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The axion modified electrodynamics is usually used as a model for description of possible violation of
Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be
observed in experiments with electromagnetic waves. It justifies the importance of studying how a small
axion addition can modify the wave propagation. Although a constant axion does not contribute to the
dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper,
we study the wave propagation in the axion modified electrodynamics in the framework of the premetric
approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon
propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant
gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the
dissipation effects are absent even in the phenomenological model considered here.
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1. Axion electrodynamics in premetric formalism.—
Although Lorentz invariance is a basic assumption of the
standard classical and quantum field theory, this invariance
is probably violated in quantum gravity and string theory.
One believes that the low-energy manifestation of Lorentz
violation can be observed in experiments with the ordinary
electromagnetic waves. Axion electrodynamics [1], i.e.,
the standard electrodynamics modified by an additional
axion field, provides a theoretical framework for a possible
violation of parity and Lorentz invariance—the Carroll-
Field-Jackiw (CFJ) model [2– 4]. The non-Abelian exten-
sions of the axion modified electrodynamics for the stan-
dard model [5], gravity [6,7], and for supersymmetric
models [8] were worked out.

The axion itself can be considered as a fundamental
field. Recently, some signals on the axion field observa-
tions in PVLAS experiments were reported [9]. The new
observations, however, do not show the presence of a
rotation and ellipticity signals and thus stand a strong upper
limit on axion contributions to an optical rotation gener-
ated in vacuum by a magnetic field [9].

Alternatively, the axion can be viewed as an effective
field constructed, for instance, from torsion [10–13].
Astrophysics consequences of such torsion induced axion
models are recently studied intensively, see [14,15].
Moreover, the linear magnetoelectric effects of Cr2O3

find a satisfactory explanation in terms of a macroscopic
axion field, see [16]. Some mechanisms that actually lead
to axion-type modifications of electrodynamics were pro-
posed recently in [17] and in [18].

The axion modified electrodynamics is usually formu-
lated by adding a topological Chern-Simons term to the
Maxwell Lagrangian [1–3]. We apply here an alternative
premetric approach to classical electrodynamics [19–21].

In this construction, the axion field emerges in a natural
way as an irreducible part of a general constitutive tensor.
In the premetric formalism, one starts with two indepen-
dent antisymmetric fields: the electromagnetic strength Fij
and the excitation field Hij. Here the Roman indices range
from 0 to 3. The Maxwell equations are given by

 �ijklFij;k � 0; Hij
;j � J i; (1)

where the commas denote the ordinary partial derivatives,
�ijkl is the Levi-Civita permutation tensor normalized with
�0123 � ��0123 � 1. The fields Fij and Hij are not inde-
pendent one of another. For a wide range of physical
effects, they can be assumed to be related by a linear
homogeneous constitutive law

 Hij � 1
2�

ijklFkl: (2)

By definition, the constitutive pseudotensor is antisymmet-
ric in two pairs of indices. Hence it has, in general, 36
independent components. Its irreducible decomposition
under the group of linear transformations involves three
independent pieces. One of these three pieces is the axion
field, which is a subject of our interest. The axion electro-
dynamics is reinstated in the generic premetric framework
by a specialization of the constitutive tensor. It is assumed
to be of the following form [21]:

 �ijkl � �gikgjl � gilgjk�
�������
�g
p

�  �ijkl: (3)

Here gij is a metric tensor with the signature f�;�;�;�g
and with the determinant g. The axion  is a pseudoscalar
field. It is invariant under transformations of coordinates
with a positive determinant and changes its sign under
transformations with a negative determinant. In this paper,
we restrict to a flat Minkowski spacetime with Cartesian
coordinates, so the square root factor in (3) can be omitted.

In the premetric formalism, the axion field is considered
only phenomenologically—as an intrinsic characteristic of*itin@math.huji.ac.il
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a ‘‘media.’’ The dynamics model of the axion field is
usually constructed by involving an additional kinematic
term in the Lagrangian, see for instance [22]. The mathe-
matical methods similar to those used here were shown to
be useful also in ray optics applications to GR [23,24] and
in quantum plasmadynamics [25,26].

2. Momentum representation.—In the premetric electro-
dynamics, the wave propagation is usually studied in the
framework of the geometric approximation [19]. In this
case, the variation of the media characteristics (represented
by the constitutive tensor �ijkl) is neglected relative to the
change of the wave parameters. Consequently, one comes
to the conclusion that the axion field does not affect the
wave propagation at all [19]. It is in a contradiction with
the standard CFJ electrodynamics predictions [2]. The
discrepancy is certainly originated in the restrictions of
the geometric approximation [21].

In order to go beyond the geometric approximation, we
start with an ansatz of the form

 Fij � fijei�: (4)

Here the amplitude fij and the eikonal � are arbitrary
functions of a point, i is the imaginary unit. In order to
represent a wave-type solution by (4), we require the
amplitude to vary much more slowly than the eikonal
function. In other words, we apply a condition

 

kfij;kk

kfijk
� k�;kk; (5)

where the maximal (matrix) norms are assumed. We sub-
stitute (4) into Eqs. (1) and (2) and apply the condition (5)
to get

 �ijklfklq;j � 0; (6)

and

 

1
2 ��

ijklfklqj � i�
ijkl

;jfkl� � ji: (7)

Here the notations ji � ��i�J ie�i� and qj � �;j are
used. A most general solution of the linear system (6)
involves an arbitrary covector ak,

 fkl � akql � alqk: (8)

Substituting into (7), we come to an algebraic system of
four linear equations for four components of the covector
ak:

 Mikak � ji: (9)

Here the matrix of the system is denoted by

 Mik � �ijklqlqj � i�
ijkl

;jql: (10)

This matrix will play a central role in our analysis [27].
After substitution of (3) we write theM-matrix of the axion
modified electrodynamics in the form

 Mij � �gijq2 � qiqj� ��ij; (11)

where the polarization tensor

 �ij � i ;kql�
ijkl (12)

is involved. Because of its symmetry properties, the
M-matrix satisfies

 Mijqi � 0; Mijqj � 0: (13)

These two relations have a pure physical sense: The former
one represents the charge conservation law, while the latter
relation represents the gauge invariance of the field
equation.

Quite remarkable that the matrix M is Hermitian. Its
metric part is a standard real symmetric tensor of vacuum
electrodynamics. The nonmetric part represents a polariza-
tion tensor �ij which is antisymmetric and pure imaginary.

3. Dispersion relation.—Let us consider the wave solu-
tions of (9). Four components of the covector ak satisfy
now a homogeneous linear system

 Mijaj � 0; (14)

which has a nonzero solution if and only if its determinant
is equal to zero. For the system (14), this condition holds
identically, which can be seen even without an explicit
calculation of the determinant. Indeed, the identities (13)
express a linear relation between the rows (and between the
columns) of the matrix Mik. So this matrix is singular.
Moreover, �13b� also means that the linear system (14)
has a nonzero solution of the form aj � Cqj with an
arbitrary constant C. This solution is evidently unphysical
since it can be obtained by a gauge transformation of a
trivial zero solution. To describe an observable physically
meaningful situation, we must have an additional linear
independent solution of (14). A 4� 4 linear system (14)
has two linear independent solutions (one for gauge and
one for physics) if and only if its matrix Mij is of rank 2 or
less. An algebraic expression of this requirement is

 Aij � 0; (15)

where Aij is the adjoint matrix. This matrix is obtained by
removing the ith row and the jth column from the original
matrix Mij. The determinants of the remaining 3� 3 ma-
trices are calculated and assembled in a new matrix Aij.
The entries of the adjoint matrix are expressed via the
entries of the matrix Mij as

 Aij �
1

3!
�ii1i2i3�jj1j2j3

Mi1j1Mi2j2Mi3j3 : (16)

For a matrix satisfying (13), the adjoint matrix Aij is
symmetric and proportional to the wave covector [28]

 Aij � ��q�qiqj: (17)

Since Aij is symmetric and Mij is Hermitian, the adjoint
matrix Aij is real. Thus, also the dispersion function ��q� is
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real. Consequently, to guarantee the existence of a physi-
cally meaningful solution, we have to require only one real
condition,

 ��q� � 0; (18)

instead of 16 conditions (15). We calculate now the adjoint
matrix for the axion modified electrodynamics model.
Substituting (11) into (16) and calculating in turn the
powers of the imaginary unit, we derive to the adjoint
matrix in the following form:

 Aij � ��q
4 � � ;m 

;m�q2 � � ;mq
m�2	qiqj: (19)

Thus we come to the known expression of the dispersion
relation for the electromagnetic waves in the axion electro-
dynamics [3,20,21]:

 q4 � � ;m ;m�q2 � � ;mqm�2 � 0: (20)

Note that this fourth order polynomial does not admit a
covariant factorization to a product of two second order
polynomials. It is in spite of the fact that in special coor-
dinates such factorization exists for timelike, spacelike and
null covectors  ;m, see [29]. The expression (20) is not
positive defined so the nonbirefringence condition [30] is
violated. It is in correlation with the result of [31] that
typically in axion electrodynamics the Lorentz group is
broken down to the little group associated with the external
4-vector.

4. Photon propagator.—Let us return now to the full
inhomogeneous Maxwell equation with a nonzero current:

 Mijaj � ji: (21)

The solution of this equation is useful to represent via the
Green function or photon propagator,Dij�q�. This matrix is
defined in such a way that the vector

 aj � �Dijj
i (22)

is a formal solution of (21). Because of the gauge invari-
ance and charge conservation, the propagator, Dij�q�, is
defined only up to terms proportional to the wave covector
qi,

 Dij ! Dij � �iqj � �jqi: (23)

Here the components of the covectors �i and �i are
arbitrary functions of the wave covector.

Since the matrix Mik is singular, the propagator Dij�q�
cannot be taken to be proportional to the inverse ofMik. To
overcome this obstacle, we use a construction that involves
the second adjoint matrix [26,27]. This tensor is defined as

 Bijkl �
1
2�ikm1n1

�jlm2n2
Mm1m2Mn1n2 : (24)

The photon propagator is expressed via this tensor as

 Dik �
gmnBimnk
�q2 : (25)

Calculate the second adjoint matrix for the axion expres-
sion (11). It is expressed as a sum of three terms:

 Bimnk � �1�Bimnk �
�2�Bimnk �

�3�Bimnk: (26)

After removing the gauge terms (23), the pure metric piece
remains in the form

 

�1�Bimnk � �q
2gikqmqn: (27)

Up to the gauge depending terms, the metric-axion piece is

 

�2�Bimnk � �iq
2 ;j�injkqm: (28)

The third pure axion piece (without the gauge depending
terms) takes the form

 

�3�Bimnk � � ;i ;kqmqn: (29)

Thus we have derived the axion modified photon propa-
gator in the following form:

 

�F�Dik �
q2gik � i ;jqn�injk �  ;i ;k
q4 � � ;m ;m�q2 � � ;mqm�2

: (30)

This is an axion generalization of the standard Feynman
photon propagator. Note that in QED one usually multi-
plies Dij by �i.

Observe that, for a constant axion field, the axion modi-
fied photon propagator takes the standard vacuum electro-
dynamics form. Moreover, the propagator expression has
poles only on the solutions of the dispersion relation � �
0. It is remarkable that the axion modified photon propa-
gator is Hermitian, so the corresponding wave solutions are
not damped. The antisymmetric imaginary part appearing
in the numerator of (30) is usual in axion modified models.

Let us compare the expression (30) with the standard
QED result:

 �D�1�ik � ���1�ik ��ik; (31)

where the free photon propagator �ik � gik=q
2 and the

polarization tensor �ij � �i ;kql�
ijkl are involved.

Recall that this expression is derived by summation of an
infinite sequence of Feynman diagrams. Multiplying the
right-hand sides of (30) and (31), we have
 

�F�Dik�D
�1�im �

1

�
�q2gik � i 

;jqn�injk �  ;i ;k�

� �q2gim � i ;kql�
imkl�

�
1

�
�q4 � � ;k ;k�q2 � � ;kqk�2��im � �im:

(32)

Here we removed the terms proportional to qi and qm
which are gauge dependent. Consequently, our expression
(30) is indeed inverse to (31).
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The Landau photon propagator is derived by removing
the transversal terms, �L�Dikq

i � �L�Dkiq
i � 0. It is given

by

 

�L�Dik �
1

�

�
gik �

qiqk
q2 � i 

;jqn�injk �  ;i ;k

�
� ;mq

m�2

q4 qiqk �
 ;mq

m

q2 � ;iqk �  ;kqi�
�
:

(33)

Consider a special version of axion modified electro-
dynamics with a timelike covector of axion field deriva-
tives—the CFJ model [2]. In this case, the coordinates can
be taken in such a way that the axion field derivatives
covector is parametrized as  i � ��; 0; 0; 0�. Write the
wave vector as qi � �w;k�. Substituting into (30) we get

 Dik �
1

�

w2� k2��2 0 0 0
0 w2� k2 �i�k3 i�k2

0 i�k3 w2� k2 �i�k1

0 �i�k2 i�k1 w2� k2

0
BBB@

1
CCCA:

5. Conclusions.—In this paper, we treat the axion modi-
fied electrodynamics as a special case of premetric electro-

dynamics formalism. In this construction, the axion field
emerges as an irreducible part of a general constitutive
tensor. In addition to the known covariant dispersion rela-
tion of axion electrodynamics, we have derived a covariant
expression of the axion modified photon propagator. The
axion modified photon propagator in different gauges was
constructed recently in [22,32,33]. These expressions share
the main properties of (30) and (33). In particular, they are
represented by a fraction with a numerator which is a
quadratic function of the wave covector and with a de-
nominator proportional to the dispersion relation expres-
sion. Note, however, that the previous considerations are
restricted to an axion field with a constant gradient. In our
consideration, this restriction is removed. It is a remarkable
fact that the propagator (30) is Hermitian. Consequently, a
properly defined energy-momentum tensor has to be con-
served without dissipation. This issue lies, however, be-
yond the scope of the current note.
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