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Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity
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The generalized Darmois-Israel formalism for Einstein-Gauss-Bonnet theory is applied to construct
thin-shell Lorentzian wormholes with spherical symmetry. We calculate the energy localized on the shell,
and we find that for certain values of the parameters wormholes could be supported by matter not violating

the energy conditions.
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I. INTRODUCTION

For spacetime dimension D =5 the Einstein-Hilbert
action of gravity admits quadratic corrections constructed
from coordinate-invariant tensors which scale as fourth
derivatives of the metric. In particular, when D =5, the
most general theory leading to second order equations for
the metric is the so-called Einstein-Gauss-Bonnet theory or
Lovelock theory up to second order. This class of model for
higher dimensional gravity has been widely studied, in
particular, because it can be obtained in the low energy
limit of string theory [1], and because it leads to ghost-free
nontrivial gravitational self-interactions for D > 4. For
spacetime dimensions D <5 the Gauss-Bonnet terms in
the action represent a topological invariant.

The equations of gravitation admit solutions, known as
Lorentzian wormholes, which connect two regions of the
same universe (or of two universes) by a throat, which is a
minimal area surface [2,3]. Such kind of geometries would
present some features of particular interest, as, for ex-
ample, the possibility of time travel (see Ref. [4]). But a
central objection against the actual existence of wormholes
is that in Einstein gravity the flareout condition [5] to be
satisfied at the throat requires the presence of exotic matter,
that is, matter violating the energy conditions [3]. In this
sense, thin-shell wormholes have the advantage that the
exotic matter would be located only at the shell.

However, it has recently been shown [6] that in pure
Gauss-Bonnet gravity exotic matter is not needed for
wormholes to exist; in fact, they could exist even with no
matter (see also Ref. [7]). In this work we thus study thin-
shell wormholes in Einstein-Gauss-Bonnet gravity. We
focus in the amount of matter necessary for supporting
the wormholes, without analyzing the microphysics ex-
plaining this matter. Differing from the approach in the
related work Ref. [8], where the Gauss-Bonnet terms were
treated as an effective source for the Einstein’s field equa-
tions, here the Gauss-Bonnet contribution is treated as an
essentially geometrical object. This requires a generaliza-
tion [9] of the Darmois-Israel formalism [10] for thin
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shells, but provides a better physical understanding. In
particular, we show that for certain values of the parame-
ters, thin-shell wormholes could be supported by matter
not violating the energy conditions.

II. SPHERICALLY SYMMETRIC GEOMETRY

We start from the action for Einstein-Maxwell-Gauss-
Bonnet theory in a five-dimensional manifold M5 with
cosmological constant A and Maxwell field [11]:

1
S= Kf% d5x1/|g|[R —2A + aR%y, — ZF’“’FW}
(D

where « is related with the Newton constant, R%, = R? —
4R%R ,, + R<4R , ., is the Gauss-Bonnet term, and « is
the Gauss-Bonnet coupling constant. The Gauss-Bonnet
constant introduces a scale /55 * /a in the theory which
physically represents a short-distance correction to general
relativity. Within string theory, in five dimensions « would
be of order the string mass scale; but in a more general
framework a could be considered as an arbitrary real
number with the appropriate dimensions.
The field equations resulting from the action (1) are

Gab + ZaHab + Agab = KzTab’ (2)

where H,, is the second order Lovelock tensor and T, is
the usual electromagnetic energy-momentum tensor:

Hah = RRah - 2RaLRZ - ZRCdRacbd + szdeRbcde

1 ) .
- Zgab(Rz - 4RCdRcd + RLdechdeq)’ (3)

1
Tah = FaL'Flcy - ZgahchFCd' (4)

Egs. (2) admit a spherically symmetric solution given by
[11]

ds* = —f(r)de* + f 1 (r)dr* + r*dQ3, (5)
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It is easy to check that in the limit a — O the five-
dimensional Einstein-Maxwell solution with cosmological
constant is recovered. Further for A =0 the five-
dimensional Reissner-Nordstrom metric is obtained, so
M >0 and Q can be identified with the mass and the
charge of the system. For a # 0, there is a minimum value
of the radial coordinate r;, such that the function under
the square root in (6) is positive so the metric (5) is well-
defined. The geometry has a curvature singularity at the
surface defined by r = r;,. Depending on the values of
the parameters (M, «, Q, A), this singular surface can be
surrounded by an event horizon with a radius r,,, so the
metric (5) represents a black hole; if no event horizon
exists, it presents a naked singularity. Here we will focus
in the case of null cosmological constant; the metric from
which we start presents a singularity at r,;, given by the
greatest real and positive solution of the equation

n 16Ma 2 8Q%a _
T 3

7o
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If Eq. (7) has no real positive solutions we have r;, = 0,
where the metric diverges. This singularity is surrounded,
in principle, by two horizons with radii

2
re = \/% —a=x [(% — a>2 - Q—:|]/2. (8)
T T 3

The event horizon is placed at r,,, = ry, and r_ corre-
sponds to the inner horizon. If & > —M /7 then rp, < Fhor
and the singularity can be shielded by the event horizon.
But if &« = —M/m, we have a naked singularity because
Fmin = Thor- 1t is not difficult to see that for |a| < M/,
there exits a critical value of the charge:

101 =3|% ~a

such that if |Q| < |Q,| there are two horizons, if |Q| =
|Q,| there is only one (degenerate) horizon, and if |Q] >
|Q,| there are no horizons. For |a| = M/# no horizons
exist for any value of the charge, except the nonphysical
solution ry,,, = 0 corresponding to @« = M/ and Q = 0.

()]

I11. THIN-SHELL WORMHOLE CONSTRUCTION

Starting from the metric given by (5) and (6) with A = 0
we build a spherically symmetric thin-shell wormhole in
the Einstein-Maxwell-Gauss-Bonnet theory. We take two
copies of the spacetime and remove from each manifold
the five-dimensional regions described by

M, =A{rip = b b> (10)

The resulting manifolds have boundaries given by the
timelike hypersurfaces
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Then we identify these two timelike hypersurfaces to
obtain a geodesically complete new manifold M with a
matter shell at the surface r = b, where the throat of the
wormhole is located. This manifold is constituted by two
asymptotically flat regions. To study this type of wormhole
we apply the Darmois-Israel formalism generalized [9] to
the case of Einstein- Gauss-Bonnet theory. We can intro-
duce the coordinates & = (7,6, x, ¢) in X, with 7 the
proper time on the throat. Though we will focus mainly
on static configurations, in the general case we could allow
the radius of the throat to be a function of the proper time,
so that the boundary hypersurface reads

S: f(r,7)=r—b(r) =0. (12)

The field equations projected on the shell X (generalized
Darmois-Israel conditions) are [9]

2[[Kah - Khab]] + 4a[[3‘]ah - Jhub + ZPabchCd]]
= _KZSab’ (13)

where the double bracket stands for the jump of a given
quantity across the hypersurface 2. The extrinsic curvature
K, the divergence-free part of the Riemann tensor P4,
and the tensor J,;, are defined as follows:

Kt L 9PXC . 0X9 0X® (14)
e (. s |
a® ‘ (85“85” degg a§b>r=b
Papea = Rapea ¥ (Rpchaa — Rpahea) — (Rachap
1
= Ryyhep) + ER(hachdb = haghep), (15)

1
Jap = g[ZKKaCKZ + KCdKCdKab — ZKMKCdeb

— KzKab]. (16)

The tensor P,,.; is calculated with the induced metric
hap, = 8ap — Nany (see [9]). After some algebraic manipu-
lation, the non-null components S of the energy-
momentum tensor of the shell are obtained as

17 A A A
T— |62 +2a(246(0) % + 42
st 877[6b a( by + 455

o A
—12(1 + 5?) F)} (17)
So=S§=S5%

_ L[ﬁ + 2g(b)% - 2a<4€(b)% +4(1 + B?)

m| b
¢b)  bA
X ot 47”, (18)

where €(b) = b + f'(b)/2 and A = ,/b*> + f(b); the dot
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means a derivative with respect to the proper time and the
prime with respect to b. From these equations we read the
energy density o = —S7 and the transverse pressure p =
S9 = S¥ = S¢ in terms of the throat radius b(7), first and
second derivatives of b(7), and the function f(b) which
depends on the parameters of the system. If we take @ — 0
in both Egs. (17) and (18) we recover the expression for the
energy density o and pressure p found in Ref. [8] with the
standard Lanczos equation for the shell. Furthermore,
Taylor expanding up to zeroth order in a we recover the
expressions for the five-dimensional Schwarzschild and
Reissner-Nordstrom cases. Starting from Egs. (17) and
(18), in the next section we will show that for certain values
of the parameters, ordinary matter could support thin-shell
wormbholes in Einstein-Gauss-Bonnet theory.

IV. MATTER SUPPORTING THE WORMHOLES;
DISCUSSION

Motivated by the results within pure Gauss-Bonnet grav-
ity (i.e., without Einstein term) in Ref. [6], here we evaluate
the amount of exotic matter and the energy conditions,
following the approach presented above in which the
Gauss-Bonnet term is treated as a geometrical contribution
in the field equations. Coming this contribution from the
curvature tensor, this approach is clearly the most suitable
to give a precise meaning to the characterization of matter
supporting the wormhole. As we shall see, the results will
considerably differ from those in Ref. [8], where the
Gauss-Bonnet term was treated as an effective source for
the Einstein’s field equations.

The weak energy condition (WEC) states that for any
timelike vector U* it must be T,,U*U” = 0; the WEC
also implies, by continuity, the null energy condition
(NEC), which means that for any null vector k* it must
be T,,k*k” = 0 [3]. In an orthonormal basis the WEC
reads p = 0, p + p; = 0V, while the NEC takes the form
p + p; = 0VL In the case of thin-shell wormholes the
radial pressure p, is zero, while within Einstein gravity
or even with the inclusion of a Gauss-Bonnet term in the
way proposed in [8], the surface energy density must fulfill
o <0, so that both energy conditions would be violated.
The sign of o + p, where p, is the transverse pressure is
not fixed, but it depends on the values of the parameters of
the system.

In what follows we restrict to static configurations. The
surface energy density o and the transverse pressure p
for a static configuration (b = by, b = 0, b = 0) are given
by

oygp = —

11 /fBo)
%[6 b

2 f(b0)<12

Fby) |  flby) 12
7R )
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_ L[4vf(bo) n f'(bo)
8 by V(Do)
NI "(b
—2a<2f’(b0) f(2 o) o Fbo) )} (20)
by b(%\/f (by)
Note that the sign of the surface energy density is, in
principle, not fixed. The most usual choice for quantifying

the amount of exotic matter in a Lorentzian wormhole is
the integral [12]

0- f (0 + pylgldx. @1)

We can introduce a new radial coordinate R = *(r — b)
with *= corresponding to each side of the shell. Then,
because in our construction the energy density is located
on the surface, we can write p = 6(R )0y, and because the
shell does not exert radial pressure the amount of exotic
matter reads

27 (7w (7 [+
Q= 6(R dRdOd xd
ﬁ) ﬁ) ﬁ j_w (R)aoy/lgl xde

= 4772b8 0. (22)

Po

Replacing the explicit form of o and g, we obtain the
exotic matter amount as a function of the parameters that
characterize the configurations:

3 YN
= 2may[f(bo)Lf (bo) + 3(bof'(by) — D], (23)
where f is given by (6). For A = 0, in the limit & — 0 and
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FIG. 1. The amount () is shown as a function of r,,, /M, for

Q =0 and wa = 0.9M. The gray solid line corresponds to the
five-dimensional Schwarzschild case, the dashed line corre-
sponds to considering the Gauss-Bonnet term as a kind of
effective source for the field equations, and the black solid line
shows the result obtained here with the generalized Darmois-
Israel formalism for Einstein-Gauss-Bonnet theory. The horizon
radius corresponds to the Einstein-Gauss-Bonnet case.
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Taylor expanding up to zeroth order we obtain the exotic
matter for the Reissner-Nordstrom (Q # 0) and
Schwarzschild (Q = 0) geometries.

For a > 0 we now find that there exist positive contri-
butions to ); these come from the different signs in the
expression (19) for the surface energy density, because ()
is proportional to o,. We stress that this would not be
possible if the standard Darmois-Israel formalism was
applied, treating the Gauss-Bonnet contribution as an ef-
fective energy-momentum tensor, because this leads to
oy~ —+/f(by)/by [8]. To simplify the analysis, without
loss of physical interest, we consider the case Q = 0, A =
0. In Figs. 1 and 2 we show the would-be amount of exotic
matter as a function of the wormhole radius for relatively
large values of « (that is, ma of order M); though this
implies microscopic configurations or a scenario different
from that suggested by present day observation, a numeri-
cal analysis shows that this is the most interesting situation.
Besides the fact that () results to be smaller when calcu-
lated by treating the Gauss-Bonnet contribution as a geo-
metric object than in the case that it was treated as an
effective energy-momentum tensor, this amount is smaller
than that which would be necessary in the pure five-
dimensional Schwarzschild case (see Fig. 1). However,
the central, remarkable, result is that now the existence
of thin-shell wormholes is compatible with ) >0 (see
Fig. 2). Moreover, for these values of a and for b about
/M (the horizon in the original manifold is at r =~ /M /4),
for which ) > 0 and o, > 0, we also have p, > 0, as it is
easy to verify from Eq. (20). Thus, in the picture providing
a clear meaning to matter in the shell, in Einstein-Gauss-
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FIG. 2. The amount () is shown as a function of r,,,/+/M, for
Q = 0and ma = 0.9M. The plot shows the result obtained here
with the generalized Darmois-Israel formalism for Einstein-
Gauss-Bonnet theory. The horizon radius corresponds to the
Einstein-Gauss-Bonnet case. We see that we have the possibility
of a thin-shell wormhole without violation of the energy con-
ditions.

Bonnet gravity the violation of the energy conditions could
be avoided, and wormholes could be supported by ordinary
matter.
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