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Combining the thermal operator representation with the dispersion relation in QED at finite temperature
and chemical potential, we determine the complete retarded photon self-energy only from its absorptive
part at zero temperature. As an application of this method, we show that, even for the case of a nonzero
chemical potential, the temperature dependent part of the one loop retarded photon self-energy vanishes in
�1� 1� dimensional massless QED.
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In a series of recent papers [1–4], we have shown how
the thermal operator representation [5–7], which relates a
Feynman graph at finite temperature to the corresponding
one at zero temperature both in the imaginary time formal-
ism [8,9] as well as in the real time formalism of closed
time path [10], can be used profitably to study various
questions of interest at finite temperature. For example,
using thermal operator representation, the cutting rules at
finite temperature and chemical potential can be directly
obtained [1] and the miraculous cancellations observed
earlier [10,11] can be easily understood. The thermal op-
erator representation also clarifies the meaning of the for-
ward scattering amplitude description for the retarded
amplitudes at finite temperature [2] by relating them to
the corresponding forward scattering description at zero
temperature. The method also allows us [3] to use the
Schwinger proper time method [12] to derive the hard
thermal loop effective actions [13,14] in a simple manner.
Furthermore, this approach clarifies the origin of many of
the distinguishing features of hard thermal loop effective
actions in gauge theories by tracing these properties di-
rectly to the corresponding zero temperature theory [4].

In this brief report, we present yet another example of
how the thermal operator representation can be combined
with other powerful tools in quantum field theory to obtain
nontrivial results at finite temperature and chemical poten-
tial. Specifically, we will show that when combined with
dispersion relations, the thermal operator representation
can lead directly to the complete retarded self-energy at
finite temperature and chemical potential from a knowl-
edge of only the absorptive part of the retarded self-energy
at zero temperature. Although this can be done for any
theory, we will restrict ourselves to the retarded photon
self-energy in QED which is of much interest in the study
of linear response theory [8,9].

Dispersion relations have been studied extensively at
zero temperature [15]. For a retarded function f�t� �
��t�f�t�, the dispersion relations arise from the fact that
the function in the Fourier transformed space can be writ-
ten as

 f�!; ~p� �
1

2�i

Z 1
�1

d!0
f�!0; ~p�

!0 �!� i�
; (1)

which leads to the relations between the real and the
imaginary parts as
 

Re f�!; ~p� �
1

�

Z 1
�1

d!0
Im f�!0; ~p�
!0 �!

;

Im f�!; ~p� � �
1

�

Z 1
�1

d!0
Re f�!0; ~p�
!0 �!

:

(2)

These relations, which are conventionally known as the
dispersion relations, can also be combined into one single
relation

 f�!; ~p� �
1

�

Z 1
�1

d!0
Im f�!0; ~p�
!0 �!� i�

; (3)

which determines the complete retarded amplitude at zero
temperature from a knowledge of only its absorptive part.

We note, however, that for the purposes of a thermal
operator representation, only an unsubtracted relation such
as in (3) will suffice. This is easily seen from the fact that
the thermal operator acts at the integrand level before the
integration over internal momenta are carried out [5–7].
Since the absorptive part of the self-energy involves a
combination of delta functions with the external energy
! as one of the arguments (it represents an on-shell pro-
cess), for a fixed value of the internal momentum, it
vanishes for large values of ! (the divergences arise only
when the internal momenta are integrated). The important
thing to note is that the thermal operator, which relates the
finite temperature graphs to the zero temperature ones, is
real and, consequently, it maintains the real and the imagi-
nary nature of parts of an amplitude. Therefore, if f�!� �
��0;��R �!� represents the retarded self-energy in a theory at
zero temperature and nonzero chemical potential � at the
integrand level (before the internal momentum integrations
are done), then by applying the thermal operator, the
dispersion relation at finite temperature and nonzero
chemical potential follows from (3) to be (we are sup-
pressing the momentum arguments for simplicity)
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 � �T;��R �!� �
1

�

Z 1
�1

d!0
Im��T;��R �!0�
!0 �!� i�

; (4)

where we have identified
 

��T;��R �!� � O�T;����0;��R �!�;

Im��T;��R �!� � O�T;��Im��0;��R �!�;
(5)

with O�T;�� denoting the appropriate thermal operator for
the amplitude [6,7] (as shown in these papers, such a
factorization actually holds to all-loops orders). This gen-
eralizes the dispersion relation (3) at zero temperature to
that at finite temperature and chemical potential.
Furthermore, through the use of the dispersion relation
and the thermal operator, this method shows how the
complete retarded self-energy at finite temperature and
chemical potential can be obtained from a knowledge of
only the absorptive part of the zero temperature retarded
self-energy.

Let us now demonstrate how this works in QED with a
nonzero chemical potential � by calculating the retarded
self-energy for the photon. The Lagrangian density for the
theory is given by

 L � �1
4F��F

�� � i � 6D �m �  �� � �0 ; (6)

where D� denotes the covariant derivative and F�� is the
Abelian field strength tensor. In the closed time path for-
malism, the propagator in the mixed space becomes a 2�
2 matrix and at zero temperature has the form [6]

 iS�0;���� �t; ~p� �
ei�t

2Ep
���t�A�Ep�e�iEpt � ���t�B�Ep�eiEpt�;

iS�0;���� �t; ~p� �
ei�t

2Ep
B�Ep�e

iEpt;

iS�0;���� �t; ~p� �
ei�t

2Ep
A�Ep�e�iEpt;

iS�0;���� �t; ~p� �
ei�t

2Ep
���t�B�Ep�e

iEpt � ���t�A�Ep�e
�iEpt�;

(7)

where Ep �
������������������
~p2 �m2

p
and

 A�Ep� � �0Ep � ~� � ~p � ��A��Ep�;

B�Ep� � ��
0Ep � ~� � ~p � ��B��Ep�:

(8)

The retarded one loop self-energy for the photon (see
Fig. 1) can now be calculated easily. We note here that
since the chemical potential occurs as a phase in the
components of the propagator in (7), in the contribution
of the fermion loop to the self-energy at zero temperature,
the dependence on the chemical potential will cancel out.
However, as explained in [7], for purposes of applying the
thermal operator, we assign distinct chemical potentials
�1; �2 to the two fermion propagators in the loop and
identify �1 � �2 � � only at the end. This simplifies
and makes unambiguous the effect of the thermal operator.
In n dimensions in the mixed space, the retarded photon
self-energy at zero temperature has the form (unfortu-
nately, both the vector index of the polarization tensor as
well as the chemical potential are conventionally labeled
�, but we do not believe this will cause any confusion)

 ����0;��
R �t1 � t2; ~p� �

Z dn�1k

�2��n�1 �
���0;��
R �t1 � t2; ~p; ~k�;

(9)

where

 � ���0;��
R �t1 � t2; ~p; ~k� �

ine2

4EkEk�p
��t1 � t2�e�i��1��2��t1�t2��N��e�i�Ek�Ek�p��t1�t2� �M��ei�Ek�Ek�p��t1�t2�	; (10)

with (we use a metric with signature ��;�;�;��),
 

N���Ek; Ek�p� � A��Ek�p�B��Ek� � ����A�Ek�p� � B�Ek� �m2� � A��Ek�p�B��Ek�;

M���Ek; Ek�p� � B��Ek�p�A��Ek� � ����B�Ek�p� � A�Ek� �m2� � B��Ek�p�A��Ek�:
(11)

Equation (10) can now be Fourier transformed in the external time variables to yield (!, which represents the external
energy, is the variable of Fourier transformation and we will suppress the arguments ~p, ~k in the self-energy for simplicity)

 � ���0;��
R �!� �

ne2

4EkEk�p

�
�

N��

!� Ek ��1 � Ek�p ��2 � i�
�

M��

!� Ek ��1 � Ek�p ��2 � i�

�
; (12)

FIG. 1. The two diagrams contributing to the retarded self-
energy for the photon at one loop.
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 Im ����0;��
R �!� �

n�e2

4EkEk�p
�N��	�!� Ek ��1 � Ek�p ��2� �M

��	�!� Ek ��1 � Ek�p ��2�	: (13)

It is clear now that, for a fixed finite value of ~k,
Im����0:��

R �!� vanishes for large values of ! and that
(12) and (13) satisfy the zero temperature dispersion rela-
tion (3). If we are only interested in the zero temperature
result, we can set �1 � �2 � � at this point, which will
lead to the result that the absorptive part of the retarded
self-energy and, therefore, the full retarded self-energy, at
zero temperature do not depend on the chemical potential,
which is more directly seen from the mixed space result in
(10) (by setting �1 � �2 � �).

As pointed out in (5), at finite temperature, the imagi-
nary part of the retarded self-energy can be obtained
through the application of the thermal operator, which in

the present case takes the form

 

O�T;�� � �1� N̂�T;�1�
F �Ek��1� S�Ek���

� �1� N̂�T;�2�
F �Ek�p��1� S�Ek�p���; (14)

where S�E� is a reflection operator that changes E! �E
and N̂�T;��F �E� denotes a fermion distribution operator
whose action is described in [7] (in momentum space,
this action can be determined by considering the Fourier
transformation in the external time of the propagator in the
mixed space representation). Applying the thermal opera-
tor (14), we obtain

 

Im����T;��
R �!� �

n�e2

4EkEk�p
�	�!� Ek � Ek�p��1� n

�
F �Ek� � n

�
F �Ek�p��N

�� � 	�!� Ek � Ek�p�

� �1� n�F �Ek� � n
�
F �Ek�p��M

�� � 	�!� Ek � Ek�p��n�F �Ek� � n
�
F �Ek�p�� �N��

� 	�!� Ek � Ek�p��n�F �Ek� � n
�
F �Ek�p�� �M��	; (15)

where we have used the standard notation for the Fermi-
Dirac distribution n
F �E� � nF�E
�� and have defined
 

�N�� � N����Ek; Ek�p�

� A��Ek�p�A
��Ek� � �

���A�Ek�p� � A�Ek� �m
2�

� A��Ek�p�A
��Ek�;

�M�� � M����Ek; Ek�p�

� B��Ek�p�B
��Ek� � �

���B�Ek�p� � B�Ek� �m
2�

� B��Ek�p�B
��Ek�: (16)

The appearance of new channels of reaction at finite tem-
perature is manifest in the absorptive part in (15) and has

been obtained here from the zero temperature result
through the thermal operator representation. We note
here that while at zero temperature, the imaginary part of
the retarded photon self-energy leads to the probability for
the decay of the photon, at finite temperature, the addi-
tional channels represent the scattering of thermal fermions
by a photon, which become dominant at very high tem-
peratures (in the hard thermal loop approximation).

Using the finite temperature dispersion relation in (4),
we can now determine the full retarded self-energy for the
photon at finite temperature and chemical potential from
(15) to be

 � ���T;��
R �!� � �

ne2

4EkEk�p

�
�1� n�F �Ek� � n

�
F �Ek�p��N

��

!� Ek � Ek�p � i�
�
�1� n�F �Ek� � n

�
F �Ek�p��M

��

!� Ek � Ek�p � i�

�
�n�F �Ek� � n

�
F �Ek�p�� �N��

!� Ek � Ek�p � i�
�
�n�F �Ek� � n

�
F �Ek�p�� �M��

!� Ek � Ek�p � i�

�
: (17)

This demonstrates how starting from only the absorptive
part of the retarded self-energy at zero temperature, we can
obtain the full retarded self-energy at finite temperature
and chemical potential through the use of the dispersion
relation and the application of the thermal operator. For
n � 4, Eq. (17) reduces to the well-known result in QED
[7–9]. We note here that both (15) as well as (17) are
nonanalytic at the origin in the energy-momentum space
because of the additional channels of reaction. The non-
commuting nature of the limits !! 0, ~p! 0 and ~p! 0,
!! 0 arises because they represent different physical
effects at finite temperature. However, for ~p � 0, the re-

tarded self-energy ����T;��
R �!� is an analytic function in

the entire upper half of the complex !-plane which justi-
fies the dispersion relation in (4).

Let us next consider the Schwinger model [16] which
corresponds to two dimensional massless QED. For m �
0, in two dimensions (n � 2) we have various simplifica-
tions. First, we can write

 Ek � jk
1j; Ek�p � jk

1 � p1j: (18)

Furthermore, in two dimensions the tensors in (11) and
(16) simplify to have the forms
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N�� � �2EkEk�p���k
1����k1 � p1�u��u

�
�

� ���k1���k1 � p1�u��u��	;

M�� � �2EkEk�p����k1���k1 � p1�u��u
�
�

� ��k1����k1 � p1�u��u��	;

�N�� � 2EkEk�p����k1����k1 � p1�u��u
�
�

� ��k1���k1 � p1�u��u��	;

�M�� � 2EkEk�p���k1���k1 � p1�u��u
�
�

� ���k1����k1 � p1�u��u
�
�	;

(19)

where u�� � �1;�1� and u�� � �1; 1�.

With the relations (18) and (19), the temperature depen-
dent part of Im����T;��

R �!� in (15) can be simplified and
takes the form (we use the standard notation [10,17] A�T� �
A�0� � A�
� decomposing any observable to its zero tem-
perature part and the temperature dependent part)

 

Im����
;��
R �!� � �e2�	�!� p1�u��u

�
�f��k

1�n�F �Ek� � ���k
1�n�F �Ek� � ��k

1 � p1�n�F �Ek�p�

� ���k1 � p1�n�F �Ek�p�g � 	�!� p
1�u��u

�
�f���k

1�n�F �Ek� � ��k
1�n�F �Ek�

� ���k1 � p1�n�F �Ek�p� � ��k
1 � p1�n�F �Ek�p�g	: (20)

If we use the fact that ���
R is the integrand in an integral

involving k1 for the self-energy (see, for example, (9)), we
can redefine k1 ! �k1 � p1 in some of the terms in [12] to
rewrite the temperature dependent part as
 

Im����
;��
R �!� � �e2��k1��n�F �Ek�

� n�F �Ek���	�!� p
1�u��u

�
�

� 	�!� p1�u��u
�
��; (21)

where ��k1� � ��k1� � ���k1�. The important thing to
note here is that the integrand of the imaginary part of
the temperature dependent retarded self-energy is antisym-
metric in the integration variable k1 because of the alter-
nating step function. As a result, through the dispersion
relation (4), the temperature dependent part of the com-
plete retarded self-energy, ����
;��

R �!�, would also inherit

this antisymmetry. It follows, therefore, that the tempera-
ture dependent imaginary part of the retarded self-energy
as well as the retarded self-energy vanish (when integrated
over k1) for the Schwinger model. This result is a general-
ization of [17] to the case of a nonzero chemical potential.
We note here that the delta function structure as well as the
manifest antisymmetry in (21) is a reflection of helicity
conservation for massless fermions scattering from a pho-
ton background in 1� 1 dimensions.
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