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The thermodynamic properties of an SU�3� gauge theory without quarks are calculated using a string
formulation for 1:2Tc � T � 3Tc. The results are in good agreement with the lattice data. We also
comment on SU�N� gauge theories.
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I. INTRODUCTION

The results at RHIC indicate that the matter created in
heavy ion collisions behaves like a strongly coupled liquid
[1]. Thus, there is a need for new approaches to strongly
coupled gauge theories. Until recently, the lattice formu-
lation was a unique theoretical tool to deal with strongly
coupled gauge theories. The subject has taken an interest-
ing turn with Maldacena duality [2]. Although the original
proposal was for conformal theories, various modifications
have been found that produce gauge/string duals with a
mass gap, confinement, and supersymmetry breaking [3].

In this paper we address some issues of thermodynamics
of SU�3� pure gauge theory in a dual formulation. Clearly,
finding the dual from first principles of string theory is
beyond our ability. Instead, we attempt the inverse problem
and use some phenomenologically successful five-
dimensional models of anti-de Sitter (AdS)/QCD.

II. THE MODEL

Let us first explain the model to be considered. We take
the following ansatz for the 10-dimensional background
geometry which turns out to be applicable for the tempera-
ture range 1:2Tc � T � 3Tc [4]

 ds2 �
R2

z2 H�fdt
2 � d~x2 � f�1dz2� �H�1d�X;

f � 1�
�
z
zT

�
4
; H � e�1=2�cz2

;

(1)

where zT � 1=�T. The value of cwill be fixed shortly. The
metric is a deformed product of the Euclidean AdS5 black
hole and a 5-dimensional sphere (compact space X). The
deformation is due to a z-dependent factor H. Such a
deformation is crucial for breaking conformal invariance
of the original supergravity solution and introducing �QCD.
We also take a constant dilaton.

Apart from the language of 10-dimensional string the-
ory, there is a more phenomenological way to attack QCD.
This approach called AdS/QCD deals with a 5-dimensional
effective description and tries to fit data as much as pos-
sible. For our model, its AdS/QCD cousin is obtained by
discarding the compact space in (1).

At T � 0, then what we get is the slightly deformed
AdS5 metric. In this background linearized Yang-Mills

equations are effectively reduced to a Laguerre differential
equation. As a result, the spectrum turns out to be like that
of the linear Regge models [5,6]. This fact allows one to fix
the value of c from the � meson trajectory. It is of order
c � 0:9 GeV2 [6]. In addition, this AdS/QCD model pro-
vides the phenomenologically acceptable heavy quark po-
tentials as well as the value of the gluon condensate [7,8].

At finite T, the model provides the spatial string tension
of pure gauge theory [9]. The agreement with the lattice
data is very good for temperatures lower than 2:5–3Tc.
Because of this reason we set the upper bound on T in (1).
Moreover, the model describes in a qualitative way a heavy
quark-antiquark pair and the expectation value of the
Polyakov loop [10].

Thus, there are reasons to believe that (1) is a good
approximation for a string dual to a pure gauge theory.

III. THE ENTROPY DENSITY

One of the bedrocks of the duality is a conjecture that the
entropy of gauge theories is equal to the Bekenstein-
Hawking entropy of their string (gravity) duals [3]. As is
known, the Bekenstein-Hawking entropy is proportional to
an (8-dimensional) area of the horizon. The metric (1) has
the horizon at z � zT. Therefore, the temperature depen-
dence of the entropy density is

 s�T� � s0T3 exp
�
�

1

2

T2
c

T2

�
; (2)

where s0 is a factor independent of temperature. In this
formula Tc is given by [11]

 Tc �
1

�

���
c
p
: (3)

It follows from (2) that the entropy density can be
represented as a series in powers of 1

T2 with the leading
T3 term

 s�T� � s0T
3
X1
n�0

an�
n; � �

T2
c

T2 ; (4)

where an �
���n

2nn! .
For future use, we define the truncated model by keeping

the two leading terms in (4). We have

 str�T� � s0T
3�1� 1

2��: (5)
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IV. THE PRESSURE: FUZZY BAGS

Recently, it has been suggested by Pisarski that for the
temperature range Tmax < T < Tpert the pressure in QCD
with quarks is given by a series in powers of 1

T2 times the
ideal T4 term [12]

 pQCD�T� � fpertT4 � BfuzzyT2 � BMIT � . . . (6)

It was called a fuzzy bag model for the pressure. So, BMIT

stands for the MIT bag constant. Tmax is close to a critical
temperature Tc (or some approximate ‘‘Tc’’ for a cross-
over). A small difference between Tc and Tmax may vary
with the model. Tpert is set by perturbation theory such that
it is applicable only for temperatures higher than Tpert.

For pure glue, Pisarski argued, based on lattice simula-
tions of [13], that (6) reduces to a sum of two terms

 p�T� � fpert�T
4 � T2

cT
2�: (7)

This means that Bfuzzy � fpertT2
c and BMIT is much smaller

than the first two terms. Note that an important conse-
quence of (7) is that p�Tc� � 0.

V. THE PRESSURE: STRING DUAL

Given the entropy density as a function of T, in the
homogeneous case one can find the temperature depen-
dence of the pressure by integrating dp

dT � s [14]. From (4),
we get

 p�T� �
1

4
s0T4

�
1� ��

1

4
�2 ln�� b�2 �

X1
n�3

bn�n
�
; (8)

where b is an integration constant and bn �
2an
2�n .

Let us now consider whether the proposal of Pisarski is
reasonable in the model under consideration. The two
leading terms in (8) look similar to those of (7). So, we
find that the critical temperature is given by Tc. A simple
estimate based on c � 0:9 GeV2 [6] then gives Tc �
300 MeV. In SU�3� pure gauge theory Tc is of order
270 MeV. Since the agreement is not bad, we may use
this value of c in (1). It is worth noting that it also means
that c slowly depends on a number of quarks. Alternatively,
the value of c can be fixed from the critical temperature.

We now use p�Tc� � 0 to determine the integration
constant. As a result, we have

 b �
X1
n�3

bn � 0:039: (9)

The value of b is indeed small compared to the coefficients
in front of the two leading terms. Thus, the agreement is
very satisfactory at this point.

To complete the picture, we present the results of nu-
merical calculations. We split the series (8) into two pieces,
the first containing the two leading terms, and the second
presenting the rest. Then we define

 p1�T� � 1� �;

p2�T� � �
1

4
�2 ln�� b�2 �

X1
n�3

bn�n:

For simplicity, we have omitted the overall factor 1
4 s0T

4.
The values of p1 and p2 can be read off of Fig. 1. We see
that at T � 1:2Tc the value of p2 is 1 order of magnitude
smaller than that of p1. Above 1:2Tc the value of p1

increases, while p2 decreases and becomes negligible for
T * 2Tc. Thus, p1�T� provides a reliable approximation
whose error is less then 10% for the pressure.

In sum, the truncated model which is equivalent to the
proposal of [12] is valid with accuracy better than 10%.

VI. THE SPEED OF SOUND

Having derived the entropy density, we can easily obtain
the speed of sound. For the model of interest, we have

 C2
S�T� �

s
Ts0
�

1

3

�
1�

1

3
�
�
�1
: (10)

For completeness, we also present the result obtained for
the truncated model (5). In this case (10) is replaced by

 C2
S�T� �

1
3�1�

1
2���1�

1
6��
�1: (11)

Note thatCS is independent of s0. Thus, we do not have any
free fitting parameter at this point.

We close the discussion of the speed of sound by com-
paring the results with those of lattice simulations [15].
The curves are shown in Fig. 2. We see that our model is in
very good agreement with the lattice for T * 1:7Tc, while
near 1:2Tc the discrepancy is of order 15%. The agreement
between the truncated model and the lattice is spectacular.

FIG. 1. Values of p1 and p2 versus the ratio T
Tc

.
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FIG. 2. The square of the speed of sound versus T
Tc

. The upper
and lower dashed curves correspond to (10) and (11), respec-
tively. The solid curve represents the lattice result of [13], while
the horizontal line is that of AdS/CFT C2

S �
1
3 .
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The maximum discrepancy occurred at T � 1:2Tc is of
order 6%.

VII. THE GLUON CONDENSATE AT FINITE
TEMPERATURE

We will next describe the gluon condensate at finite
temperature [16]. It is obtained from the trace anomaly
of the energy-momentum tensor [17]. We have

 G2�T� � G2 � 4p� Ts; (12)

where G2 is the condensate at zero temperature.
Unlike the speed of sound, the condensate depends on

the parameter s0. There are two different ways to fix its
value which fortunately yield very similar results. The first
is to fit the interaction measure ��� 3p�=T4 as it follows
from (4) and (8) to the lattice data of [13] at some normal-
ization point Tn. As a result, we get

 s0 � 6:8� 0:3: (13)

At first glance it may seem curious that the result is almost
independent of the normalization point. As we will see in a
moment, this is indeed the case.

The second is to match the coefficient in front of the T4

term in (8) with that of the bag model [18]. For SU�3�
(pure) gauge theory, the latter is 8

45�
2. So, we find

 s0 �
32
45�

2 � 7:0 (14)

that is really the same as (13).
Having determined the value of s0, we can now write

down the expression for the condensate. Combining (4),
(8), and (12), we get
 

G2�T� � �s0T
4

�
1

2
��

1

4
�2 ln�� g�2 �

X1
n�3

�an � bn��
n
�
;

(15)
where g � 1

8� b�
k
s0

. Note that the condensate at zero
temperature G2 � kT4

c has been included in the �2 term.
For the background geometry (1), the estimate of [8] gives
k � 1:20. Interestingly, the value of g turns out to be small.
For s0 � 6:8 it is of order �0:01. The result is shown in
Fig. 3.

The expression (15) is cumbersome and difficult of any
practical use. We should therefore seek a simpler (nearly
equal) expression. To this end, we split the series (15) into
two pieces and define

 g1�T� � �
1

2
�;

g2�T� � �
1

4
�2 ln�� g�2 �

X1
n�3

�bn � an��n:

For simplicity, we have omitted the overall factor s0T
4.

The values of g1 and g2 can be read off of Fig. 4. We see
that the value of g2 is approximately 15% of g1. Thus, in
the temperature range under consideration we may ap-
proximate the infinite series (15) by g1. Finally, the gluon
condensate takes the form predicted by the truncated

model

 G2�T� � �
s0

2
T2
cT

2: (16)

VIII. THE INTERACTION MEASURE

Using (4) and (8), one can easily find the expression for
the interaction measure. It is
 

�� 3p

T4 � s0

�
1

2
��

1

4
�2 ln��

�
b�

1

8

�
�2

�
X1
n�3

�an � bn��
n
�
: (17)

The truncated model provides a simpler expression

 

�� 3p

T4
�
s0

2
�; (18)

as expected. In Fig. 5 we have plotted the results. As can be

FIG. 3. The gluon condensate in units of T4
c versus T

Tc
. Here

s0 � 6:8.

FIG. 4. Values of g1 and g2 versus the ratio T
Tc

.
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FIG. 5 (color online). The interaction measure ��� 3p�=T4

versus T
Tc

. The darker and lighter curves correspond to (17) and
(18), respectively. The lattice data of [13] lie between the two
dashed lines. Here s0 � 6:8.
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seen, the agreement with the lattice data is very satisfac-
tory. An important observation is that varying s0 over the
range (13) has little effect.

IX. SU�N�

Can one think of the model (1) as a string dual to an
SU�N� pure gauge theory? We will be exploring the con-
sequences of assuming that the pressure vanishes at T � Tc
and the parameter c depends on N. This assumption leads
to the same expression for the pressure as (8) with b
defined by (9). The overall constant s0 is fixed from the
T4 term. Fitting the bag model, we have

 s0 �
4�2

45
�N2 � 1�: (19)

Clearly, the analysis of Sec. II is not sensitive to N. So, the
conclusion we draw is that the truncated model is valid
with accuracy better than 10%.

Moreover, we can obtain a formula for the pressure
normalized by the leading term p0 �

1
4 s0T

4. It is

 

p
p0
��� �

�
1� ��

1

4
�2 ln�� b�2 �

X1
n�3

bn�
n
�
: (20)

Thus our model predicts that the ratio is a function of �. It
does not explicitly depend on N. It is worth noting that in
addition to N � 3 the prediction is also supported by
lattice simulations for N � 4 and N � 8 [19].

We can gain some understanding of theN dependence of
a parameter g � R2

�0 . Here �0 is the usual string parameter
coming from the Nambu-Goto action. The lattice data are
well fitted by Tc���

�
p � 0:596� 0:453

N2 [20], where� is the string

tension at zero temperature. For the AdS/QCD cousin of
(1) it is given by � � g e

4� c [7]. Combining with (3), we
learn

 g �
4

�e

�
0:596�

0:453

N2

�
�2
: (21)

Simple algebra shows that g is a slowly varying function of
N. It takes values between 0.93 at N � 2 and 1.32 at N �
1. For N � 3, g is approximately equal to 1.12. It is
interesting to compare this value with the estimate of [7].
The latter was made by using the Cornell potential. The
result is g � 0:94. The estimates are relatively close. This
might be a hint that g is also a slowly varying function of a
number of quarks.

X. CONCLUDING COMMENTS

First, the model we have proposed predicts the entropy
density as a series in 1

T2 . It differs from the proposal of
Pisarski [12] by having a term lnT in the pressure. In the
pure glue case this term turns out to be subdominant.
Second, the spatial string tension calculated within the
AdS/QCD cousin of (1) can be written as a series in powers
of 1

T2 times T2 [9]. However, the first two terms of the series
do not provide a reasonable approximation.
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