
Probing new physics in the neutrinoless double beta decay using electron angular correlation

A. Ali*
Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg, Germany

A. V. Borisov† and D. V. Zhuridov‡

Faculty of Physics, Moscow State University, 119991 Moscow, Russia
(Received 3 July 2007; published 27 November 2007)

The angular correlation of the electrons emitted in the neutrinoless double beta decay (0�2�) is
presented using a general Lorentz invariant effective Lagrangian for the leptonic and hadronic charged
weak currents. We show that the coefficient K in the angular correlation d�=d cos� / �1� K cos�� is
essentially independent of the nuclear matrix element models and present its numerical values for the five
nuclei of interest (76Ge, 82Se, 100Mo, 130Te, and 136Xe), assuming that the 0�2� decays in these nuclei are
induced solely by a light Majorana neutrino, �M. This coefficient varies between K � 0:81 (for the 76Ge
nucleus) and K � 0:88 (for the 82Se and 100Mo nuclei), calculated taking into account the effects from the
nucleon recoil, the S and Pwaves for the outgoing electrons and the electron mass. Deviation of K from its
values derived here would indicate the presence of new physics (NP) in addition to a light Majorana
neutrino, and we work out the angular coefficients in several �M � NP scenarios for the 76Ge nucleus. As
an illustration of the correlations among the 0�2� observables (half-life T1=2, the coefficient K, and the
effective Majorana neutrino mass jhmij) and the parameters of the underlying NP model, we analyze the
left-right symmetric models, taking into account current phenomenological bounds on the right-handed
WR-boson mass and the left-right mixing parameter � .
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I. INTRODUCTION

It is now established beyond any doubt that the observed
neutrinos have tiny but nonzero masses and they mix with
each other, with both of these features following from the
observation of the atmospheric and solar neutrino oscilla-
tions and from the long baseline neutrino oscillation ex-
periments [1]. Theoretically, it is largely anticipated that
the neutrinos are Majorana particles. Experimental evi-
dence for the neutrinoless double beta decay (0�2�) would
deliver a conclusive confirmation of the Majorana nature of
neutrinos, establishing the existence of physics beyond the
standard model. This is the overriding interest in carrying
out these experiments and in the related phenomenology
[2].

We recall that 0�2� decays are forbidden in the standard
model (SM) by lepton number (LN) conservation, which is
a consequence of the renormalizability of the SM.
However, being the low energy limit of a more general
theory, an extended version of the SM could contain non-
renormalizable terms (tiny to be compatible with experi-
ments), in particular, terms that violate LN and allow the
0�2� decay. Probable mechanisms of LN violation may
include exchanges by: Majorana neutrinos �Ms [3–5] (the
preferred mechanism after the observation of neutrino
oscillations [1]), SUSY particles [6–11], scalar bilinears
(SBs) [12], e.g. doubly charged dileptons (the component
��� of the SU�2�L triplet Higgs scalar, etc.), leptoquarks

(LQs) [13], right-handedWR bosons [5,14], etc. From these
particles light �s are much lighter than the electron and
others are much heavier than the proton. Therefore, there
are two possible classes of mechanisms for the 0�2�
decay. With the light �s in the intermediate state the
mechanism is called long range and otherwise it is referred
to as the short-range mechanism. For both these classes,
the separation of the lepton physics from the hadron phys-
ics takes place [15], which simplifies calculations.
According to the Schechter-Valle theorem [16], any
mechanism inducing the 0�2� decay produces an effective
Majorana mass for the neutrino, which must therefore
contribute to this decay. These various contributions will
have to be disentangled to extract information from the
0�2� decay on the characteristics of the sources of LN
violation, in particular, on the neutrino masses and mixing.
Measurements of the neutrinoless double beta decay in
different nuclei will help in determining the underlying
physics mechanism [17,18].

Our aim in this paper is to examine the possibility to
discriminate among the various possible mechanisms con-
tributing to the 0�2� decays using the information on the
angular correlation of the final electrons in the process
Ni�A; Z� ! Nf�A; Z� 2� � e� � e�. A preliminary study
along these lines was published by us in 2006 [19], with
admittedly simplified treatment neglecting the nucleon
recoil and the P-wave effects in the outgoing electron
wave function. We rectify these shortcomings and provide
in this paper a detailed account of the improved treatment.
Restricting ourselves to the long-range mechanism, treat-
ing the electrons relativistically but with nonrelativistic
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nucleons, we derive the angular correlation between the
electrons using the general Lorentz invariant effective
Lagrangian involving the leptonic and hadronic charged
weak currents. Generally, this angular correlation can be
expressed as d�=d cos�� 1� K cos�, where � is the
angle between the electron momenta in the rest frame of
the parent nucleus. Expressing K � B=A, with �1<
K < 1, we derive the analytic expressions for A and B
for the effective Lagrangian characterized by the coeffi-
cients ���i encoding the standard, �V � A� � �V � A�, and
new physics contributions (see Eq. (1)). Essential steps of
these derivations are presented in Sec. II. The analytic
expressions derived here confirm the earlier detailed deri-
vations by Doi et al. [5], and we specify where the treat-
ment presented here transcends the earlier work. Specific
cases are relegated to Appendix A (for the decays involv-
ing scalar nonstandard terms), Appendix B (for the vector
nonstandard terms), and Appendix C (for the tensor non-
standard terms). We hope to return to the discussion of
including the short-range mechanism, neglected in this
paper, in future work.

Numerical analysis of the electron angular correlation is
presented in Sec. III, and the coefficients K for the various
underlying mechanisms in 0�2� decays are worked out. In
particular, numerical values of K for the five nuclei of
current experimental interest: 76Ge, 82Se, 100Mo, 130Te,
and 136Xe are presented for the light Majorana neutrino
�M case. Their values range from K � 0:81 (for the 76Ge
nucleus) and K � 0:88 (for the 82Se and 100Mo nuclei). To
study the uncertainty in the nuclear matrix elements, we
have employed the so-called QRPA model with and with-
out the p-n pairing for the 76Ge nucleus [20], and a more
modern QRPA model, fixing the particle-particle pairing
strength [21]. While the uncertainty due to the nuclear
matrix element model is quite marked for T1=2 in some
cases, we show that it is rather modest for K, not exceeding
10% for the models discussed here. For the �M � NP
scenarios, we remark that the nonstandard coefficients
�V�AV�A, �TLTR , and �TRTL do not change the value of the angular
coefficient K. The contribution of the scalar nonstandard
term from the �S�PS�P coefficients is found to be numerically
small. So, what concerns the angular correlation, we have

FIG. 1 (color online). Correlation between the neutrino effective mass jhmij (left) [j�V�AV�Aj (right)], the angular correlation coefficient
K, and the half-life T1=2 for the 0�2� decay of 76Ge for the case cos 1 � 0.

FIG. 2 (color online). Correlation between the neutrino effective mass jhmij (left) [j�V�AV�Aj (right)], the angular correlation coefficient
K, and the half-life T1=2 for the 0�2� decay of 76Ge for the case cos 1 � 0.
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essentially three distinct scenarios: (i) standard (�M),
(ii) R-parity violating SUSY (�M � �

TR
TR

), and (iii) left-
right-symmetric models (�M � �V�AV�A). Numerical analysis

of the coefficient K in the extended �M � NP scenario is
carried out for the decay of the 76Ge nucleus using the
nuclear matrix element models already specified.

FIG. 4 (color online). Correlation between the mixing parameter � , the angular correlation coefficient K, and the half-life T1=2 for the
0�2� decay of 76Ge for the case cos 1 � 0 and � � 10�6 (left) and for � � 5	 10�7 (right).

FIG. 3 (color online). Correlation between the right-handed W-boson mass mWR
, the angular correlation coefficient K, and the half-

life T1=2 for the 0�2� decay of 76Ge for the case cos 1 � 0 and � � 10�6 (left) and for � � 5	 10�7 (right).

FIG. 5. Left: Differential width in cos� for the 0�2� decay of 76Ge for a fixed value of � � 10�6 and jhmij � 20, 30 meV. The
straight and dotted lines correspond tomWR

� 1 TeV,1, respectively (the latter is the conventional case of the light Majorana neutrino
exchange mechanism). Right: The same as the left figure but for smaller values of jhmij � 5, 10 meV. In addition, the dashed lines
correspond to mWR

� 1:5 TeV.
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We take a closer look at the underlying physics behind
the coefficients �V�AV�A in Sec. IV. These coefficients appear
in the context of the left-right symmetric models which are
theoretically well motivated [22]. Also, the corresponding
nuclear matrix elements are available in the literature.
Making use of them, we work out the correlations among
the angular coefficient K, the half-life T1=2, and either the
mass of the right-handed WR boson,mWR

, or theW boson’s
mixing angle � , taking into account the current bounds on
the various parameters. Results are presented in Figs. 1–4.
The differential distribution d�=d cos� for the 0�2� decay
of the 76Ge nucleus is shown in Fig. 5 for some represen-
tative values of jhmij for mWR

� 1, 1.5 TeV and for an
infinitely heavy mWR

. It is seen that the effect of the right-
handed WR boson is more marked in the angular correla-
tion for smaller values of jhmij.

II. ANGULAR CORRELATION FOR THE LONG-
RANGE MECHANISM OF 0�2� DECAY

A. General effective Lagrangian

For the decay mediated by light �Ms, the most general
effective Lagrangian is the Lorentz invariant combination
of the leptonic j� and the hadronic J� currents of definite
tensor structure and chirality [23,24]

 

L �
GFVud���

2
p

�
�Uei � �

V�A
V�A;i�j

�i
V�AJ

�
V�A;�

�
X
�;�

0���ij
i
�J
�
� � H:c:

�
; (1)

where the hadronic and leptonic currents are defined as:
J�� � �uO�d and ji� � �eO��i; the leptonic currents con-
tain neutrino mass eigenstates, and the index i runs over the
light eigenstates. Here and thereafter, a summation over the
repeated indices is assumed; �, � � V � A, S� P, TL;R
(OT	 � 2
��P	, 
�� � i

2 
�
�; ���, P	 � �1� �5�=2 is

the projector, 	 � L, R); the prime indicates the summa-
tion over all the Lorentz invariant contributions, except for
� � � � V � A, Uei is the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix [25] and Vud is the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element
[1]. Note that in Eq. (1) the currents have been scaled
relative to the strength of the usual V � A interaction
with GF being the Fermi coupling constant. The coeffi-
cients ���i encode new physics, parametrizing deviations of
the Lagrangian from the standard V � A current-current
form and mixing of the non-SM neutrinos.

In discussing the extension of the SM for the 0�2�
decay, Ref. [5] considered explicitly only nonstandard
terms with

 �V�AV�A;i � �
g0V
gV
U0ei; �V�AV�A;i � 
V0ei;

�V�AV�A;i � �
g0V
gV
Vei:

(2)

Implicitly, also the contributions encoded by the coeffi-
cients �V�AV�A;i are discussed arising from the non-SM con-
tribution to Uei in SU�2�L 	 SU�2�R 	U�1� models with
mirror leptons (see Ref. [5], Eq. A2.17). Here V,U0, and V0

are the 3	 3 blocks of mixing matrices for non-SM neu-
trinos, e.g., for the usual SU�2�L 	 SU�2�R 	U�1� model
V describes the lepton mixing for neutrinos from right-
handed lepton doublets; for the SU�2�L 	 SU�2�R 	U�1�
model with mirror leptons [26]U0 (V 0) describes the lepton
mixing for mirror left(right)-handed neutrinos [5], etc. The
form factors gV and g0V are expressed through the mixing
angles for left- and right-handed quarks. Thus, gV �
cos�C � Vud and g0V � ei� cos�0C, with �C being the
Cabibbo angle, �0C is its right-handed mixing analogue,
and the CP violating phase � arises in these models due to
both the mixing of right-handed quarks and the mixing of
left- and right-handed gauge bosons (see Ref. [5],
Eq. (3.1.11)). The parameters �, 
, and � characterize
the strength of nonstandard effects. Below, we give some
illustrative examples relating the coefficients �V�AV�A;i, �

V�A
V�A;i

and the particle masses, couplings, and the mixing parame-
ters in the underlying theoretical models.

In the R-parity-violating (RPV) SUSY accompanying
the neutrino exchange mechanism [6–11], SUSY particles
(sleptons, squarks) are present in one of the two effective 4-
fermion vertices. (The other vertex contains the usual WL
boson.) The nonzero parameters are

 �V�AV�A;i �
1
2


n1
�q�RRUni;

�S�PS�P;i � 2
n1
�l�LLUni;

�S�PS�P;i � �
1
4�


n1
�q�LR � 4
n1

�l�LR�U


ni;

�TRTR;i �
1
8


n1
�q�LRU



ni;

(3)

where the index n runs over e, �, � (1, 2, 3), and the RPV
minimal supersymmetric model (MSSM) parameters 
s
depend on the couplings of the RPV MSSM superpotential,
the masses of the squarks and the sleptons, the mixings
among the squarks and among the sleptons. Concentrating
on the dominant contributions �S�PS�P;i and �TRTR;i (as the
others are helicity-suppressed), one can express 
n1

�q�LR

and 
n1
�l�LR as follows [10]

 
n1
�q�LR �

X
k

�011k�
0
nk1

2
���
2
p
GF

sin2�d
�k�

�
1

m2
~d1�k�

�
1

m2
~d2�k�

�
;


n1
�l�LR �

X
k

�0k11�n1k

2
���
2
p
GF

sin2�e�k�

�
1

m2
~e1�k�

�
1

m2
~e2�k�

�
;

(4)

where k is the generation index, �d
�k� and �e

�k� are the squark
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and slepton mixing angles, respectively, m~f1
and m~f2

are
the sfermion mass eigenvalues, and �ijk and �0ijk are the
RPV couplings in the superpotential.

For the mechanism with LQs in one of the effective
vertices [13], the nonzero coefficients are

 �S�PS�P � �

���
2
p

4GF

�V
M2
V

;

�S�PS�P � �

���
2
p

4GF

�S
M2
S

;

�V�AV�A � �
1

2GF

�
��L�S
M2
S

�
��L�V
M2
V

�
;

�V�AV�A � �

���
2
p

4GF

�
��R�S
M2
S

�
��R�V
M2
V

�
;

(5)

where

 ��� � Uei�
�
�i; (6)

the parameters �S�V�, �
�L�
S�V�, and ��R�S�V� depend on the cou-

plings of the renormalizable LQ-quark-lepton interactions
consistent with the SM gauge symmetry, the mixing pa-
rameters, and the common mass scale MS�V� of the scalar
(vector) LQs [27].

The nonzero ��� for the discussed models are collected in
Table I.

The upper bounds on some of the ��� parameters (6) from
the Heidelberg-Moscow experiment were derived in
Ref. [28] using the S-wave approximation for the electrons,
considering nucleon recoil terms and only one nonzero
parameter ���i in the Lagrangian (1) at a time.

The coefficients ���i entering the Lagrangian (1) can be
expressed as

 ���i � �̂��U
��;��
ei ; (7)

where U��;��ei are mixing parameters for non-SM neutrinos
(see, e.g., Eq. (2)). As this Lagrangian describes also
ordinary � decays (without LN violation), the coefficients
�̂�� are constrained by the existing data on precision mea-
surements in allowed nuclear beta decays, including neu-
tron decay [29]. For example, from these data we obtain the
conservative bound

 j�̂V�AV�Aj< 7	 10�2: (8)

From Eqs. (6)–(8) and the bound j�V�AV�Aj< 7:9	 10�7

(see Sec. III B) we can assume that the nonstandard mixing
is small:

 jUeiVeij & 10�5; Vei � U�V�A;V�A�ei : (9)

B. Methods and approximations

We have calculated the leading order in the Fermi con-
stant taking into account the leading contribution of the
parameters ��� to the decay matrix elements using the
approximation of the relativistic electrons and nonrelativ-
istic nucleons. The wave function of an electron with the
asymptotic momentum p and the spin projection s can be
expanded in terms of spherical waves as [5,30]

 eps�r� � e
S1=2
ps �r� � e

P1=2
ps �r� � . . . (10)

We take into account the S1=2 and the P1=2 waves for the
outgoing electrons:

 e
S1=2
ps �r� �

~g�1�s
~f1� � p̂�s

� �
; (11)

 e
P1=2
ps �r� � i

~g1� � r̂� � p̂�s
�~f�1� � r̂�s

� �
; (12)

with r̂ � r=r, p̂ � p=p and the two component spinor �s.
We use the approximate radial wave functions [5]

 

~g�1
~f1

� �
� ~A�1

�
1�

1

6
� �pr�2

�
; (13)

 � �pr�2 �
�
3

2
�Z

�
2
�
r
R

�
2
� 3�Z

r
R
"r� �pr�2; (14)

 

~g1
~f�1

� �
� � ~A�1���"�

r
R
;

�� �
1

2
�Z�

1

3
�"�me�R;

(15)

including the finite de Broglie wave length correction
(FBWC) for the S1=2 wave. Here R is the nuclear radius,
" is the electron energy, and� is the fine structure constant.
For the normalization constants ~A�1 we use the approxi-
mate Eq. (45) (see below).

The nucleon matrix elements of the color singlet quark
currents are [8,31]

 hP�k0�j �ud�1� �5�jN�k�i � 
F
�3�
S �q

2�

� F�3�P �q
2�� � �k0��� �k�;

(16)

 hP�k0�j �u���1� �5�jN�k�i � � �k0���
gV�q2�

� gA�q
2��5��� �k�; (17)

TABLE I. Nonzero coefficients ��� for various models.

Model Nonzero �s

with WRs �V�AV�A, �V�AV�A
RPV SUSY �S�PS�P, �V�AV�A, �TRTR
with LQs �S�PS�P, �V�AV�A
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 hP�k0�j �u
���1� �5�jN�k�i � � �k0�
�
J��

�
i
2
���	
J	


�
�� �k�;

(18)
 

J�� � T�3�1 �q
2�
�� �

iT�3�2

mp
���q� � ��q��

�
T�3�3

m2
p
�
�	q	q� � 
�	q	q��; (19)

where

  �
�
P
N

�
(20)

is a nucleon isodoublet.
The nonrelativistic structure of the nucleon currents in

the impulse approximation is derived using Refs. [32,33],
see Appendices A, B, and C. We have calculated the
nucleon recoil terms including the recoil terms due to the
pseudoscalar form factor.

C. Electron angular correlation

Taking into account the dominant terms introduced in
the Appendices A, B, and C in the closure approximation
[5] we obtain the differential width in cos� for the
0��A; Z� ! 0��A; Z� 2�e�e� transitions:

 

d�

d cos�
�

ln2

2
jMGTj

2A�1� K cos��; (21)

where � is the angle between the electron momenta in the
rest frame of the parent nucleus and the angular correlation
coefficient is

 K �
B

A
; �1<K < 1: (22)

The Gamow-Teller nuclear matrix element MGT is defined
in Eq. (51) below.

The expressions for A and B for different choices of
���, with only one coefficient considered at a time, are
shown in Tables II and III.

In these tables

 ci � cos i; si � sin i (23)

and

 � � hmi=me; ��
� � m�

�=me; (24)

with the standard effective Majorana mass hmi �
P
iU

2
eimi

and the nonstandard ones:
 

mS�P
S�P �

X
i

Uei�
S�P
S�P;imi; mV�A

V�A �
X
i

Uei�
V�A
V�A;imi;

mTL
TL;R
�
X
i

Uei�
TL
TL;R;i

mi: (25)

The quantities A and B for all zero ��� are

 A 0 � C1j�j
2; B0 � D1j�j

2 (26)

and the relative phases are

  01 � arg�h�i�V�A

V�A �;  02 � arg�h�i�V�A


V�A �;

 1 � arg�h�i�V�A
V�A �;  2 � arg�h�i�V�A
V�A �;

 03 � arg�h�i�S�P

S�P �;  04 � arg�h�i�S�P


S�P �;

 3 � arg�h�i�S�P
S�P �;  4 � arg�h�i�S�P
S�P �;

 06 � arg�h�i�TL

TL
�;  5 � arg�h�i�TR
TR

�;

 6 � arg�h�i�TR
TL
�:

(27)

TABLE III. Expressions for B in Eq. (22) for the stated choice
of ���.

� B

�V�AV�A B0 � 4D1j�jj�
V�A
V�Ajc02 � 4D1j�

V�A
V�Aj

2

�V�AV�A B0 � 4D0j�jj�
V�A
V�Ajc01 � 4D1�j�

V�A
V�Aj

2

�V�AV�A B0 � j�jj�
V�A
V�Aj�D3c2 �D3�s2� �D5j�

V�A
V�Aj

2

�V�AV�A B0 � j�jj�
V�A
V�Aj�D2c1 �D2�s1� �D4j�

V�A
V�Aj

2

�S�PS�P B0 � 4DSP
0�j�jj�

S�P
S�Pjs04 � 4DSP

1 j�
S�P
S�Pj

2

�S�PS�P B0 � 4DSP
0�j�jj�

S�P
S�Pjs03 � 4DSP

1 j�
S�P
S�Pj

2

�S�PS�P B0 � j�jj�
S�P
S�Pj�D

SP
2 c4 �D

SP
2�s4� �D

SP
3 j�

S�P
S�Pj

2

�S�PS�P B0 � j�jj�
S�P
S�Pj�D

SP
2 c3 �D

SP
2�s3� �D

SP
3 j�

S�P
S�Pj

2

�TLTL B0 � 4DT
0�j�jj�

TL
TL
js06 � 4DT

1 j�
TL
TL
j2

�TLTR , �TRTL B0

�TRTR B0 �D
T
2 j�jj�

TR
TR
jc5 �D

T
3 j�

TR
TR
j2

TABLE II. Expressions for A in Eqs. (21) and (22) for the
stated choice of ���.

� A

�V�AV�A A0 � 4C1j�jj�
V�A
V�Ajc02 � 4C1j�

V�A
V�Aj

2

�V�AV�A A0 � 4C0j�jj�
V�A
V�Ajc01 � 4C1�j�

V�A
V�Aj

2

�V�AV�A A0 � C3j�jj�
V�A
V�Ajc2 � C5j�

V�A
V�Aj

2

�V�AV�A A0 � C2j�jj�
V�A
V�Ajc1 � C4j�

V�A
V�Aj

2

�S�PS�P A0 � 4CSP0 j�jj�
S�P
S�Pjc04 � 4CSP1 j�

S�P
S�Pj

2

�S�PS�P A0 � 4CSP0 j�jj�
S�P
S�Pjc03 � 4CSP1 j�

S�P
S�Pj

2

�S�PS�P A0 � C
SP
2 j�jj�

S�P
S�Pjc4 � C

SP
3 j�

S�P
S�Pj

2

�S�PS�P A0 � C
SP
2 j�jj�

S�P
S�Pjc3 � C

SP
3 j�

S�P
S�Pj

2

�TLTL A0 � 4CT0 j�jj�
TL
TL
jc06 � 4CT1 j�

TL
TL
j2

�TLTR , �TRTL A0

�TRTR A0 � C
T
2 j�jj�

TR
TR
jc5 � C

T
3 j�

TR
TR
j2
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The coefficients Ci and C�SP;T�i in Table II are

 C0 � ��
2
F � 1�A01; C1 � ��F � 1�2A01; C1� � ��F � 1�2A01; C2 � ��F � 1���2�A03 � �1�A04�;

C3 � ���F � 1���2�A03 � �1�A04 � �0PA05 � �0RA06�; C4 � �2
2�A02 �

2
9�1��2�A03 �

1
9�

2
1�A04;

C5 � �2
2�A02 �

2
9�1��2�A03 �

1
9�

2
1�A04 � �

02
PA08 � �

0
P�
0
RA07 � �

02
RA09;

(28)

 CSP0 � ���F � 1��SPF A
SP
00 ; CSP1 � �SP2

F ASP01 ; CSP2 � ��F � 1��2�SPF0 � �
SP
P0�A

SP
02 ; CSP3 � �2�

SP
F0 � �

SP
P0�

2ASP03 ;

(29)

 CT0 �
T�3�1

gA
��F � 1�AT00; CT1 �

�
T�3�1

gA

�
2
AT01;

CT2 � ���F � 1�
�
��T0RC


� �T0R � �
T0
RT

� �T0RT�A01 �

�
1

3
�T0GT � 2�T0T

�
AT02

�
;

CT3 � ��
T0
RC

� �T0R � �

T0
RT

� �T0RT�

2A09 �

�
1

3
�T0GT � 2�T0T

�
2
AT03:

(30)

The coefficients Di and D�SP;T�i entering in Table III are

 D0 � ��2
F � 1�B01; D1 � ��F � 1�2B01; D1� � ��F � 1�2B01; D2� � ��F � 1��2�B03�;

D2 � ���F � 1��1�B04; D3 � ��F � 1���2�B03 � �0PB05�;

D3� � ���F � 1���1�B04� � �
0
PB05� � �

0
RB06��; D4 � ��

2
2�B02 �

1
9�

2
1�B04;

D5 � �2
2�B02 �

1
9�

2
1�B04 � �02PB08 � �0P�

0
RB07 � �02RB09;

(31)

 DSP
0� � ��F � 1��SPF B

SP
00�; DSP

1 � ��
SP2
F BSP01 ; DSP

2 � ��F � 1��2�SPF0 � �
SP
P0�B

SP
02 ;

DSP
2� � ��F � 1��2�SPF0 � �

SP
P0�B

SP
02�; DSP

3 � �2�
SP
F0 � �

SP
P0�

2BSP03 ;
(32)

 DT
0� � �

T�3�1

gA
��F � 1�BT00�; DT

1 � �

�
T�3�1

gA

�
2
BT01;

DT
2 � ���F � 1�

�
��T0RC


� �T0R � �
T0
RT

� �T0RT�B01 �

�
1

3
�T0GT � 2�T0T

�
BT02

�
;

DT
3 � ��

T0
RC

� �T0R � �

T0
RT

� �T0RT�

2B09 �

�
1

3
�T0GT � 2�T0T

�
2
BT03;

(33)

where the integrated phase space factors are

 

A0k; A�SP;T�0k

B0k; B�SP;T�0k

 !
�

1

ln2

a0�

�meR�
2

Z a0k; a�SP;T�0k

b0k; b�SP;T�0k

 !
d�0�;

(34)

with the phase space element d�0� defined as follows:
 

d�0� � m�5
e jp1jjp2j"1"2��"1 � "2

� Ef � Ei�d"1d"2d�p̂1 � p̂2�: (35)

The constant a0� and the kinematic factors a0k, a
�S;P;T�
0k , b0k,

and b�S;P;T�0k entering above are defined as follows:

 a0� � �GFgA�4jVudj4m9
e=�64�5�; (36)

 a01 � �� � ��; a02 �

�
"21

me

�
2
��;

a03 � 2
"21

me
��; a04 �

4

9
��;

a05 �
4

3

�
���
meR

� 2��

�
; a06 �

8

meR
��;

a07 �
1

3

�
4

meR

�
2
���� � 2meR���;

a08 �

�
2

3meR

�
2

�2�� � 4meR�meR�� � �����;

a09 �

�
4

meR

�
2
��;

(37)
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 aSP00 � ��; aSP01 � ��;

aSP02 �
"21R
3me


"21��� � ��� � 2me���;

aSP03 �

�
"21R
6me

�
2

"2

21�� � �"
2
21 � 4m2

e��� � 4"21me���;

(38)

 aT00 � 2��; aT01 � 16�� � 16aSP01 ;

aT02 �
8���
meR

; aT03 �

�
8�
meR

�
2
��;

(39)

 b01 � �� � ��; b02 �

�
"21

me

�
2
��;

b03 � 2
"21

me
��; b03� � 2

"21

me
��; b04 �

4

9
��;

b04� �
4

9
��; b05 �

8

3
��; b05� �

4

3

���
meR

;

b06� �
8��
meR

; b07 �
16

3

���
�meR�2

;

b08 �
16

9

��
�

2meR

�
2
� 1

�
��; b09 �

�
4

meR

�
2
��;

(40)

 bSP00� � ��; bSP01 � �� �
3

8
b05;

bSP02 �
"2

21R
3me

��� � ���; bSP02� �
2

3
"21R��;

bSP03 �

�
"21R
6me

�
2

"2

21��� � ��� � 4m2
e���;

(41)

 bT00� � 4�� � 4bSP00�; bT01 � 16�� � 6b05;

bT02 �
8���
meR

; bT03 �

�
8�
meR

�
2
��;

(42)

where "21 � "2 � "1 is the difference in the electron en-
ergy. The characteristic features of the P1=2 wave are ex-

pressed as

 � � 3�Z� �"1 � "2�R (43)

and the Coulomb corrections appear as the following com-
binations

 �� � j��1�1j
2 � j�11j

2; �� � j�1�1j
2 � j��11j

2;

�� � 2 Re��11�
�1�1�; �� � 2 Im��11�
�1�1�;

�� � 2 Re���11�


1�1�; �� � 2 Im���11�



1�1�;

(44)

with �ij � ~Ai�"2� ~Aj�"1�.
For the normalization constants in the approximation

including terms up to ��Z�2 [5]

 

~A�1 �

���������������������������������
"�me

2"
F0�Z; "�

s
;

F0 �
4

�2�2�1 � 1�
�2pR�2��1�1�j���1 � iy�j

2e�y;

�1 �
���������������������
1� ��Z�2

q
; y � �Z"=p;

(45)

we have

 

��
��

� �
�

1

2
�"1"2 �m

2
e�C00;

��
��

� �
�

1

2
�"2 � "1�meC00;

(46)

 �� � �� �
1
2jp1jjp2jC00; �� � �� � 0; (47)

where

 C00 �
F0�Z; "2�F0�Z; "1�

"2"1
: (48)

Note that using Eq. (47) the expressions for B from
Table III are reduced to the form shown in Table IV.

In the definitions of Ci and Di we use some combina-
tions of nuclear parameters similar to the ones in Ref. [5].
Thus,

 �2� � �GT! � �F! �
1

9
�1�; �1� � ��

0
GT � 6�0T� � 3�0F; �F �

�
gV
gA

�
2 MF

MGT
; �k �

gV
gA

Mk

MGT
;

k � P;R;RT; �k �
Mk

MGT
; k � T;GT;RC
;RT
; �SPF �

F�3�S
gV

�F; �SPF0 �
F�3�S
gV

�
gV
gA

�
2 MF0

MGT
;

�SPP0 �
F�3�S
gA

gV
gA

MP0

MGT
; �Tk �

T�3�1

gA
�k; k � R;RT;RC
;RT
; �Tk �

T�3�1

gA

MT
k

MGT
; k � GT; T;

(49)

where the index F refers to Fermi, GT to Gamow-Teller, T
to tensor, P to the P-wave effect, and R to the recoil effect.
If � has prime or the index ! then the same has the
according matrix element in the numerator. The nuclear

matrix elements defined below contain the operator �a� �
��1 � i�2�

a=2 converting the ath neutron into the ath
proton, and the initial (final) nuclear state are denoted by
j0�i i (h0�f j):

A. ALI, A. V. BORISOV, AND D. V. ZHURIDOV PHYSICAL REVIEW D 76, 093009 (2007)

093009-8



 MF �
X
N

h0�f jj
X
a�b

h��rab; EN��
a
��

b
�jj0

�
i i; (50)

 MGT �
X
N

h0�f jj
X
a�b

h��rab; EN��a � �b�a��
b
�jj0

�
i i; (51)

 

MT �
X
N

h0�f jj
X
a�b

h��rab; EN�
��a � r̂ab���b � r̂ab�

� 1
3�a � �b��

a
��

b
�jj0

�
i i; (52)

 M0GT �
X
N

h0�f jj
X
a�b

h0��rab; EN��a � �b�
a
��

b
�jj0

�
i i; (53)

 M0F �
X
N

h0�f jj
X
a�b

h0��rab; EN��
a
��

b
�jj0

�
i i; (54)

 

M0T �
X
N

h0�f jj
X
a�b

h0��rab; EN�
��a � r̂ab���b � r̂ab�

� 1
3�a � �b��

a
��

b
�jj0

�
i i; (55)

 

M0P �
X
N

h0�f jj
X
a�b

h0��rab; EN�
ir�ab
2rab

f��a � �b�

� 
r̂ab 	 r̂�ab�g�a��
b
�jj0

�
i i; (56)

 

M0R �
X
N

h0�f jj
X
a�b

h0��rab; EN�
R

2rab
r̂ab � ��a 	Db

�Da 	 �b��
a
��

b
�jj0

�
i i; (57)

 MGT! �
X
N

h0�f jj
X
a�b

h0!�rab; EN��a � �b�a��
b
�jj0

�
i i;

(58)

 MF! �
X
N

h0�f jj
X
a�b

h0!�rab; EN��a��
b
�jj0

�
i i; (59)

 MF0 �
X
N

h0�f jj
X
a�b

h00�rab; EN�r̂ � r̂��a��
b
�jj0

�
i i; (60)

 

MP0 �
X
N

h0�f jj
X
a�b

iR
2r
h00�rab; EN���

� 
r̂	 r̂���a��
b
�jj0

�
i i; (61)

 MT0
GT �

X
N

h0�f jj
X
a�b

h0��rab; EN�
iR
r
�a � �b�a��

b
�jj0

�
i i;

(62)

 

MT0
T �

X
N

h0�f jj
X
a�b

h0��rab; EN�
iR
r

�
��a � r̂ab���b � r̂ab�

�
1

3
�a � �b

�
�a��

b
�jj0

�
i i; (63)

 

M0RT �
X
N

h0�f jj
X
a�b

h0��rab; EN�
R
2r

r̂ab

� �Ta � Tb��a��
b
�jj0

�
i i; (64)

 

M0RC

�
X
N

h0�f jj
X
a�b

h0��rab; EN�
iR
2r
�r̂ab � �aCb

� Car̂ab � �b��a��
b
�jj0

�
i i; (65)

 

M0RT

�
X
N

h0�f jj
X
a�b

h0��rab; EN�
iR
2r

r̂ab � ��a 	 Tb

� Ta 	 �b��
a
��

b
�jj0

�
i i: (66)

In the above expressions, the neutrino potentials
hi�rab; hENi� are defined as follows:
 

h��rab; hENi� �
R

4�2

Z dk
!

�
1

!� A1
�

1

!� A2

�
eik�r

’ RH�r; �A�; (67)

 

h0�rab; hENi� �
1

2�2"12

Z dk
!

�
1

!� A1
�

1

!� A2

�
eik�r

’ 2H�r; �A� � r
@
@r
H�r; �A�; (68)

 h0!�rab; hENi� � h� � �ARh0;

h0��rab; hENi� � h� � �ARh0;
(69)

 hR�rab; hENi� � �
�A
mp

�
2

�

�
R
r

�
2
� �ARh�

�
; (70)

with

 H�r; �A� �
1

2�2

Z dk
!

eik�r

!� �A
; (71)

TABLE IV. Expressions for B in Eq. (22) for the stated choice
��� for the ~A�1 from Eq. (45).

� B

�V�AV�A B0 � 4D1j�jj�
V�A
V�Ajc02 � 4D1j�

V�A
V�Aj

2

�V�AV�A B0 � 4D0j�jj�
V�A
V�Ajc01 � 4D1�j�

V�A
V�Aj

2

�V�AV�A B0 �D3j�jj�
V�A
V�Ajc2 �D5j�

V�A
V�Aj

2

�V�AV�A B0 �D2j�jj�
V�A
V�Ajc1 �D4j�

V�A
V�Aj

2

�S�PS�P B0 � 4DSP
1 j�

S�P
S�Pj

2

�S�PS�P B0 �D
SP
2 j�jj�

S�P
S�Pjc4 �D

SP
3 j�

S�P
S�Pj

2

�S�PS�P B0 �D
SP
2 j�jj�

S�P
S�Pjc3 �D

SP
3 j�

S�P
S�Pj

2

�TLTL B0 � 4DT
1 j�

TL
TL
j2

�TLTR , �TRTL B0

�TRTR B0 �D
T
2 j�jj�

TR
TR
jc5 �D

T
3 j�

TR
TR
j2
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 Aj � "j � hENi � Ei; i � 1; 2;

�A � hENi � �Ei � Ef�=2;
(72)

where rab is the distance between the nucleons a and b, and
hENi is the average energy of the intermediate nucleus N.

To derive the expressions for A and B shown in
Tables II and III we have used the formulas:
 

CA1 ��
S�P
S�P� � MGT

mS�P
S�P

me

F�3�S
gV

�SPF ; CA2 ��
S�P
S�P� � 0;

CA2 ��
S�P
S�P�

r
r�
� 2MGT�

S�P
S�P�

SP
F0; CA5 ��

S�P
S�P� � 0;

CA5 ��
S�P
S�P�

r
r�
� MGT�

S�P
S�P�

SP
P0; (73)

 ZX1 ��
V�A
V�A��MGT���2�V�A

V�A���F�1�;

ZX1 ��
V�A
V�A��MGT
���F�1��2�V�A

V�A��F�1��;

ZX3 ��
V�A
V�A���MGT�

V�A
V�A��GT!��F!�;

ZX4 ��
V�A
V�A���

1

3
MGT�

V�A
V�A�1�;

ZY6 ��
V�A
V�A�

r
r�
�MGT�

V�A
V�A�

0
P;

ZY4R��
V�A
V�A��MGT�

V�A
V�A�

0
R;

(74)

 

WU
1 ��

TL
TL
� ��4MGT�

TL
TL

T�3�1

gA
;

WV
4R��

TR
TR
� ��2MGT�

TR
TR

T�3�1

gA
��0RC


��0R��
T0
RT

��T0RT�;

WU
2 ��

TR
TR
�
r
r�
� 2iMGT�

TR
TR

T�3�1

gA
�0GT;

WU
7 ��

TR
TR
�
r
r�
��4iMGT�

TR
TR

T�3�1

gA

�
1

3
�0GT� 2�0T

�
: (75)

For all other arguments ��� these nucleon matrix elements
have zero values, except for

 ZX1 ��
V�A
V�A � 0� � MGT���F � 1�: (76)

We have calculated the numerical values of the inte-
grated kinematic factors A0i, A

�SP;T�
0i , B0i, and B�SP;T�0i for all

the five nuclei of current experimental interest. We shall
use them in the results shown below in Table VI for the
angular coefficient K. However, as we will focus in this
paper mainly on the 0�2� decay of the 76Ge nucleus, we
give the values of these factors for this nucleus in Table V,
where we have used

 Q � Ei � Ef � 2me � 2:039 MeV; (77)

taken from Ref. [34], and the scaling factor for the neutrino
potentials is

 R � r0A1=3; r0 � 1:1 fm: (78)

The values of AT00 and B03 are of the order of 10�44 yr�1.
Hence these values are not given in Table V and the terms
with AT00 and B03 can be safely neglected.

We recall that the analytic expressions associated with
the coefficients �V�AV�A given in this section and the values of
A0i from Table V confirm the results of Ref. [5]. The
analytic expressions associated with the coefficients
�V�AV�A, �S�PS�P, �TL;RTL;R

and the values of A�SP;T�0i , B0i, B
�SP;T�
0i

from Table V transcend the earlier work.

III. ANALYSIS OF THE ELECTRON ANGULAR
CORRELATION

A. Qualitative analysis

If the effects of all the interactions beyond the SM
extended by the �Ms, which we call the ‘‘nonstandard’’
effects, are zero (i.e., all ��� � 0), then K � B01=A01. Its
values are given in Table VI for various decaying nuclei.
We will concentrate on the case of 76Ge nucleus in the
following. In this case the correlation (21) is proportional
to 1� 0:81 cos�. (Note that in the limit of me=�Ei �
Ef� ! 0 we have �� � �� � �� � �� and K � 1.)
Tables II and IV show that the presence of the nonstandard
parameters �V�AV�A, �TLTR , or �TRTL does not change the value of

TABLE V. The integrated kinematic A and B factors [in
10�15 yr�1] for the 0� ! 0� transition of the 0�2� decay of
76Ge.

A01 6.69 B01 5.45
A02 1:09	 10 B02 8.95
A03 3.76 B03 —
A04 1.30 B04 1.21
A05 2:08	 102 B05 7.27
A06 1:69	 103 — —
A07 1:05	 105 B07 7:72	 104

A08 6:59	 103 B08 4:97	 104

A09 4:14	 105 B09 3:00	 105

ASP00 2.55 — —

ASP01 3.77 BSP01 2.73

ASP02 1:18	 10�1 BSP02 7:20	 10�2

ASP03 1:27	 10�3 BSP03 3:71	 10�4

AT01 6:03	 10 BT01 4:36	 10

AT02 1:50	 103 BT02 1:40	 103

AT03 7:67	 105 BT03 7:16	 105

TABLE VI. The values of angular correlation coefficient K for
various decaying nuclei for the SM extended by the �Ms.

76Ge 82Se 100Mo 130Te 136Xe

K 0.81 0.88 0.88 0.85 0.84
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K and therefore the form of the angular correlation. The
presence of any other parameter ��� does change this
correlation. From the fact that there are no contributions
due to P-wave and recoil effects to the scalar nonstandard
terms in the closure approximation (see Appendix A), it
follows that the values of ASP02 , ASP03 , BSP02 , and BSP03 are small
and there are two additional nonstandard parameters that
do not change significantly the form of the angular corre-
lation, namely, �S�PS�P.

Using Table I and taking into account the fact that j��
�j

are suppressed in comparison with j���j by the factor
mi=me (the chiral suppression), we find the coefficient K
and the set f�g of nonzero ���s that change the 1�
0:81 cos� form of the correlation for the SM plus �Ms,
see Table VII (the lower two entries). They correspond to
the following extensions of the SM: �Ms plus RPV SUSY
[10], �Ms plus right-handed currents (RC) (connected with
right-handed W bosons [5] or LQs [13]). Hence, the angu-
lar coefficient K can signal the presence of these NP
interactions.

We remark here that in our earlier analysis [19] we had
neglected the P-wave and recoil effects, which is not a
good assumption. Our current study shows that these ef-
fects give significant contribution to the terms with �V�AV�A

and �TRTR . Hence, they have to be included in any realistic
analysis of the data, as and when it becomes available.
Including them, not only the model called �M � RC but
also the model �M � RPV can essentially change the
angular coefficient K from being 0.81 in the decay of the
76Ge nucleus. Left-right symmetric models belong to the
class �M � RC and we have studied these models in detail
in Sec. IV, where the correlations among the parameters K,
T1=2, and either mWR

or � are worked out for the case
jhmij � 0, cos i � 0 considered in Sec. III B.

Note that the decay half-life and angular correlation do
not give any bounds on the parameters �TLTR and �TRTL because
the according expressions for A and B do not depend on
them.

B. Quantitative analysis

Let us now consider some particular cases for the pa-
rameter space. We will analyze only the terms with �V�AV�A as
the corresponding nuclear matrix elements have been
worked out in the literature. We use various types of the
QRPA model for the 76Ge nucleus [20,21] as a test case.

Using the case of jhmij � 0, which gives conservative
upper bounds on j��

�j and j���j, the decay half-life is ex-
pressed from Eq. (21) as

 T1=2 � ln2=� � �jMGTj
2A��1: (79)

From Eq. (79), using Tables II and V and the values of
the nuclear matrix elements reported in Refs. [20,21], we
have the following expressions for the half-life [in yrs] for
various choices of the parameters j�V�A

V�Aj and j�V�AV�Aj,
taking only one parameter at a time:

 T1=2 � 1:1�1:3� 	 1012j�V�A
V�Aj

�2;

T1=2 � 3:2�4:0� 	 1012j�V�A
V�Aj

�2;
(80)

 T1=2 � 4:0�21� 	 1012j�V�A
V�Aj

�2;

T1=2 � 4:5�6:8� 	 1012j�V�A
V�Aj

�2;
(81)

 T1=2 � 3:7�27� 	 108j�V�AV�Aj
�2;

T1=2 � 1:0�9:7� 	 1013j�V�AV�Aj
�2:

(82)

Equation (80) corresponds to using the pnQRPA model
with particle-particle strength parameter gpp � 1:02�1:06�
[21] and Eqs. (81) and (82) correspond to using the QRPA
model without (with) the p-n pairing [20] (note that the
definitions of the nuclear matrix elements �0P and �R in
Ref. [20] differ from �0P and �0R in Ref. [5] by the factors
1=2 and 4=�meR�, respectively). Comparing the numerical
results in these equations, we note that the dispersion in the
half-lifes is less marked for the coefficient j�V�A

V�Aj.
However, the half-lifes involving the coefficients j�V�A

V�Aj
and j�V�AV�Aj show a very strong nuclear matrix element
dependence. For the QRPA model worked out in [20], it
is not clear to us if this is due to a numerical artifact or the
treatment of the isoscalar neutron-proton pairing. An im-
portant, and related point, is how to fix correctly the
particle-particle strength of the nuclear Hamiltonian.
Fixing the particle-particle pairing parameter, and varying
it as done in [21], leads to rather stable values for the half-
life of 76Ge nucleus. Clearly, these issues remain to be
further discussed and clarified. A detailed discussion of
these nuclear models will take us far afield from the main
point of our paper. The theoretical uncertainty in the nu-
clear matrix elements [2,35] plays an essential role in the
numerical analysis. However, as we show below, the

TABLE VII. The angular correlation coefficient K for various SM extensions for decays of
76Ge.

SM extension f�g K

�M — 0.81
�M � RPV SUSY �TRTR �1<K < 1

�M � RC �V�AV�A �1<K < 1
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nuclear-model dependence of the angular coefficient K is
rather modest.

The fact that the dependence of K on the nuclear matrix
elements is much weaker than the uncertainty in T1=2 from
this source is illustrated in Table VIII for QRPA models
[20,21] for the assumed values of the parameters:
j�V�A

V�Aj � j�
V�A
V�Aj � 5	 10�7, j�V�AV�Aj � 5	 10�9. It is

clear from Table VIII that measuring K with 10% accuracy
(or better) produces useful experimental data that could be
sensitive to the new physics. We note that for the parame-
ters j�V�A

V�Aj, the angular coefficient does not depend on the
nuclear matrix elements, as can be seen from Tables II and
III (for j�j � 0) and Eqs. (28) and (31), leading to K �
B01=A01 � 0:81.

Using the numerical results given above, the current
lower bound T1=2 > 1:6	 1025 yr for the 76Ge nucleus
[36] yields the upper bounds on the parameters j�V�A

V�Aj
and j�V�AV�Aj shown in Table IX. The bound on j�V�AV�Aj is
stronger than the others shown in this table due to the
relatively large values of the recoil and P-wave matrix
elements in this case. The bounds on j�V�AV�Aj given in
Table IX are comparable with the bounds j�V�AV�Aj< 4	
10�9, j�V�AV�Aj< 6	 10�7 given in Ref. [28].

To be definite, we use the QRPA model without p-n
pairing [20] in the following. The bounds given in Table IX
could be used for deriving the bounds on the parameters of
the particular models (see Sec. II A). For example, using
Eq. (5) we have the following conservative constraints on
the couplings of the effective LQ-quark-lepton interac-
tions:

 j��L�I j � 1:1	 10�9

�
MI

100 GeV

�
2
;

j��R�I j � 2:6	 10�7

�
MI

100 GeV

�
2
; I � S; V:

(83)

(i) Consider a more general case of jhmij � 0, cos i �
0, where the index i depends on �, � (as above, we
take only one nonzero ��� at a time). Using Tables II
and IV we have

 A � C1j�j
2 � 4Cij�

�
�j2;

KA � D1j�j
2 � 4Dij�

�
�j2;

(84)

and

 A � C1j�j
2 � Cij�

�
�j2;

KA � D1j�j
2 �Dij�

�
�j2:

(85)

Hence, using Eq. (79) we obtain

 j�j2 � ��1 � �2K�=T1=2;

j���j2 � ���3 � �4K�=T1=2 � 4j��
�j2;

(86)

with the coefficients

 �1 �
Di

jMGTj
2�i

; �2 �
Ci

jMGTj
2�i

;

�3 �
D1

jMGTj
2�i

; �4 �
C1

jMGTj
2�i

;

(87)

where �i � C1Di �D1Ci.
Using Eqs. (86) and (87) we have for �V�AV�A � 0
 

j�j2 � �7:9� 10 K� 	 1012=T1=2;

j�V�AV�Aj
2 � �5:1� 6:3 K� 	 1012=T1=2

(88)

and for �V�AV�A � 0

 j�j2 � �7:7� 10 K� 	 1012=T1=2;

j�V�AV�Aj
2 � �1:9� 2:4 K� 	 108=T1=2;

(89)

with T1=2 in years. Figure 1 shows the correlation
among jhmij, T1=2, K (left) and the correlation
among j�V�AV�Aj, T1=2, K (right) for the choice of a
nonzero �V�AV�A. Figure 2 shows the same for the
parameter �V�AV�A. It is clear from Figs. 1 and 2 that
the closer K is to 1 for the fixed value of T1=2, the
weaker jhmij is bounded and the stronger j�V�AV�Aj is
bounded. The correlations among j�V�AV�Aj, T1=2, K
will be used in the next section in the analysis of
left-right symmetric models.

TABLE IX. Upper bounds on j�V�A
V�Aj, j�

V�A
V�Aj for decays of 76Ge for the case of jhmij � 0 in QRPA.

Nuclear model j�V�A
V�Aj j�V�A

V�Aj j�V�AV�Aj j�V�AV�Aj

pnQRPA with gpp � 1:02�1:06� [21] 2:6�2:9� 	 10�7 4:5�5:0� 	 10�7 — —
QRPA without (with) p-n pairing [20] 5:0�11� 	 10�7 5:4�6:5� 	 10�7 4:8�13� 	 10�9 7:9�25� 	 10�7

TABLE VIII. T1=2 and K for the fixed values of the parameters j�V�A
V�Aj, j�

V�A
V�Aj for decay of 76Ge for the case of jhmij � 0 in QRPA

without (with) p-n pairing [20] [pnQRPA with gpp � 1:02�1:06� [21]].

j�V�A
V�Aj � 5	 10�7 j�V�A

V�Aj � 5	 10�7 j�V�AV�Aj � 5	 10�9 j�V�AV�Aj � 5	 10�7

T1=2=�1025 yr� 1.6(8.4)[0.44(0.52)] 1.8(2.7)[1.3(1.6)] 1.5(11) 4.0(39)
K 0.81(0.81)[0.81(0.81)] 0.81(0.81)[0.81(0.81)] �0:73��0:73� �0:79��0:87�
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Note that if several ��� are nonzero in the considered
model then the respective interference terms should
be taken into account.

(ii) To extract j�j, j��
�j, j�

�
�j, ci in the general case of

jhmij � 0, ci � 0 we need to analyze the data on at
least two decaying nuclei. This analysis will be
presented for the five nuclei already discussed in a
forthcoming paper [37].

IV. ELECTRON ANGULAR CORRELATION IN
LEFT-RIGHT SYMMETRIC MODELS

The experimental bounds on the ��� are connected with
the masses of new particles, their mixing angles, and other
parameters specific to particular extensions of the SM
[4,5,8,10,12,13]. To illustrate the kind of correlations that
the measurements of T1=2 and the angular correlation co-
efficient K in the 0�2� decay would imply, we work out
the case of the left-right symmetric models [22]. In the
model SU�2�L 	 SU�2�R 	U�1� the parameters 
 and �
(see Eq. (2)) are expressed through the masses mWL

and
mWR

of the left- and right-handed W bosons and their
mixing angle � [5]:

 
 � � tan�; � � �mWL
=mWR

�2; (90)

under the condition

 mWL
� mWR

: (91)

Equations (2) and (6) and the relation [5]

 Vei � V 0ei (92)

of the SU�2�L 	 SU�2�R 	U�1� model yield

 �V�AV�A � �
g0V
gV
UeiVei:; �V�AV�A � 
UeiVei: (93)

To reduce the number of free parameters, we assume the
equality of the form factors of the left- and right-handed
hadronic currents:

 gV � g0V: (94)

The small masses of the observable �s are likely described
by the seesaw formula that in the simplest case gives

 mi �m
2
D=MR; MR � mD; (95)

with the Dirac mass scale mD (for the charged leptons and
the light quarks mD � 1 MeV) and the mass scale MR of
right �Ms (in the majority of theories MR > 1 TeV). In the
left-right symmetric models these scales arise usually from
the two scales of the vacuum expectation values of Higgs
multiplets [22]. In the seesaw mechanism, the values of the
mixing parameters Vei (for i numbering light mass states)
have the same order of magnitude as mD=MR. In our
discussion we use two rather conservative values (compare
with Eq. (9))

 � � 10�6; 5	 10�7 (96)

for the mixing parameter

 � � jUeiVeij: (97)

We recall that here the summation index i runs only over
the light neutrino mass eigenstates (the summation over the
total mass spectrum including also heavy states gives
strictly zero due to the orthogonality condition [5]).

From Eqs. (90), (93), (94), and (97), we have

 mWR
� mWL

��=j�V�AV�Aj�
1=2; � � � arctan�j�V�AV�Aj=��:

(98)

Using Eq. (91) we note the approximate equality of mWL

and the mass of the observed charged gauge boson W1

(mW1
� 80:4 GeV [1]).

The correlation among mWR
(�), K, and T1=2 for the case

of jhmij � 0, cos i � 0 (see Sec. III B) is shown in Figs. 3
and 4 for the two chosen values of �. The numerical results
for these figures have been obtained using Eqs. (88) and
(89). It is clear from Figs. 3 and 4 that the closer K is to 1
for the fixed value of T1=2 the stronger the lower bound on
mWR

is (the upper bound on �). However, this bound is
weaker than the one mWR

> 715 GeV, obtained from the
electroweak fits [1]. There is still a more stringent bound
mWR

> 1:2 TeV, obtained in Ref. [38] for the 0�2� decay
mediated by heavy Majorana neutrinos using arguments
based on the vacuum stability [6] and additional theory
input. We assume mWR

� 1 TeV in the next figure.
While experiments in the 0�2� decay would measure

the product of the quantities called � and the neutrino
mixing matrix elements UeiVei in Eq. (93), collider experi-
ments at the Tevatron and the LHC can, in principle,
measure � by determining mWR

. Assuming these logically
independent possibilities, we plot the differential width
(21) vs cos� in Fig. 5 for a set of values of jhmij and
mWR

, taking �V�AV�A at a time and assuming � � 10�6. In this
figure, we consider the values of jhmij, starting from
jhmij � 0:03 eV up to jhmij � 5 meV, covering two of
three scenarios of neutrino mass hierarchies and mixing
angles: normal and inverted mass hierarchies (see Ref. [39]
for a recent discussion and update). It is seen that the
sensitivity of the electron angular correlation to the right-
handed W-boson mass mWR

increases with decreasing
values of the effective Majorana neutrino mass jhmij, as
can be seen from Fig. 5 (right), where this correlation is
shown for jhmij � 5 meV, 10 meV.

In conclusion, we have presented a detailed study of the
electron angular correlation for the long-range mechanism
of 0�2� decays in a general theoretical context. This
information, together with the ability of observing these
decays in several nuclei, would help greatly in identifying
the dominant mechanism underlying these decays. At
present, no experiment is geared to measuring the angular
correlation in 0�2� decays, as the main experimental
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thrust is on establishing a nonzero signal unambiguously in
the first place. We note that the running experiment
NEMO3 has already measured the electron angular distri-
bution for the two neutrino double beta decay, and is
capable of measuring this correlation in the future for the
0�2� decay as well, assuming that the experimental sen-
sitivity is sufficiently good to establish this decay [40]. The
proposed experimental facilities that can measure the elec-
tron angular correlation in the 0�2� decays are
SuperNEMO [41], MOON [42], and EXO [43]. We have
argued in this paper that there is a strong case in building at
least one of them.
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APPENDIX A: 0�2� DECAY RATE FOR SCALAR
NONSTANDARD TERMS

The nucleon currents in the impulse approximation in
the nonrelativistic form are used in this paper [32,33].
Keeping all terms up to order p=mp in the nonrelativistic
expansion we have

 J�S�P�x� �
X
a

�a���x�ra��F
�3�
S � F

�3�
P Ba�;

Ba �
�a � q
2mp

;
(A1)

 J��V�A�x� �
X
a

�a���x�ra�
g�0�gVIa � gACa�

� g�m�gA
am � gVDm
a � gAPma ��; (A2)

 Ca �
�a �Q

2mp
�
q0�a � q
q2 �m2

�
;

Dm
a �

Qm

2mp
Ia �

�
1�

gM
gV

�
i
�a 	 q�m

2mp
;

Pma �
qm�a � q
q2 �m2

�
;

(A3)

where q� � p� � p0� is the 4-momentum transferred
from hadrons to leptons, Q� � p� � p0�; p� and p0�

are the initial and final 4-momenta of a nucleon; mp is
proton mass and m� is pion mass.

We neglect the dipole dependence of the form factors
F�3�S , F�3�P , gV , gA, gM on the momentum transfer and omit
the zero argument of the form factors. Note that gV�0� � 1.

Consider the pure SP case assuming hmi � 0. In terms
of the combinations of hadronic currents

 J��L � hFj~J
�
�jNihNjĴ

��
L jIi;

J�L� � hFjĴ
��
L jNihNj~J

�
�jIi;

(A4)

 

~J �� � �S�PS�P;iJ
�
S�P � �

S�P
S�P;iJ

�
S�P;

~J�� � �S�PS�P;iJ
�
S�P � �

S�P
S�P;iJ

�
S�P;

(A5)

 Ĵ ��L � UeiJ
��
V�A; (A6)

and the combinations

 ‘L;R� �
sL;R� �2y; 1x�
!� A1

�
sL;R� �1y; 2x�
!� A2

; (A7)

 ‘L�� �
sL���2y; 1x�

!� A1
�
sL���1y; 2x�

!� A2
(A8)

of electron currents

 sL;R� �2y; 1x� � �e2�y����1� �5�e
c
1�x�;

sL���2y; 1x� � �e2�y����1� �5���e
c
1�x�;

(A9)

ei�x� � episi�x�, the matrix element is expressed as
 

RSP0� �
1�����
2!
p

�
GFjVudj���

2
p

�
2
2
X
i

Z
dxdy

dk
�2��3

	
eik�r

2!

X
N


mi�J
�
�L‘

R
� � J

�
L�‘

L
��

� k��J��L‘
L
�� � J

�
L�‘

L
����; (A10)

where r � y � x. By using the identities

 sL;R� �1y; 2x� � sR;L� �2x; 1y�;

sL���1y; 2x� � �sL���2x; 1y�;
(A11)

the algebraic formula

 2�am� bn� � �a� b��m� n� � �a� b��m� n�;

(A12)

the constant

 C0� �
G2
FjVudj

2

8
���
2
p
�

2me

R
; (A13)

and the neutrino potentials

 �Hj;H!j;Hl
kj� � 4�

Z dk
�2��3

eik�r

!
�1; !; kl�
!� Aj

; (A14)

the matrix element (A10) is expressed as

 RSP0� � �C0�

X
i

X
N

�
mi

me
Mm
SP �M

k
SP

�
: (A15)

Each part of this matrix element is expressed as a sum of
nonvanishing (indexed by n) and vanishing (indexed by c)
terms, in the closure approximation:
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 Mm;k
SP � fM

m;k
SP gn � fM

m;k
SP gc; (A16)

 

fMm
SPgn �

R
2

Z
dxdyTN�H1 �H2�
�A1 � A1R�F0

5�

� �Ai3 � ~Ai3R�F
i
5� � B1RF0

� � �Bi3 � ~Bi3R�F
i
��;

(A17)

 

fMm
SPgc �

R
2

Z
dxdyTN�H1 �H2�
�A1 � A1R�F

0
5�

� �Ai3 � ~Ai3R�F
i
5� � B1RF

0
� � �B

i
3 �

~Bi3R�F
i
��;

(A18)

 

fMk
SPgn �

R
2me

Z
dxdyTNf�H!1 �H!2�
��A

i
4 �

~Ai4R�E
i
�

� B2RE�� � �H
l
k1 �H

l
k2�
��A2 � A2R�E

l
�

� �Alk5 � ~Alk5R�E
k
� � �B

l
4 �

~Bl4R�E��g; (A19)

 

fMk
SPgc �

R
2me

Z
dxdyTNf�H!1 �H!2�
��Ai4 � ~Ai4R�E

i
�

� B2RE�� � �Hl
k1 �H

l
k2�
��A2 � A2R�El�

� �Alk5 � ~Alk5R�E
k
� � �B

l
4 �

~Bl4R�E��g; (A20)

with

 TN � g2
AhFj

X
a

�a�jNihNj
X
b

�b�jIi��x�ra���y�rb�:

(A21)

The electron currents are defined as
 

F� �
1
2
u�yx� � u�xy��;

F5� �
1
2
u5�yx� � u5�xy��;

F�� �
1
2
u

��yx� � u��xy��;

F�5� �
1
2
u

�
5 �yx� � u�5 �xy��;

F��� �
1
2
u

���yx� � u���xy��;

F��5� �
1
2
u

��
5 �yx� � u��5 �xy��;

E� � F� � F5�;

Ei� � F0i
� � F

0i
5�;

(A22)

with
 

u�yx� � �e2�y�ec1�x�;

u5�yx� � �e2�y��5e
c
1�x�;

u��yx� � �e2�y���ec1�x�;

u�5 �yx� � �e2�y��5�
�ec1�x�;

u���yx� � �i �e2�y�
��ec1�x�;

u��5 �yx� � �i �e2�y��5
��ec1�x�:

(A23)

The nucleon operator matrix elements are defined as fol-
lows:

 

~A � A� AP; ~B � B� BP; (A24)

 

A1 � 2G0
V"S; A1R � �G

0
A"SC� �G

0
V"PB�;

A2 � 2G0
V"
0
S; A2R � �G

0
A"
0
SC� �G

0
V"
0
PB�;

Ai3 � G0
A"S


i
�; Ai3R � �G

0
A"PB

i

� �G

0
V"SD

i
�;

APi3R � �G
0
A"SP

i
�; Ai4 � G0

A"
0
S


i
�;

Ai4R � G0
A"
0
PB

i

� �G

0
V"
0
SD

i
�; APi4R � �G

0
A"
0
SP

i
�;

Alk5 � i"ilkA
i
4; ~Alk5R � i"ilk ~Ai4R; (A25)

 

B1R � �G
0
A"SC� �G

0
V"PB�;

B2R � �G0
A"
0
SC� �G

0
V"
0
PB�; Bi3 � G0

A"S

i
�;

Bi3R � �G
0
A"PB

i

� �G

0
V"SD

i
�; BPi3R � �G

0
A"SP

i
�;

Bi4 � G0
A"
0
S


i
�; Bi4R � G0

A"
0
PB

i

� �G

0
V"
0
SD

i
�;

BPi4R � �G
0
A"
0
SP

i
�; (A26)

with

 B� � BaIb � IaBb; Bi
� � 
iaBb � Ba

j
b;

Pi� � PiaIb � IaPib:
(A27)

Under the exchange of running indices a and b (i.e. x$
y), nuclear operators A, electron currents E� and F�, and
neutrino potentials Hi and H!i are even, while B, E�, F�,
and Hki are odd.

The constants are defined as
 

GV �
gV
gA

�Uei � �

V�A
V�A;i� � �

V�A
V�A;i�;

GA � �Uei � �
V�A
V�A;i� � �

V�A
V�A;i; G0 � G�� � 0�;

G0
V �

gV
gA
Uei; G0

A � Uei; (A28)

 "S �
F�3�S
gA
��S�PS�P;i � �

S�P
S�P;i�;

"P �
F�3�P
gA
��S�PS�P;i � �

S�P
S�P;i�;

"0S �
F�3�S
gA
��S�PS�P;i � �

S�P
S�P;i�;

"0P �
F�3�P
gA
��S�PS�P;i � �

S�P
S�P;i�:

(A29)

Note that in the notations of Ref. [5]:

 t � u� u5; tl � u0l � u0l
5 : (A30)

Since the nucleon recoil term Pa behaves as an even
parity operator while the neutrino momentum k and the
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recoil terms Ba, Ca, Da as odd ones, each of the Aj, k �Aj,
Bj, k �Bj has a definite parity. The operators

 A1; A
i
3; A

i
4; A

Pi
3R; A

Pi
4R; Bi3; B

Pi
3R;

r �B4R; rlA2R; rlAlk5R;
(A31)

have even parity and the operators

 A1R; Ai3R; A
i
4R; B1R; B2R; Bi3R;

r � B4; r �BP
4R; r

lA2; r
lAlk5 ; r

lAPlk5R ;
(A32)

have odd parity. The odd-parity operators do not contribute
to the 0� ! J� transition in the case where both the
electrons are in the S-wave state (the S� S case) with no
de Broglie wave length correction (no FBWC).

Using the definitions of neutrino potentials
 

h� �
R
2
�H1 �H2�; h0 �

1

"21
�H1 �H2�;

h0! �
R
"21
�H!1 �H!2�; h0�r̂

l � �i
rR
2
�Hl

k1 �H
l
k2�;

h00r̂
l � �i

r
"21
�Hl

k1 �H
l
k2�; (A33)

in the S� S case with no FWBC, Eqs. (A17) and (A19) are
reduced to

 fMm
SPgn;S�S �

Z
dxdyTNh�
A1F

0
5� � �A

i
3 � A

Pi
3R�F

i
5��;

(A34)

 fMm
SPgc;S�S �

"21R
2

Z
dxdyTNh0�Bi3 � B

Pi
3R�F

i
�; (A35)

 

fMk
SPgn;S�S � �

1

2

"21

me

Z
dxdyTNh0!�A

i
4 � A

Pi
4R�E

i
�

�
1

2

"21

me

Z
dxdyTN

iR
r
h00r̂

l

	 ��A2RE
l
� � A

lk
5RE

k
��; (A36)

 fMk
SPgc;S�S �

2

meR

Z
dxdyTN

iR
2r
h0�r̂ �B4RE�; (A37)

where E, F are taken for x � 0, y � 0.
For the 0� ! 0� transition we have

 

X
i

mi

me

X
N

fMm
SPgS�S � g2

AC
A
1F

0
5�; (A38)

 

X
i

X
N

fMk
SPgS�S � g2

A
2

meR
fCB4RgcE�; (A39)

with

 CA1 �
�
mi

me
h�A1

�
; fCB4Rgc �

�
iR
2r
h0�r̂ �B4R

�
;

(A40)

where r̂ � r=r and hXi �
P
i
P
Nh0

�
f jjXjj0

�
I i, with h �

h�r; EN�.
In the S� P1=2 case with no FBWC for the 0� ! 0�

transition we have

 fMm
SPgn;S�P1=2

�
Z
dxdyTNh��Ai3RF

i
5� � B

i
3RF

i
��;

(A41)

 fMm
SPgc;S�P1=2

�
"21R

2

Z
dxdyTNh0�A

i
3RF

i
5� � B

i
3RF

i
��;

(A42)

 

fMk
SPgn;S�P1=2

� �
1

2

"21

me

Z
dxdyTNh0!Ai4RE

i
�

�
1

2

"21

me

Z
dxdyTN

iR
r
h00r̂

l
�A2E
l
�

� �Alk5 � A
Plk
5R �E

k
��; (A43)

 

fMk
SPgc;S�P1=2

� �
1

meR

Z
dxdyTNh0!A

i
4RE

i
�

�
2

meR

Z
dxdyTN

iR
2r
h0�r̂

l
�A2El�

� �Alk5 � A
Plk
5R �E

k
��: (A44)

The squared modulus of the matrix element (A15),
summed over the polarizations sj of the electrons and
multiplied by the phase space element (35), yields the
differential decay rate for the 0� ! 0� transition

 d� �
X
s1;s2

jRSP0� j
2 m

5
e

4�3 d�0�

�
a0�

�meR�
2 
A

SP
0 � p̂1 � p̂2BSP0 �d�0�; (A45)

with a0� being defined in Eq. (36). Here the coefficients are

 ASP0 �
X4

i�1

jMij
2; (A46)

 BSP0 � Re�M1M


2 �M



1M2 �M3M



4 �M



3M4�; (A47)

with
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M1 � �
�1�1

��
�CA1 �

2

meR
fCB4Rgc

�
�

��
meR

3

�
�
meR

� 2
�
CA3R �

"21R
3
fCA3Rgc

�
r

2R
�
"2

21R
6me

�CA2 � C
A
5

� CA5R � C
A
4R�

r
2R
�

1

6

�
�
meR

� 2
�
�fCA2 gc � fC

A
5 gc

� fCA5Rgc � fC
A
4Rgc�

�
�

�
��Z�2

2meR
�fCA4 gc � fC

A
4Rgc

� 3fCB4RFgc�
�	
; (A48)

 

M2 � �
11

��
CA1 �

2

meR
fCB4Rgc

�
�

��
meR

3

�
�
meR

� 2
�
CA3R

�
"21R

3
fCA3Rgc

�
r

2R
�
"2

21R
6me

�CA2 � C
A
5 � C

A
5R

� CA4R�
r

2R
�

1

6

�
�
meR

� 2
�
�fCA2 gc � fC

A
5 gc � fC

A
5Rgc

� fCA4Rgc�
�
�

�
��Z�2

2meR
�fCA4 gc � fC

A
4Rgc

� 3fCB4RFgc�
�	
; (A49)

 

M3 � �
1�1

��
2

meR
fCB4Rgc

�
�

�
"21R

6

�
"21

me
� 2

�
�CA2 � C

A
5

� CA5R � C
A
4R�

r
2R
�

1

6

�
meR

�fCA2 gc � fC
A
5 gc

� fCA5Rgc � fC
A
4Rgc�

�
�

�
��Z�2

2meR
�fCA4 gc � fC

A
4Rgc

� 3fCB4RFgc�
�	
; (A50)

 

M4 � �
�11

��
2

meR
fCB4Rgc

�
�

�
"21R

6

�
"21

me
� 2

�
�CA2 � C

A
5

� CA5R � C
A
4R�

r
2R
�

1

6

�
meR

�fCA2 gc � fC
A
5 gc

� fCA5Rgc � fC
A
4Rgc�

�
�

�
��Z�2

2meR
�fCA4 gc � fC

A
4Rgc

� 3fCB4RFgc�
�	
; (A51)

where �ij � ~Ai�"2� ~Aj�"1� and the nucleon matrix elements
are

 

CB3R�
�
mi

me

i
r
h�r �B3R

�
; fCB3Rgc�

�
mi

me

i
2R
h0r� �B3R

�
;

CA3R�
�
mi

me

i
2R
h�r� �A3R

�
; fCA3Rgc�

�
mi

me

i
r
h0r �A3R

�
;

CA4R�
�
i

2R
h0!r� �A4R

�
; fCA4Rgc�

�
i
R
h0!r �A4R

�
;

CA2 �
�

1

2r
h00r̂ �r�A2

�
; fCA2 gc�hh

0
�A2i;

CA5�R� �
�

1

2R
h00r̂

irj�A
ij
5�R�

�
; fCA5�R�gc�

�
1

r
h0�r̂

irj�A
ij
5�R��

�
;

fCB4RFg�
�
iR
2r
r2
a�r2

b

2R2 h0�r̂ �B4R

�
; (A52)

with r� � y � x � 2Rr̂�.
The terms in the first brackets in Eqs. (A48)–(A51)

come from the S� S case, the terms in the second brackets
come from the S� P1=2 case, and in the third brackets
there are the most important terms due to the P1=2 � P1=2

case and FBWC.
Assuming now hmi � 0 for the dominant terms we have

 

M1 � �
�1�1

��
ZX1 � C

A
1 �

2

meR
fCB4Rgc

�

�

�
"2

21R
6me

�CA2 � C
A
5 �

r
2R
�

1

6

�
�
meR

� 2
�

	 �fCA2 gc � fC
A
5 gc�

�	
; (A53)

 

M2 � �
11

��
ZX1 � C

A
1 �

2

meR
fCB4Rgc

�
�

�
"2

21R
6me

�CA2 � C
A
5 �

	
r

2R
�

1

6

�
�
meR

� 2
�
�fCA2 gc � fC

A
5 gc�

�	
; (A54)

 

M3 � �


1�1

��
ZX1 �

2

meR
fCB4Rgc

�
�

�
"21R

6

�
"21

me
� 2

�

	 �CA2 �C
A
5 �
r

2R
�

1

6

�
meR

�fCA2 gc� fC
A
5 gc�

�	
; (A55)

 

M4 � �
�11

��
ZX1 �

2

meR
fCB4Rgc

�
�

�
"21R

6

�
"21

me
� 2

�

	 �CA2 �C
A
5 �
r

2R
�

1

6

�
meR

�fCA2 gc� fC
A
5 gc�

�	
: (A56)

In the expressions for M1; . . . ;M4, the terms with � are
due to the inclusion of the P wave in the electron wave
function and those with CB4R are from the inclusion of the
nucleon recoil effect. In the closure approximation there
are no contributions due to the P-wave and the recoil
effects. Note that some of the subdominant terms should
be taken into account in case of large cancellation among
the dominant terms.
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APPENDIX B: 0�2� DECAY RATE FOR VECTOR
NONSTANDARD TERMS

In this appendix we in general follow the derivation of
Ref. [5]. However in addition to Ref. [5] we keep in our
calculations the terms associated with the parameters �V�AV�A
and the pseudoscalar form factor.

The nucleon currents in the impulse approximation up to
order p=mp in the nonrelativistic expansion are [32,33]:

 J��V�A�x� �
X
a

�a���x� ra�
g�0�gVIa � gACa�

� g�m��gA
am � gVDm
a � gAPma ��; (B1)

with Ca, Dm
a , Pma given in Eq. (A3).

In terms of SL��, V���, J���� (�;� � L;R) [5] the matrix
element

 

RVA0� � C0�

X
i

X
N

R
2me

Z
dxdy4�

dk
�2��3

eik�r

!
�miJ

��
LLSL��

� J��LRVL�� � J
��
RLVR���; (B2)

may be expressed as

 RVA0� � C0�

X
i

X
N

�
mi

me
Mm
VA �M

k
VA

�
;

Mm;k
VA � fM

m;k
VA gn � fM

m;k
VA gc:

(B3)

The analogues of Eqs. (C.2.11), (C.2.23), and (C.2.24)
from Ref. [5] are as follows:

 

fMm
VAgn � fMm�

gn

�
R
2

Z
dxdyTN�H1 �H2�
�X1 � ~X1R�E�

� �Yi1 � ~Yi1R�E
i
��; (B4)

 

fMm
VAgc � fMm�

gc

�
R
2

Z
dxdyTN�H1 �H2�
�X1 � ~X1R�E�

� �Yi1 � ~Yi1R�E
i
��; (B5)

 

fMk
VAgn � fMV�A�a�gn

�
R
me

Z
dxdyTNf�H!1�H!2�
�X3� ~X5R�F

0
�

� Y3RF
0
5� � �X

l
5�

~Xl4R�F
l
� � �Y

l
4�

~Yl6R�F
l
5��

� �Hl
k1�H

l
k2�
�X

l
5�

~Xl3R�F
0
� � �Y

l
3�

~Yl5R�F
0
5�

� �Xlk4 � ~Xlk6R�F
k
� � �Ylk6 � ~Ylk4R�F

k
5��g; (B6)
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R
me

Z
dxdyTNf�H!1 �H!2�
�X3 � ~X5R�F0

�

� Y3RF
0
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l
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~Xl4R�F
l
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l
4 �

~Yl6R�F
l
5��
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k1 �H

l
k2�
�X

l
5 �

~Xl3R�F
0
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l
3 �

~Yl5R�F
0
5�

� �Xlk4 � ~Xlk6R�F
k
� � �Y

lk
6 �

~Ylk4R�F
k
5��g; (B7)

with ~X � X� XP, ~Y � Y � YP. The operators X and Y
are defined in [5], except for the operator Yl6R � �Y

l
5R

which is defined to remove the minus sign from the
Eqs. (B6) and (B7); X1 � X1S, Y1 � Y1S.

The additional operators are

 XP1R � G2
AP

ii

�;

XPl3R � XPl4R � G�P
l
�;

XP5R � GA"APii
�;

XPlk6R � �GA"A
�lkP
ii

� � �P

lk

� � P

kl

���

� iG�"ilkP
i
�;

YPi1R � GVGAP
i
� �G

2
Ai"ijkP

jk

�;

YPlk4R � �iG�"ilkP
i
�;

YPl5R � iGA"A"lijP
ij

� �G�P

l
�;

YPl6R � �iGA"A"lijP
ij

� �G�P

l
�;

(B8)

with

 Pij
� � 
iaP
j
b � P

i
a


j
b: (B9)

Under the exchange of running indices a and b, nuclear
operators X, electron currents E� and F�, and neutrino
potentials Hi and H!i are even, while Y, E�, F�, and Hki
are odd.

New constants are defined as

 "V �
gV
gA
��V�AV�A;i � �

V�A
V�A;i�; "A � �V�AV�A;i � �

V�A
V�A;i:

(B10)

The operators
 

X1; X
P
1R; Yi1; Y

Pi
1R; X3; X

l
5; X

P
5R; X

Pl
4R; r �X3R; r

lXlk6R;

Yl4; Y
Pl
6R; r � Y5R; r

lYlk4R; (B11)

have even parity and the operators
 

X1R; Yi1R;X5R; X
l
4R; r �X5; r �XP

3R; r
lXlk4 ; r

lXPlk6R ;

Y3R; Y
l
6R; r � Y3; r � YP

5R; r
lYlk6 ; r

lYPlk4R ; (B12)

have odd parity.
Using the definitions of the neutrino potentials from

Eq. (A33) and

 h! �
R2

2
�H!1 �H!2� (B13)
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in the S� S case with no FBWC we have
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Z
dxdyTNh��X1 � X

P
1R�E�; (B14)
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k
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(B17)

where E and F are taken for x � y � 0.
For the 0� ! 0� transition we have
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with
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(B20)

In the S� P1=2 case with no FBWC for the 0� ! 0�

transition we have
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The decay rate for the 0� ! 0� transition takes the form

 d� �
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where the coefficients are

 AVA0 �
X4
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2; (B26)
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where the terms in the first brackets in Eqs. (B28)–(B31)
come from the S� S case and the terms in the second ones
come from the S� P1=2 case. The terms in the third
brackets in Eqs. (B28) and (B29) are the most important
terms of those that come from the P1=2 � P1=2 case and
from the S� S case due to FBWC. The nuclear matrix
elements are

 

ZY1R�
�
mi

me

i
2R
h�r �Y1R

�
; fZY1Rgc�

�
mi

me

i
2R
h0r� �Y1R

�
;

ZY6 �
�
�

1

2r
h0�r̂

irj�Y
ij
6

�
; ZYP4R �

�
�

1

2r
h0�r̂

irj�Y
Pij
4R

�
;

fZY6Rgc�
�
i

2R
h!r �Y6R

�
; ZY6R�

�
i

2R
h0!r �Y6R

�
;

fZY6 gc�
�

1

r
h00r̂

irjYij6

�
; fZY4Rgc�

�
1

r
h00r̂

irjYij4R

�
;

ZX4R�
�
i

2R
h0!r� �X4R

�
; fZX4 gc�

�
1

r
h00r̂

irj�X
ij
4

�
;

fZXP6R gc�

�
1

r
h00r̂

irj�X
Pij
6R

�
; ZX4 �

�
1

r
h0�r̂

irjXij4

�
;

fZX5 gc�
�
ir2

2R2h!
r̂a	 r̂b� �X5

�
;

ZY5RF�
�
iR
2r
r2
a�r2

b

2R2 h0�r̂ �Y5R

�
: (B32)

The dominant terms give

 N1 � �
�1�1

��
ZX1 �

4

meR
ZY4R

�
�

�
2

3

�
�
meR

� 2
�
ZY6

r
2R

�	
;

(B33)

 N2 � �
11

��
ZX1 �

4

meR
ZY4R

�
�

�
�

2

3

�
�
meR

� 2
�
ZY6

r
2R

�	
;

(B34)

 N3 � �
1�1

�

ZX1 �

"21

me
ZX3

�
�

�
�

1

3

�
"21

me
� 2

�
ZX4

�	
;

(B35)

 N4 � �
�11

��
ZX1 �

"21

me
ZX3

�
�

�
1

3

�
"21

me
� 2

�
ZX4

�	
; (B36)

that agrees with Eq. (C.3.7) of Ref. [5] taking into account
the correspondence with their notations:

 ZX1 � Z1; ZX3 � Z3; ZY6 � Z6;

ZY4R � Z4R; ZX4R � Z5R; ZX4 � Z5;
(B37)

and the fact that Z2 is absent, as we have calculated only
the leading contribution of the parameters ���. Recall that
in Ref. [5] the pseudoscalar form factor is not taken into
account. However, the terms associated with this form
factor do not contribute to the dominant terms (B33)–
(B36). Note that in the expressions for N1 and N2 given
above, the terms with � are due to the inclusion of the P
wave in the electron wave function and the ones with ZY4R
are due to the nucleon recoil effect. We remark that some of
the subdominant terms, like those with ZX4R, fZX4 gc, fZ

Y
6Rgc,

fZX5 gc, and ZY5RF, should be taken into account in the case of
large cancellation among the dominant terms. The same is
valid for the contribution due to the pseudoscalar form
factor gAPia which yields corrections at about 10% to the
dominant terms.

APPENDIX C: 0�2� DECAY RATE FOR TENSOR
NONSTANDARD TERMS

The nucleon currents in the impulse approximation up to
order p=mp in the nonrelativistic expansion are used
[32,33], J��V�A from Eq. (A2) and
 

J���TL;R
�x� � T�3�1

X
a

�a���x�ra�
�
�g�kg�0 � g�0g�k�Tka

� g�mg�n"kmn
ak �
i
2
"��	

�g	kg
0

� g	0g
k�Tak � g	rg
s"rsk
ak�
	
; (C1)

 Tka � 
i�T
�3�
1 � 2T�3�2 �q

kIa � T
�3�
1 
�a 	Q�k�=�2T�3�1 mp�;

(C2)

where, as before, q� � p� � p0� is the 4-momentum
transferred from hadrons to leptons, Q� � p� � p0�,
p�, and p0� are the initial and final 4-momenta of a
nucleon. We neglect the dipole dependence of the form
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factors T�3�1 and T�3�2 on the momentum transfer and omit
the zero argument of the form factors.

Consider the pure TL;R case assuming hmi � 0. In terms
of the hadronic currents

 J���LTL;R
� hFjĴ��L jNihNj~J

���
TL;R
jIi;

J���TL;RL
� hFj~J���TL;R

jNihNjĴ��L jIi;
(C3)

 

~J ���TL
� �TLTL;iJ

���
TL
� �TLTR;iJ

���
TR

;

~J���TR
� �TRTR;iJ

���
TR
� �TRTL;iJ

���
TL

;
(C4)

 Ĵ ��L � UeiJ
��
V�A; (C5)

and the leptonic tensors

 ‘1
��� �

t1����2y; 1x�
!� A1

�
t1����1y; 2x�
!� A2

; (C6)

 ‘1
���� �

t1�����2y; 1x�

!� A1
�
t1�����1y; 2x�

!� A2
; (C7)

 ‘2
��� �

t2����2y; 1x�
!� A1

�
t2����1y; 2x�
!� A2

; (C8)

 ‘2
���� �

t2�����2y; 1x�

!� A1
�
t2�����1y; 2x�

!� A2
; (C9)

with the electron currents defined as

 t1����2y; 1x� � �e2�y����1� �5�
��ec1�x�;

t1�����2y; 1x� � �e2�y����1� �5���
��e
c
1�x�;

t2����2y; 1x� � �e2�y�
���1� �5���e
c
1�x�;

t2�����2y; 1x� � �e2�y�
�����1� �5���ec1�x�;

(C10)

the matrix element is expressed as

 RT0� �
1�����
2!
p

�
GFjVudj���

2
p

�
2
2
X
i

Z
dxdy

dk
�2��3

	
eik�r

2!

X
N


mi�J
���
LTL

‘1
��� � J

���
TLL

‘2
����

� k��J���LTR
‘1
���� � J

���
TRL

‘2
������: (C11)

For the electron currents we have the identities

 t1����1y; 2x� � �t2����2y; 1x�;

t1�����1y; 2x� � t2�����2y; 1x�:
(C12)

Using Eqs. (A12)–(A14), the matrix element (C11) is
expressed as

 RT0� � C0�

X
i

X
N

�
mi

me
Mm
T �M

k
T

�
; (C13)

 Mm;k
T � fMm;k

T gn � fM
m;k
T gc; (C14)

with nonvanishing (n) and vanishing (c) in the closure
approximation parts:

 

fMm
T gn � R

Z
dxdyTN�H1 �H2�
�U1 � ~U1R�F

0
5�

� �Ui
3 �

~Ui
3R�F

i
5� �

~V1RF0
� � �Vi3 � ~Vi3R�F

i
��;

(C15)

 

fMm
T gc � R

Z
dxdyTN�H1 �H2�
�U1 � ~U1R�F

0
5�

� �Ui
3 �

~Ui
3R�F

i
5� �

~V1RF0
� � �V

i
3 �

~Vi3R�F
i
��;

(C16)

 

fMk
Tgn �

R
me

Z
dxdyTN�H!1 �H!2�
 ~V2RE�

� �Ui
4 �

~Ui
4R�F

0i
� � �U

ij
6 �

~Uij
6R�F

ij
��

� �Hi
k1 �H

i
k2�
�V

i
4 �

~Vi4R�E� � �U2 � ~U2R�F0i
�

� �Uj
5 �

~Uj
5R�F

ij
� � �U

ij
7 �

~Uij
7R�F

0j
�

� �Uijk
8 �

~Uijk
8R�F

jk
��; (C17)

 

fMk
Tgc �

R
me

Z
dxdyTN�H!1 �H!2�
 ~V2RE�

� �Ui
4 �

~Ui
4R�F

0i
� � �U

ij
6 �

~Uij
6R�F

ij
��

� �Hi
k1 �H

i
k2�
�V

i
4 �

~Vi4R�E� � �U2 � ~U2R�F0i
�

� �Uj
5 �

~Uj
5R�F

ij
� � �U

ij
7 �

~Uij
7R�F

0j
�

� �Uijk
8 �

~Uijk
8R�F

jk
��; (C18)

where the nucleon operators are

 

~U � U �UP; ~V � V � VP; (C19)
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 U1 � �2G0
A�"T1

� "T2
��a�b; UP

1R � G0
A�"T1

� "T2
�Pii
�;

U1R � G0
V�"T1

� "T2
�Dii


� � iG
0
A�"T1

� "T2
�Tii
�; U2 � 2iG0

A�"
0
T1
� "0T2

��a�b;

UP
2R � �iG

0
A�"

0
T1
� "0T2

�Pii
�; U2R � �iG
0
V�"

0
T1
� "0T2

�Dii

� �G

0
A�"

0
T1
� "0T2

�Tii
�;

Ui
3 � �G

0
V�"T1

� "T2
�
i�; UPi

3R � �iG
0
A�"T1

� "T2
�"ijkP

jk

�;

Ui
3R � G0

A�"T1
� "T2

�Ci
� � iG
0
V�"T1

� "T2
�"ijkD

jk

� � iG0

V�"T1
� "T2

�Ti� � iG
0
A�"T1

� "T2
�"ijkT

jk

�;

Ui
4 � �iG

0
V�"

0
T1
� "0T2

�
i�; UPi
4R � �G

0
A�"

0
T1
� "0T2

�"ijkP
jk

�;

Ui
4R � iG0

A�"
0
T1
� "0T2

�Ci
� �G
0
V�"

0
T1
� "0T2

�"ijkD
jk

� �G0

V�"
0
T1
� "0T2

�Ti� � iG
0
A�"

0
T1
� "0T2

�"ijkT
jk

�;

Ui
5 � �iG

0
V�"

0
T1
� "0T2

�
i�; UPi
5R � G0

A"
0
T1
"ijkP

jk

�;

Ui
5R � �iG

0
A�"

0
T1
� "0T2

�Ci
� �G
0
V"
0
T1
"ijkD

jk

� �G0

V�"
0
T1
� "0T2

�Ti� � iG
0
A"
0
T2
"ijkT

jk

�;

Uij
6 �

1

2
G0
V�"

0
T1
� "0T2

�"ijk
k�; UPij
6R � iG0

A�"
0
T1
� "0T2

�Pij
� ;

Uij
6R � �

1

2
G0
A�"

0
T1
� "0T2

�"ijkC
k

� �

i
2
G0
V�"

0
T1
� "0T2

�"ijkT
k
� � iG

0
V�"

0
T1
� "0T2

�Dij

� � iG

0
A�"

0
T1
� "0T2

�Tij
�;

Uij
7 � �G

0
V�"

0
T1
� "0T2

�"ijk

k
� � 2iG0

A�"
0
T1
� "0T2

��
ia

j
b � 


j
a
ib�;

Uij
7R � �G

0
A�"

0
T1
� "0T2

�"ijkC
k

� � iG

0
V�"

0
T1
� "0T2

�"ijkT
k
� � iG

0
V�"

0
T1
� "0T2

�� ~Dij

� � ~Dji


��

�G0
A�"

0
T1
� "0T2

�� ~Tij
� � ~Tji
��;

UPij
7R � �iG

0
A�"

0
T1
� "0T2

�� ~Pij
� � ~Pji
��;

Uijk
8 � �

1

2
G0
A�"

0
T1
� "0T2

�
"ljk�

i
a


l
b � 


l
a


i
b� � 2"ilj�


l
a


k
b � 


k
a


l
b��;

Uijk
8R � �

1

2
G0
V�"

0
T1
� "0T2

�"ljk ~Dli

� �G

0
V"ilj�"

0
T1

~Dlk

� � "

0
T2

~Dkl

��

�
i
2
G0
A�"

0
T1
� "0T2

�"ljk ~Til
� � iG
0
A"ilj�"

0
T1

~Tlk
� � "
0
T2

~Tkl
��;

UPijk
8R � �

1

2
G0
A�"

0
T1
� "0T2

�"ljk ~Pli
� �G
0
A"ilj�"

0
T1

~Plk
� � "
0
T2

~Pkl
��;

(C20)

 V1R � �G
0
V�"T1 � "T2�Dii


� � iG
0
A�"T1 � "T2�Tii
�; VP1R � �G

0
A�"T1 � "T2

�Pii
�;

V2R � �G
0
V�"

0
T1 � "

0
T2�D

ii

� � iG

0
A�"

0
T1 � "

0
T2�T

ii

�; VP2R � �G

0
A�"

0
T1 � "

0
T2
�Pii
�;

Vi3 � G0
V�"T1

� "T2
�
i� � 2iG0

A�"T1
� "T2

�
�a 	 �b�
i;

Vi3R � �G
0
A�"T1 � "T2�Ci
� � iG

0
V�"T1

� "T2
�"ijkD

jk

� � iG

0
V�"T1

� "T2
�Ti� � iG

0
A�"T1

� "T2
�"ijkT

jk

�;

VPi3R � iG0
A�"T1

� "T2
�"ijkP

jk

�; Vi4 � G0

V�"
0
T1
� "0T2

�
i� � 2iG0
A�"

0
T1
� "0T2

�
�a 	 �b�
i;

Vi4R � �G
0
A�"

0
T1 � "

0
T2�C

i

� � iG

0
V�"

0
T1
� "0T2

�"ijkD
jk

� � iG

0
V�"

0
T1
� "0T2

�Ti� �G
0
A�"

0
T1
� "0T2

�"ijkT
jk

�;

VPi4R � iG0
A�"

0
T1
� "0T2

�"ijkP
jk

�;

(C21)

with

 Ti� � TiaIb � IaTib; Tij
� � 
iaT
j
b � T

i
a


j
b; ~Xij
� � 
iaX

j
b � X

j
a
ib; X � D; T; P: (C22)

Under the exchange of indices a and b, nuclear operatorsU, electron currents F�, and neutrino potentialsHi andH!i are
even, while V, F�, and Hki are odd.
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The new constants are defined as

 "T1
�
T�3�1

gA
��TLTL;i � �

TL
TR;i
�; "T2

�
T�3�1

gA
��TLTL;i � �

TL
TR;i
�;

"0T1
�
T�3�1

gA
��TRTR;i � �

TR
TL;i
�; "0T2

�
T�3�1

gA
��TRTR;i � �

TR
TL;i
�:

(C23)

The even-parity operators are

 U1; U
P
1R; k

iU2R; U
i
3; U

Pi
3R; U

i
4; U

Pi
4R; k

iUj
5R; U

ij
6 ;

UPij
6R ; k

iUij
7R; k

iUijk
8R ;

VP1R; V
P
2R; V

i
3; V

Pi
3R;k � V4R;

(C24)

and the odd-parity operators are

 U1R; kiU2; kiUP
2R; U

i
3R; U

i
4R; k

iUj
5; k

iUPj
5R; U

ij
6R;

kiUij
7 ; k

iUPij
7R ; k

iUijk
8 ; kiUPijk

8R ;

V1R; V2R; V
i
3R;k � V4;k � VP

4R:

(C25)

Using the definitions of the neutrino potentials from
Eqs. (A33) and (B13), in the S� S case with no FBWC
we have
 

fMm
T gn;S�S � 2

Z
dxdyTNh�
�U1 �U

P
1R�F

0
5�

� �Ui
3 �U

Pi
3R�F

i
5��; (C26)

 

fMm
T gc;S�S � "21R

Z
dxdyTNh0
VP1RF

0
�

� �Vi3 � V
Pi
3R�F

i
��; (C27)

 

fMk
Tgn;S�S �

"21

me

Z
dxdyTNh0!
�Ui

4 �U
Pi
4R�F

0i
�

� �Uij
6 �U

Pij
6R �F

ij
��

�
4

meR

Z
dxdyTN

iR
2r
h0�r̂ � V4RE�; (C28)

 

fMk
Tgc;S�S �

2

meR

Z
dxdyTNh!VP2RE�

�
"21

me

Z
dxdyTN

iR
r
h00r̂

i
U2RF
0i
� �U

j
5RF

ij
�

�Uij
7RF

0j
� �U

ijk
8RF

jk
��; (C29)

where E and F are taken for x � y � 0.
For the 0� ! 0� transition we have

 

X
i

mi

me

X
N

fMm
T gS�S � g2

A
2�W
U
1 �W

UP
1R �F

0
5�

� "21RfW
VP
1R gcF

0
��; (C30)

 

X
i

X
N

fMk
TgS�S �

2g2
A

meR
�2WV

4R � fW
VP
2R gc�E�; (C31)

with
 

WU
1 �

�
mi

me
h�U1

�
; WUP

1R �

�
mi

me
h0UP

1R

�
;

fWVP
1R gc �

�
mi

me
h0VP1R

�
; WV

4R �

�
iR
2r
h0�r̂ � V4R

�
;

fWVP
2R gc � hh!V

P
2Ri: (C32)

In the S� P1=2 case with no FBWC for the 0� ! 0�

transition we have

 fMm
T gn;S�P1=2

� 2
Z
dxdyTNh��Ui

3RF
i
5� � V

i
3RF

i
��;

(C33)

 fMm
T gc;S�P1=2

� "21R
Z
dxdyTNh0�Ui

3RF
i
5� � V

i
3RF

i
��;

(C34)

 

fMk
Tgn;S�P1=2

�
"21

me

Z
dxdyTNh0!U

i
4RF

0i
�

�
4

meR

Z
dxdyTN

iR
2r
h0�r̂

i
�U2 �UP
2R�F

0i
�

� �Uij
7 �U

Pij
7R �F

0j
��; (C35)

 

fMk
Tgc;S�P1=2

�
2

meR

Z
dxdyTNh!Ui

4RF
0i
�

�
"21

me

Z
dxdyTN

iR
r
h00r̂

i
�U2 �U
P
2R�F

0i
�

� �Uij
7 �U

Pij
7R �F

0j
��: (C36)

The decay rate for the 0� ! 0� transition takes the form

 d� �
X
s1;s2

jR0�j
2 m

5
e

4�3 d�0�

�
a0�

�meR�2

AT0 � p̂1 � p̂2BT0 �d�0�; (C37)

where the coefficients are

 AT0 �
X4

i�1

jOij
2; (C38)

 BT0 � Re�O1O
2 �O


1O2 �O3O
4 �O



3O4�; (C39)

with
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O1 � �
�1�1

��
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1 �W
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1R � �

2

meR
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4R � fW
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2R gc�

�

�

�
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�
�
meR

� 2
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6
fWU
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�

�

�
�
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meR
�WV
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1

2
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�	
; (C40)

 

O2 � �
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��
2�WU

1 �W
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1R � �

2

meR
�WV

4R � fW
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2R gc�

�

�

�
�
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3

�
�
meR

� 2
�
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3R �
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6
fWU
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�

�

�
�
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meR
�WV

4RF �
1

2
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2RFgc�

�	
; (C41)

 

O3 � �
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(C43)

where the terms in the first brackets in Eqs. (C40)–(C43)
come from the S� S case and the terms in the second ones
come from the S� P1=2 case. The terms in the third
brackets in Eqs. (C40) and (C41) are the most important

terms of those that come from the S� S case due to
FBWC. Note that in the S� S case there is the contribution
to Eqs. (C40) and (C41) from the �H!1 �H!2� combina-
tion in Eq. (C18). Therefore the contribution from the
P1=2 � P1=2 case should not be taken into account.

The nuclear matrix elements are
 

WU
3R�

�
mi

me

i
2R
h�r� �U3R

�
; fWU

3Rgc�

�
mi

me

i
r
h0r �U3R

�
;

WV
3R�

�
mi

me

i
r
h�r �V3R

�
; fWV

3Rgc�

�
mi

me

i
2R
h0r� �V3R

�
;

WU
4R�

�
i

2R
h0!r� �U4R

�
; fWU

2 gc�

�
R
r
h00r̂ � r̂�U2

�
;

fWUP
2R gc�

�
R
r
h00r̂ � r̂�UP

2R

�
; fWU

7 gc�

�
R
r
h00r̂

ir̂j�U
ij
7

�
;

fWUP
7R gc�

�
R
r
h00r̂

ir̂j�U
Pij
7R

�
: (C44)

Assuming now hmi � 0 for the dominant terms we have
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Again, in the above expressions, the terms with � are due
to the inclusion of the Pwave in the electron wave function
and the ones with WVP

2R and WX
4R�X � U;V� are due to the

nucleon recoil effect.

[1] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2006).

[2] S. R. Elliot and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52,
115 (2002); P. Vogel, arXiv:hep-ph/0611243.

A. ALI, A. V. BORISOV, AND D. V. ZHURIDOV PHYSICAL REVIEW D 76, 093009 (2007)

093009-24



[3] Ya. B. Zel’dovich and M. Yu. Khlopov, JETP Lett. 34, 141
(1981); Sov. Phys. Usp. 24, 755 (1981).

[4] M. G. Shchepkin, Sov. Phys. Usp. 27, 555 (1984).
[5] M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys.

Suppl. 83, 1 (1985).
[6] R. N. Mohapatra, Phys. Rev. D 34, 3457 (1986).
[7] J. D. Vergados, Phys. Lett. B 184, 55 (1987).
[8] M. Hirsch, H. V. Klapdor-Kleingrothaus, and S. G.

Kovalenko, Phys. Rev. Lett. 75, 17 (1995); Phys. Lett. B
352, 1 (1995); 403, 291 (1997); Nucl. Phys. B, Proc.
Suppl. 52, 257 (1997); Phys. Rev. D 57, 1947 (1998).

[9] K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 75, 2276
(1995).

[10] M. Hirsch, H. V. Klapdor-Kleingrothaus, and S. G.
Kovalenko, Phys. Lett. B 372, 181 (1996); 381, 488(E)
(1996); H. Päs, M. Hirsch, and H. V. Klapdor-
Kleingrothaus, Phys. Lett. B 459, 450 (1999).

[11] A. Faessler, S. G. Kovalenko, F. Simkovic, and J.
Schwieger, Phys. Rev. Lett. 78, 183 (1997).

[12] H. V. Klapdor-Kleingrothaus and U. Sarkar, Phys. Lett. B
554, 45 (2003).

[13] M. Hirsch, H. V. Klapdor-Kleingrothaus, and S. G.
Kovalenko, Phys. Rev. D 54, R4207 (1996).

[14] M. Hirsch, H. V. Klapdor-Kleingrothaus, and O. Panella,
Phys. Lett. B 374, 7 (1996).

[15] J. D. Vergados, Nucl. Phys. B, Proc. Suppl. 143, 211
(2005).

[16] J. Schechter and J. W. Valle, Phys. Rev. D 25, 2951 (1982);
E. Takasugi, Phys. Lett. B 149, 372 (1984); J. F. Nieves,
Phys. Lett. B 147, 375 (1984).

[17] F. Deppisch and H. Päs, Phys. Rev. Lett. 98, 232501
(2007).

[18] V. M. Gehman and S. R. Elliott, J. Phys. G 34, 667 (2007).
[19] A. Ali, A. V. Borisov, and D. V. Zhuridov, arXiv:hep-ph/

0606072.
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