�0:3�2:4�14:6
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1. �B! a1�

The decay of the B0 meson to a�1 �
� was recently

measured by the BABAR and Belle groups [1–5]. A recent
updated result by BABAR yields [4]

 B �B0 ! a�1 �
� ! ���������

� �16:6� 1:9� 1:5� � 10�6: (4.5)

Assuming that B�a�1 ! ������� equals B�a�1 !
���0�0� and B�a�1 ! �3��

�� equals 100%, they have
obtained

 B �B0 ! a�1 �
�� � �33:2� 3:8� 3:0� � 10�6: (4.6)

Very recently, the measurements of time-dependent CP
asymmetries in the decay B0 ! a�1 �

� have been reported
by the BABAR collaboration [5]. From the measurements,

the individual branching ratios of �B0 ! a
1 �
� and a�1 �




can be obtained. As given in Table II, our theoretical results
are in good agreement with experiment. It was shown in
Ref. [42] that three-parton Fock states of M2 can give
nonsmall corrections to �p2 , so that j�p2 j ’ 0:30, If so, we
can expect B� �B0 ! a0

1�
0� * 1:6� 10�6, which can be

tested in the future measurement.
The �B! a1� amplitudes are analogous to the corre-

sponding �B! �� ones [43]. The tree(T)-penguin(P) in-
terference depends on the sign of sin� (where
Vub � jVubje

�i�) and the relative sign between Re��p1 �
and Re��p4 �; for sin� > 0, the T-P interference is destruc-
tive in �B0 ! a�1 �

�, B� ! a0
1�
�, while it is constructive

in B� ! a�1 �
0. Because the amplitudes of a1� and ��

modes are dominated by the terms with �1 and �p4 ,
and Re�p4 ��a1�� � Re�p4 �a1��=3� � Re�p4 ����� �
�Re�p4 ����� � �0:034, one can easily obtain the fol-
lowing relations:

 

B� �B0 ! a�1 �

�

B� �B0 ! ���
�
�

�FB�1 �m
2
a1
�fa1

FB�1 �m
2
��f�

�
2
;

B� �B0 ! a
1 �
��

B� �B0 ! �
���
<
�
VBa1

0 �m2
��

AB�0 �m
2
��

�
2
;

B�B� ! a0
1�
��

B�B� ! �0���
<
�
VBa1

0 �m2
��

AB�0 �m
2
��

�
2
;

B�B� ! a�1 �
0�

B�B� ! ���0�
>
�FB�1 �m

2
a1
�fa1

FB�1 �m
2
��f�

�
2
�

B� �B0 ! a�1 �

�

B� �B0 ! ���
�
;

(4.7)

which can offer constraints on the magnitudes of fa1
and

VBa1
0 �m2

��. Moreover, the ratio B� �B0 ! a�1 �

�=B� �B0 !

a
1 �
�� is

 

B� �B0 ! a�1 �

�

B� �B0 ! a
1 �
��
�

�FB�1 �m
2
a1
�fa1

VBa1
0 �m2

��f�

�
2
�
1
 Re

�
�t
�u

�
�4��a1� � �4�a1�� 
 �3��a1� � �3�a1��

�1��a1�

�


 2
�
VBa1

0 �m2
��f�

FB�1 �m
2
a1
�fa1

� 1
�

Re
�
�1��a1�

�1��a1�

��

O��p4;EW; �

p
4 ; �

p
3;EW; �

p
4;EW�; (4.8)

which is not only sensitive to the form factor and decay
constant of the a1 meson but also to the weak phase �. The
measurement of the above ratio allows us to obtain the
further constraint on the value of �.

The large direct CP asymmetries may result from the
nonzero value of the weak annihilation parameter (�A) and
its corresponding phase. See Table III. With default pa-
rameters, the direct CP asymmetries for a
1 �

�, a�1 �

,

a�1 �
0, a0

1�
� are only at a few percent level, whereas it can

be very remarkable for the a0
1�

0 mode. At the present time,
the large errors in the measurements for CP asymmetries
do not allow us to draw any particular conclusion in

comparison with theoretical predictions. (See Tables III
and IV.)

2. Time-dependent CP for B�t� ! a�1 �
�

Following Ref. [8], we define

 A
 � A�B0 ! a
1 �
��; A� � A�B0 ! a�1 �


�;

�A
 � A� �B0 ! a�1 �

�; �A� � A� �B0 ! a
1 �

��:

(4.9)

Neglecting CP violation in the B0 � �B0 mixing and the
width difference in the two B0 mass eigenstates, time-

TABLE IV. Parameters of the time-dependent B! a�1 �
� de-

cay rate asymmetries. S and �S are computed for � � 22:0�,
corresponding to sin�2�� � 0:695, and � � 59:0�. See Table II
for errors.

Theory Experiment (BABAR) [5]

Aa1�
CP 0:01
0:00
0:00
0:05

�0:00�0:00�0:05 �0:07� 0:07� 0:02

C 0:02
0:00
0:00
0:13
�0:00�0:00�0:13 �0:10� 0:15� 0:09

S �0:55
0:02
0:04
0:08
�0:02�0:06�0:13 0:37� 0:21� 0:07

�C 0:48
0:04
0:02
0:03
�0:04�0:04�0:05 0:26� 0:15� 0:07

�S �0:01
0:00
0:00
0:03
�0:00�0:00�0:03 �0:14� 0:21� 0:06

�
eff �105:1
0:3
0:9
4:4
�0:3�0:5�2:4�

�

��eff �113:9
0:6
3:2
6:4
�0:6�2:1�3:6�

�

�eff �109:5
0:5
2:1
5:4
�0:5�1:3�3:0�

� �78:6� 7:3��

BRANCHING RATIOS AND CP ASYMMETRIES OF . . . PHYSICAL REVIEW D 76, 094002 (2007)

094002-7



dependent decay rates for initially B0 decaying into a�1 �
�

can be parametrized by
 

��B0�t� ! a�1 �
�� � e��t1

2�jA�j
2 
 jA�j2�1
 �C� �C�

� cos�mt� �S��S� sin�mt�;

(4.10)

where

 C� �C �
jA�j2 � j �A�j2

jA�j2 
 j �A�j2
; (4.11)

and

 S� �S �
2 Im�e�2i� �A�A	��

jA�j2 
 j �A�j2
: (4.12)

Here �m denotes the neutral Bmass difference and � is the
average B0 width. For an initial �B0 the signs of the cos�mt
and sin�mt terms are reversed. The four decay modes
define five asymmetries: C, S, �C, �S, and the overall
CP violating Aa1�

CP :

 Aa1�
CP �

jA
j
2 
 j �A�j

2 � jA�j
2 � j �A
j

2

jA
j
2 
 j �A�j

2 
 jA�j
2 
 j �A
j

2
: (4.13)

Two �-related phases can be defined by

 ��eff �
1
2 arg�e�2i� �A�A

	
��; (4.14)

which coincide with � in the limit of vanishing penguin
amplitudes. The average of �
eff and ��eff is called �eff :

 �eff �
�
eff 
 �

�
eff

2

�
1

4

�
arcsin

�
S
 �S��������������������������������

1� �C
 �C�2
p �


 arcsin
�

S� �S��������������������������������
1� �C� �C�2

p ��
: (4.15)

The numerical results for the time-dependent CP parame-
ters are collected in Table IV. The magnitudes of Aa1�

CP ; C
and �S are small in the QCD factorization calculation,
where C is sensitive to the annihilations and can be �10%
in magnitude. �C describes the asymmetry between
B�B0 ! a
1 �

�� 
B� �B0 ! a�1 �

� and B�B0 !

a�1 �

� 
B� �B0 ! a
1 �

��, and thus can be read directly
from Tables II and III. Neglecting penguin contributions, S
and �eff , which depend on ��� �� �� ��, coincides
with sin2� and �, respectively, in the SM. Using � �
99:0�, i.e., � � 59:0�, the numerical results for S and
�eff differ from the experimental values at about the
3:7� level. This puzzle may be resolved by using a smaller
� � �� �� � & 78�. In Fig. 1, we plot S versus � (and
�), where we parametrize Vub � 0:003 68e�i�. The best
fitted value is � � �87
33

�7 �
�, corresponding to � �

�71
7
�33�

�, for � � 22�.

3. �B! a1�1260� �K decays

The decays �B! a1
�K are penguin dominated. Because

the dominant axial-vector and pseudoscalar penguin coef-
ficients, ap4 �a1

�K� and ap6 �a1
�K�, are constructive in the a1

�K

158°

S

1.5

0.5

–0.5

–1.5

–1.

0.

1.

108°

ef
f

α

γ

58° 8°

0° 50° 100° 150°

γ
0° 50° 100° 150°

158°

150°

100°

50°

0°

108°
αα

58° 8°

FIG. 1 (color online). S and �eff versus � (and �) for adopting � � 22�. The solid curves are obtained by using the central values
(default values) of input parameters. The region between two dashed lines is the theoretical variation within the allowed range of input
parameters.
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modes, �B! a1
�K and the corresponding �B! � �K decays should have similar rates. It is instructive to consider the four

ratios:
 

R1 �
B� �B0 ! a
1 K

��

B� �B0 ! �
K��

�

�
VBa1

0 �m2
K�

FB�0 �m
2
K�

�
2
�
�c4�a1

�K�

�c4�� �K�

�
2
�

1
 2 Re
��c3�a1

�K� � 1
2�

c
3;EW�a1

�K�

�c4�a1
�K�

�
�c3�� �K� � 1

2�
c
3;EW�� �K�

�c4�� �K�

�

 � � �

�
;

R2 �
B�B� ! a�1 �K0�

B�B� ! �� �K0�

�

�
VBa1

0 �m2
K�

FB�0 �m
2
K�

�
2
�
�c4�a1

�K�

�c4�� �K�

�
2
�

1
 2 Re
��c3�a1

�K� 
 �c3;EW�a1
�K�

�c4�a1
�K�

�
�c3�� �K� 
 �c3;EW�� �K�

�c4�� �K�

�

 � � �

�
;

R3 �
B� �B0 ! a0

1
�K0�

B� �B0 ! �0 �K0�

�

�
VBa1

0 �m2
K�

FB�0 �m
2
K�

�
2
�
�c4�a1

�K�

�c4�� �K�

�
2
�

1� 3 Re
��c3;EW�

�Ka1�

�c4�a1
�K�

r1 �
�c3;EW�

�K��

�c4�� �K�
r2

�


 2 Re
��c3�a1

�K� � 1
2�

c
3;EW�a1

�K�

�c4�a1
�K�

�
�c3�� �K� � 1

2�
c
3;EW�� �K�

�c4�� �K�

�

 � � �

�
;

R4 �
B�B� ! a0

1K
��

B�B� ! �0K��

�

�
VBa1

0 �m2
K�

FB�0 �m
2
K�

�
2
�
�c4�a1

�K�

�c4�� �K�

�
2
�

1
 3 Re
��c3;EW�

�Ka1�

�c4�a1
�K�

r1 �
�c3;EW�

�K��

�c4�� �K�
r2

�


 2 Re
��c3�a1

�K� 
 �c3;EW�a1
�K�

�c4�a1
�K�

�
�c3�� �K� 
 �c3;EW�� �K�

�c4�� �K�

�

 � � �

�
;

(4.16)

where

 r1 �
FBK0 �m

2
a1
�fa1

VBa1
0 �m2

K�fK
� 1:9; (4.17)

 r2 �
FBK0 �m

2
��f�

FB�0 �m
2
K�fK

� 1:1; (4.18)

and the dots stand for the neglected terms which are
numerically estimated to be less than 1% in magnitude.
The ratios R1;2;3;4, which are very insensitive to �, are
approximately proportional to VBa1

0 �m2
K�=�F

B�
0 �m

2
K��

2

and receive corrections mainly from the electroweak pen-
guin and annihilation topologies. The value of the annihi-
lation�3 is sensitive to a?;a1

1 . The contributions originating
from electroweak penguin and annihilation amplitudes can
be further explored by taking into account the following
measurements for ratios:

 

R1

R2
� 1� 3 Re

��c3;EW�a1
�K�

�c4�a1
�K�
�
�c3;EW�� �K�

�c4�� �K�

�
; (4.19)

 

R1

R2
�
R3

R4
� 6 Re

��c3;EW�
�Ka1�

�c4�a1
�K�

r1 �
�c3;EW�

�K��

�c4�� �K�
r2

�
;

(4.20)

 

R1

R3
�
R4

R2
� 1
 3 Re

��c3;EW�
�Ka1�

�c4�a1
�K�

r1 �
�c3;EW�

�K��

�c4�� �K�
r2

�

� 1

1

2

�
R1

R2
�
R3

R4

�
: (4.21)

Although the above ratios are parametrized according to
the QCD factorization, they can be treated in a model-
independent way. It is worth stressing that, because �a1

? �u�
is antisymmetric under interchange of the quark and anti-
quark momentum fractions in the SU(2) limit, the weak
annihilations (and hard-spectator interactions), which
could contribute sizable corrections to the decay ampli-
tudes, enter the �B! a1

�K amplitude in a very different
pattern compared with �B! � �K decays. More relevant
information about XA and a?;a1

1 can thus be provided by
the measurement of R1=R2.

With default parameters, the direct CP asymmetries
are analogous to the corresponding �B! � �K modes; be-
cause ACPs are dominated by Re�V	tdVtb� Im��

c
4 


�c3� Im�V
	
ud�Vub� times Re�1 
 �2F

BK
1 fa1

=�VBa1
0 fK��

and �Re�2F
BK
1 fa1

=�VBa1
0 fK�� terms for a0

1K
� and a0

1
�K0

modes, respectively, their direct CP asymmetries are thus a
little larger than the corresponding � �K modes in magni-
tude due to the decay constant enhancement. Note that the
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value of �3 is sensitive to the first Gegenbauer moment of
�a1

? �u� and the annihilation parameters �A and �A. On the
other hand, an outstanding problem is the determination of
the signs for direct CP observations in the � �K modes. The
experimental results are ACP� �B0 ! �
K�� � �0:095�
0:013 and ACP�B� ! �0K�� � 0:046� 0:026 [6]. Some
proposals, for instance the contribution due to new physics
in the SM electroweak penguin sector [19,20,22] or due to
FSIs [17,18], were advocated for the resolution. The ratio
measurements for R1=R2 � R3=R4, R1=R3, and R4=R2 di-
rectly probe the electroweak penguins. Moreover, the ap-
proximate relation given in Eq. (4.21) will be violated if the
FSI patterns are different between a1

�K and � �K modes.

V. CONCLUSIONS

We have studied �B! a1�1260��, a1�1260� �K decays.
This paper is the first one in the literature using the QCD
factorization approach to study B! AP decays.
Interestingly, due to the G-parity, the leading-twist
LCDA �a1

? of the a1�1260� defined by the nonlocal tensor
current is antisymmetric under the exchange of quark and
antiquark momentum fractions in the SU(2) limit, whereas
the �a1

k
defined by the nonlocal axial-vector current is

symmetric. The large magnitude of the first Gegenbauer
moment (a?;a1

1 ) of �a1

? could have a sizable impact on the
annihilation amplitudes. If one ignores �a1

? , i.e., letting

a?;a1
1 � 0, with default parameters (where �A � 0), the

branching ratio for a0
1

�K0 mode becomes 1.8 times smaller,
while the changes of branching ratios for a1� and the
remaining a1

�K modes are at the level of 5% and 10%,
respectively.

Our main results are summarized as follows.
(i) Our results for B� �B0 ! a
1 �

�; a�1 �

� are in good

agreement with the data. Theoretically, the rates for
�B! a1�1260�� are close to the corresponding ones
for �B! ��. The differences between the above two
modes are mainly caused by different magnitudes of
form factors (VBa1

0 and AB�0 ) and decay constants (fa1

and f�), and by different patterns of tree-penguin
interference. For sin� > 0, the T-P interference is
destructive in �B0 ! a�1 �

�, B� ! a0
1�
�, but con-

structive in B� ! a�1 �
0. Because the amplitudes of

a1� and �� modes are dominated by terms with �1

and �p4 , and Re�p4 ��a1�� � Re�p4 �a1��=3� �
Re�p4 ����� � �Re�p4 ����� � �0:034, we obtain
the relations as given in Eqs. (4.7) and (4.8). Thus
estimates for form factors and decay constants as
well as the weak phase � can thus be made from
these ratio measurements.

(ii) For CP asymmetries, the large experimental errors
do not allow us to draw any particular conclusion in
comparison with theoretical predictions. The time-
dependent CP asymmetry measurement in B0 !
a�1 �

� can lead to the accurate determination of the

CKM angle �. Using the current fitted value � �
59:0�, i.e., � � 99:0� corresponding to � � 22:0�

in the SM, our results show that S and �eff differ
from the present data at about the 3:7� level. This
puzzle may be resolved by using a larger � * 80�.
Further measurements can clarify this discrepancy.

(iii) The branching ratios for the decays B! a1� and
a1K are highly sensitive to the magnitude of VBa1

0 �0�.
Using the LC sum rule result, VBa1

0 �0� � 0:28� 0:03
[33], the resultant branching ratios for a�1 �

� modes
show consistency with the data very well.
Nevertheless, the value of VBa1

0 �0� is about 0.13 and
1:02� 1:22 in the quark model calculations in
Refs. [38– 40], respectively. If the quark model result
is used in the calculation, B� �B0 ! a�1 �

�� will be
too small or large as compared with the data.

(iv) The �B! a1
�K amplitudes resemble the correspond-

ing �B! � �K amplitudes very much. Taking the ra-
tios of corresponding CP-averaged a1

�K and � �K
branching ratios, we can extract information about
the transition form factors, decay constants, electro-
weak penguin (�c3;EW�

�Ka1�), and annihilation topol-
ogy [�c3;EW�a1

�K�]. See Eqs. (4.19), (4.20), and (4.21).
Thus, the possibilities for existing new physics in the
electroweak penguin sector and for final-state inter-
actions during decays can be explored.
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Note added.—Recently Belle has updated the following
measurement [44]: B� �B0 ! a
1 �

� 
 a�1 �

� �

�29:8� 3:2� 4:6� � 10�6 which is in good agreement
with our result. On the other hand, BABAR has reported
new measurements on a0

1�
�, a�1 �

0 and a
1 K
�, a�1 �K0

modes [45,46], where B� �B0 ! a
1 K
�� � �16:3� 2:9�

2:3� � 10�6 is also in good agreement with our prediction,
whereas the central values of branching ratios for the
remaining modes are about 2� 3 times larger than our
predictions. The latter discrepancies should be clarified by
the improved measurements in the future.

APPENDIX A: THE COEFFICIENTS api
In the below discussion, we set �P

k
� �P. In Eq. (3.9),

the expressions for effective parameters api are
 

api �M1M2� �

�
ci 


ci�1

Nc

�
Ni�M2�



ci�1

Nc

CF�s
4�

�
Vi�M2� 


4�2

Nc
Hi�M1M2�

�

 Ppi �M2�: (A1)
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Ni is given in Eq. (3.10). The vertex corrections have the
same expressions as those for VP modes [23] with LCDAs
of the vector meson being replaced by the corresponding
ones of the a1 meson. For the penguin contractions
Ppi �M2�, one can perform the same replacements but needs
to add an overall minus sign to Pp6 �a1� and Pp8 �a1�.
Hi�M1M2� have the expressions
 

Hi�M1M2��
�ifBfM1

fM2

X� �BM1;M2�

Z 1

0
d�

�B
1 ���

1��

�
Z 1

0
dv

Z 1

0
du
��M1

k
�v��M2

k
�u�

�u �v

�rM1


�m1
�v��M2

k
�u�

u �v

�
; (A2)

for i � 1–4, 9, 10,

 

Hi�M1M2� �
ifBfM1

fM2

X� �BM1;M2�

Z 1

0
d�

�B
1 ���

1� �

Z 1

0
dv

Z 1

0
du

�

��M1

k
�v��M2

k
�u�

u �v
� rM1



�m1
�v��M2

k
�u�

�u �v

�
;

(A3)

for i � 5, 7, and Hi�M1M2� � 0 for i � 6, 8, where the
upper (lower) signs apply when M1 � P (M1 � A). Here
�B

1 ��� is one of the two LCDAs of the �B meson [25].

APPENDIX B: THE ANNIHILATION AMPLITUDES
Ai;fn

For Ai;fn [see Eq. (3.12)], some signs change in compari-
son with the results of B! PP and PV. We obtain

 

Ai1 � ��s
Z 1

0
dxdy

�
�M2

k
�x��M1

k
�y�
�

1

y�1� x �y�



1

�x2y

�
� rM1

 rM2
 �m2

�x��m1
�y�

2

�xy

�
;

Af1 � Af2 � 0;

Ai2 � ��s
Z 1

0
dxdy

�
�M2

k
�x��M1

k
�y�
�

1

�x�1� x �y�



1

�xy2

�
� rM1

 rM2
 �m2

�x��m1
�y�

2

�xy

�
;

Ai3 � ���s
Z 1

0
dxdy

�
rM1
 �M2

k
�x��m1

�y�
2�y

�xy�1� x �y�

 rM2

 �M1

k
�y��m2

�x�
2x

�xy�1� x �y�

�
;

Af3 � ���s
Z 1

0
dxdy

�
rM1
 �M2

k
�x��m1

�y�
2�1
 �x�

�x2y
� rM2

 �M1

k
�y��m2

�x�
2�1
 y�

�xy2

�
;

(B1)

where the upper (lower) signs apply when M1 � P (M1 �
A) and the detailed definitions of the distribution ampli-
tudes of the axial mesons have been collected in Sec. II.
Again, here we have set �P

k
� �P.

Using the asymptotic distribution amplitudes of �a1

k
�u�

and �P�u�, and the approximation �a1

? �u� � 18u �u�2u�

1�a?;a1
1 , we obtain the annihilation amplitudes

 Ai1 � 6��s

�
3
�
XA � 4


�2

3

�
� a?;a1

1 ra1
 rPXA�XA � 3�

�
;

(B2)

 Ai2 � 6��s

�
3
�
XA � 4


�2

3

�
� a?;a1

1 ra1
 rPXA�XA � 3�

�
;

(B3)

 

Ai3 � �6��s

�
rP

�
X2
A � 2XA 


�2

3

�


 3a?;a1
1 ra1



�
X2
A � 2XA � 6


�2

3

��
; (B4)

 Af3 � 6��s�2XA � 1�rPXA � 3a?;a1
1 ra1

 �XA � 3��: (B5)
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