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We use the AdS/CFT correspondence to compute a conductivity associated with massive N � 2
supersymmetric hypermultiplet fields at finite baryon density, propagating through an N � 4 super-
symmetric SU�Nc� Yang-Mills plasma in the large Nc, large ’t Hooft coupling limit. We do so by
introducing external electric and magnetic fields coupled to baryon number and computing the resulting
induced current, from which we extract the conductivity tensor. At large hypermultiplet mass we compute
the drag force on the charge carriers. We also compute the product of the drag coefficient with the kinetic
mass, and find that the answer is unchanged from the zero-density case. The gravitational dual is a probe
D7-brane, with a nontrivial world volume gauge field configuration, in an AdS-Schwarzschild back-
ground. We identify an effective horizon on the D7-brane world volume analogous to the world sheet
horizon observed for strings moving in the same background. We generalize our results to a class of
theories described by probe D-branes in various backgrounds.
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I. INTRODUCTION

The conductivity tensor �ij measures the response of a
conducting medium to externally applied fields. It is de-
fined by

 hJii � �ijEj;

where E are externally applied electric fields and hJi are
the currents induced in the medium. An external magnetic
field B produces off-diagonal elements in �ij: the induced
current is perpendicular to both E and B. This is the Hall
effect. For a rotationally invariant system with E in the x
direction and B perpendicular to the xy plane, �xx � �yy
and �xy � ��yx. The component �xx is called the Ohmic
conductivity and �xy the Hall conductivity.

Our goal in this paper is to compute a conductivity
associated with massive N � 2 supersymmetric hyper-
multiplet flavor fields propagating in an N � 4 super-
symmetric SU�Nc� Yang-Mills (SYM) plasma at
temperature T. We work in the limits Nc ! 1 and
’t Hooft coupling � � g2

YMNc � 1. We take the number
Nf of flavor fields to be Nf � Nc, so that for massless
hypermultiplets the theory is conformal to leading order in
Nf=Nc.

The flavor fields have a global U�Nf� symmetry whose
U�1�B subgroup we identify as baryon number. We work at
finiteU�1�B density. If we introduce nondynamical E andB
fields that couple to U�1�B charge, then the flavor degrees
of freedom will be accelerated. The N � 4 SYM plasma
provides resistance, allowing for a steady-state U�1�B cur-
rent J�. This is the origin of the conductivity we will
compute. We extend the result of Ref. [1], where only E
was included, to nonzero B and hence nonzero �xy.

Our main tool will be the anti-de Sitter/conformal field
theory (AdS/CFT) correspondence, which equates the
N � 4 SYM theory in the limits described above with
supergravity on the ten-dimensional spacetime AdS5 � S5

[2– 4]. The SYM theory in thermal equilibrium is dual to
supergravity on an AdS-Schwarzschild spacetime, where
the SYM theory temperature is identified with the Hawking
temperature of the AdS-Schwarzschild black hole [5,6].
This conjectured correspondence originated from analysis
of the black D3-brane solution in type IIB string theory [2].

The Nf N � 2 hypermultiplet fields appear in the
supergravity description as Nf D7-branes [7]. When we
introduce only Nf � Nc of them, we may neglect their
backreaction on the geometry: they are probes. The D7-
brane action is then the Dirac-Born-Infeld (DBI) action.
The hypermultiplet mass m is dual to the geometry of the
D7-brane in a way we will make precise in the sequel. The
global U�1�B symmetry is dual to the U�1� world volume
gauge invariance of the D7-branes.

More specifically, if we wish to study the field theory
with finite baryon number density hJti, we introduce a
nontrivial time component At�z� of the D7-brane gauge
field, with z the AdS radial coordinate [8]. Following the
usual AdS/CFT prescription [3,4], At�z�’s behavior near the
AdS boundary gives the U�1�B chemical potential, �B, and
density, hJti, of the SYM theory. In the field theory we also
want background electric and magnetic fields Ftx � E and
Fxy � B and induced currents hJxi and hJyi. We introduce
these in the supergravity theory as nontrivial gauge field
components Ax�z; t� � �Et	 fx�z�, which produces E
and hJxi, and Ay�z; x� � Bx	 fy�z�, which produces B
and hJyi.

As shown in Ref. [8], when At�z� is nontrivial the only
physically allowed D7-brane embeddings are the so-called
‘‘black hole’’ embeddings. These are D7-branes extended
in the AdS5 � S3 directions and intersecting the AdS-
Schwarzschild horizon. They thus possess a world volume*ahob@u.washington.edu
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horizon themselves. As we want a nontrivial At�z�, we will
work only with black hole D7-brane embeddings. We
review D7-brane embeddings in more detail below.

To illuminate salient features of our system we will
compare to Refs. [9–12], where the conductivity tensor
of a strongly coupled, finite-temperature CFT in 2	 1
dimensions was computed using gauge-gravity duality.
An example of such a theory is the N � 8 SYM theory
in 2	 1 dimensions, with aU�1� subgroup of the SO�8� R-
symmetry playing the role of electromagnetism. The gravi-
tational dual of this theory is 11-dimensional supergravity
on AdS4 � S

7, consistently truncated to Einstein-Maxwell
theory on AdS4. Electric and magnetic fields in the field
theory are described in the gravity theory by a dyonic black
hole [9]. In Refs. [11,12], the external fields were given
harmonic time dependence. We include only static external
fields in our setup, so we will compare to the zero-
frequency result of Refs. [9–11], which was, in fact, iden-
tical to the result for a Lorentz-invariant system [9] obey-
ing linear (Maxwell) electrodynamics.

Our SYM theory differs from that of Refs. [9–12] in two
important ways. First, our theory is not a CFT. Our hyper-
multiplet fields have the mass m. Second, our system
effectively has energy and momentum dissipation. The
flavor fields contribute an order NfNc term to the stress-
energy tensor. WhenNf � Nc, this is dwarfed by the order
N2
c contribution from the N � 4 SYM plasma. Our mov-

ing charges may thus transfer their energy and momentum
into the plasma at a constant rate, without producing any
significant motion of the plasma, for at least a time of order
Nc. This is why a time-independent, steady-state solution
appears in the limit of large Nc with Nf � Nc.

Additionally, our method differs from that of Refs. [9–
12]. We will not use Kubo formulas to compute the con-
ductivity, as in Refs. [9–12]. Kubo formulas are only valid
in the regime of linear response. For flavor fields, we can
capture some nonlinear effects. This is because, in the
supergravity description, we use a DBI action rather than
a Yang-Mills action. We calculate the conductivity simply
by demanding reality of the on-shell DBI action [1].

If we take a limit in which m is finite but arbitrarily
larger than any other scale, for example, the scale �m �
1
2

����
�
p
T of zero-density thermal corrections to m [13], we

expect the flavor excitations to behave as quasiparticles.
We denote this limit m! 1. In this limit we can compute
the drag force on the charge carriers, and, in particular, we
can compute �M, where � is the drag coefficient and M is
the kinetic mass of the quasiparticles, distinct from the
Lagrangian mass m at finite temperature and density.1 �M
was computed in the m! 1 limit for hJti � 0 in

Refs. [13–15] and at finite hJti in Ref. [1]. The result in
both cases was �M � �

2

����
�
p
T2. We will find the same

answer at finite B. We will argue that the result is indepen-
dent of the density and external fields simply because we
are working to leading order in large Nc. We will draw an
instructive comparison, however, between our calculation
and the calculation of �M from a single moving string
[15,16]. In particular, we identify an effective horizon on
the D7-brane world volume analogous to the world sheet
horizon on a single string [17,18].

Everything we will do comes with a caveat: the phase
diagram in the parameter space of T, hJti, E, andB (in units
of m) is not fully known. At E � B � 0, a region of
instability is known to exist in the plane of hJti versus T,
and for sufficiently large chemical potential the hypermul-
tiplet scalars may undergo Bose-Einstein condensation [8].
In such regions of parameter space our D7-brane solutions
do not represent the ground state of the theory and must be
discarded. Our results are valid only when D7-brane black
hole embeddings are the appropriate supergravity
description.2

As in Ref. [1], we may also generalize our results to
theories whose gravitational duals are probe Dq-branes in
backgrounds of Dp-branes. This is possible when the Dq-
brane has a world volume horizon and the Dq-brane’s
dynamics is described by the DBI term alone. Wess-
Zumino couplings will, in general, introduce new terms
into the equation of motion for the Dq-brane world volume
gauge field that may render our solution inapplicable.

This paper is organized as follows. In Sec. II we briefly
review some results from classical electromagnetism. In
Sec. III we solve for the probe D7-brane gauge field. In
Sec. IV we compute the conductivity. In Sec. V we com-
pute �M in the m! 1 limit. In Sec. VI we generalize our
results to Dq-brane probes in Dp-brane backgrounds. We
conclude in Sec. VII. In the appendix we use holographic
renormalization to compute hJ�i.

II. PRELIMINARIES

We first review two results from classical electromag-
netism that we will reproduce from our supergravity cal-
culation in appropriate limits.

Imagine filling the vacuum with a charge density hJti. In
the lab frame we may introduce a magnetic field ~B. In a
frame moving with velocity � ~v relative to the lab frame
we will find a current ~J � hJti ~v and an electric field

 

~E � � ~v� ~B � �
1

hJti
~J� ~B: (2.1)

If we take ~B � �0; 0; B� we find the conductivity
1At zero density, for m� �m, we know M � m�1� �m

m 	
O��mm �

2� [13]. In our m! 1 limit, M and m are therefore
indistinguishable. We will continue to use the symbol M, how-
ever, to remind ourselves of the distinction outside of this limit.

2At finite B with T � E � hJti � 0 the field theory exhibits
spontaneous breaking of a chiral symmetry even at m � 0 and a
Zeeman-like splitting in the meson spectrum [19,20].

ANDY O’BANNON PHYSICAL REVIEW D 76, 086007 (2007)

086007-2



 �xx � 0; �xy � hJti=B: (2.2)

Notice that this argument does not require that the charge
density be comprised of quasiparticle charge carriers.
Indeed, this argument relies only on Lorentz invariance.
This was the result found in Refs. [9–11] for a (2	 1)-
dimensional CFT at finite temperature.

Now imagine a density hJti of massive quasiparticles
propagating nonrelativistically through an isotropic, homo-
geneous, neutral medium. In the rest frame of the medium
we introduce an electric field E in the x̂ direction in
addition to the magnetic field. The force on a quasiparticle
is then

 

d ~p
dt
� ~E	 ~v� ~B�� ~p; (2.3)

where our quasiparticle has charge 	1 and � is the drag
coefficient. We replace the momentum with the velocity
using ~p � M ~v for quasiparticle mass M. We then replace
the velocity with the induced current using ~v � h ~Ji=hJti.
Imposing the steady-state condition d ~p

dt � 0 and solving for
h ~Ji yields

 �xx �
�0

�B=�M�2 	 1
; �xy �

�0�B=�M�

�B=�M�2 	 1
; (2.4)

where �0 � hJ
ti=�M is the conductivity when B � 0.

III. THE PROBE D7-BRANE SOLUTION

In type IIB string theory, we consider a system of Nc
nonextremal D3-branes and Nf D7-branes aligned in flat
ten-dimensional space as

 

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

D3 � � � �

D7 � � � � � � � �

(3.1)

The X8 and X9 directions are orthogonal to both stacks of
D-branes, which thus appear as points in the X8-X9 plane.
If we separate these points, an open string may stretch
between the two stacks. The mass of this string is its length
times its tension. This mass appears in the SYM theory on
the D3-brane world volume as the hypermultiplet mass m.

We take the usual AdS/CFT limit, Nc ! 1, gs ! 0 with
gsNc fixed and gsNc � 1 [2]. We obtain the near-horizon
geometry of nonextremal D3-branes, five-dimensional
AdS-Schwarzschild times S5. We use an AdS-
Schwarzschild metric, in units where the AdS radius is one,

 ds2 �
dz2

z2 �
1

z2

�1� z4=z4
H�

2

1	 z4=z4
H

dt2 	
1

z2 �1	 z
4=z4

H�d~x
2;

(3.2)

where z is the radial coordinate, t the time coordinate, and
d~x2 is the metric of three-dimensional Euclidean space.
The boundary is at z � 0 and the black hole horizon is at

z � zH with z�1
H �

���
2
p T. Our S5 metric is

 d�2
5 � d�2 	 sin2�d 2 	 cos2�d�2

3; (3.3)

where d�2
3 is the standard S3 metric and � runs from zero

to�=2. We have chosen coordinates such that X8 �
1
z sin�.

In our units, string theory and SYM quantities are related
by �0�2 � 4�gsNc � g2

YMNc � �.
In the near-horizon geometry the D7-branes extend

along AdS5 � S3 [7]. Nonzero separation in the X8-X9

plane appears in the near-horizon geometry as a D7-brane
with nontrivial embedding. Specifically, the position of the
world volume S3 on the S5 will be described by an embed-
ding function ��z� [7]. ��z� is dual holographically to the
hypermultiplet mass operator3 [7]. ��z�’s leading asymp-
totic value, denoted �0 in the appendix, is simply the
separation between the D3-branes and the D7-branes,
hence m � �0

2��0 .
��z� is determined by an equation of motion derived

from the D7-brane action and a boundary condition, the
value of m. At one extreme is m � 0, which produces
��z� � 0, the trivial solution to the equation of motion.
In this case the D7-brane wraps the maximum-volume
equatorial S3 
 S5 for all z. At zero temperature, nonzero
m produces the so-called Minkowski embeddings, in
which the world volume S3 shrinks as we move away
from z � 0 and eventually collapses to zero volume:
��z0� � �

2 and cos��z0� � 0 at some z0. The D7-brane
then does not extend past z0 in the radial direction, rather,
it appears to end abruptly at z0 [7]. At the other extreme is
m � 1, which produces ��z� � �

2 for all z. This effectively
eliminates the D7-brane, which ends right at the boundary.

In the AdS-Schwarzschild background, with no gauge
field excited on the D7-brane world volume, two classes of
embedding are possible. The first are Minkowski embed-
dings that end outside the horizon, z0 < zH. These do not
possess a horizon on their world volume. The second class
of embeddings are black hole embeddings, in which the S3

never collapses to zero volume and the D7-brane intersects
the AdS-Schwarzschild horizon. The D7-brane thus pos-
sesses a horizon on its world volume. These embeddings
are depicted in Fig. 1.

If we introduce a world volume gauge field At�z�, the
resulting radial electric field lines must have some place to
end. For a Minkowski embedding no such place exists. We
may introduce point sources, strings stretching from the
D7-brane to the horizon, to accommodate the radial field
lines. As shown in Ref. [8], however, the force that the
strings exert on the D7-brane will overcome the tension of
the D7-brane, so the D7-brane will be drawn into the

3��z� is dual to the operator given by taking @
@m of the SYM

theory Lagrangian. This operator includes the mass operator as
well as couplings to adjoint scalars. The exact operator is written
in Ref. [8]. Thinking in terms of the mass operator will be
sufficient for our purposes.
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horizon, producing a black hole embedding. We will there-
fore work only with black hole embeddings, for which the
field lines may end on the horizon.

With nonzero At�z�, in the SYM theory limit m! 1,
the D7-brane black hole embedding resembles a ‘‘spike’’:
the S3 almost collapses to zero volume at some value z �
zspike, but then remains at constant finite volume all the way
to the horizon.4 In fact, the action of the spike is identical to
the action of a bundle of strings [8]. This makes sense
intuitively: a finite baryon density in the SYM theory
should appear in the supergravity description as very
many strings. What is perhaps surprising is that the D7-
brane alone, with no strings introduced explicitly, mani-
fests these strings itself via the spike.

As in Ref. [1], we will not solve for ��z� but we will
consider limits. The m � 0 limit is ��z� � 0. For m! 1
we may approximate ��z� � �=2 or cos��z� � 0 when z >
zspike. In particular, we will use this for z near the horizon.

We will now solve for the D7-brane world volume gauge
fields. The D7-brane action is

 SD7 � �NfTD7

Z
L

� �NfTD7

Z
d8�

��������������������������������������������������
� det�gab 	 �2��0�Fab�

q
(3.4)

plus Wess-Zumino terms that will be zero in what we do.
TD7 is the D7-brane tension, � are world volume coordi-
nates, gab is the induced metric, and Fab is the U�1� field

strength. In our conventions, a string end point couples to
this gauge field with coupling 	1. In the SYM theory we
also want fields E and B, a charge density hJti, and induced
currents hJxi and hJyi. We thus introduce world volume
gauge field components At�z� and

 Ax�z; t� � �Et	 fx�z�; Ay�z; x� � Bx	 fy�z�

(3.5)

so that at the boundary we have electric and magnetic fields
Ftx � E and Fxy � B. As part of our gauge choice we take
Az � 0. As our gauge fields only depend on �z; t; x; y�, the
D7-brane action is simply a (3	 1)-dimensional Born-
Infeld action, with some ‘‘extra’’ factors in front from the
S3 and the extra spatial direction,

 

SD7 � �N
Z
d4xcos3�g1=2

xx

�

����������������������������������������������������������������������������������������
�g� �2��0�2

1

2
gF2 � �2��0�4

1

4
�F ^ F�2

s
:

(3.6)

The overall prefactor is, using TD7 �
�0�4g�1

s

�2��7 �
�Nc
25�6 ,

 N � NfTD72�2 �
�

�2��4
NfNc (3.7)

with 2�2 the volume of a unit S3. We have divided both
sides of Eq. (3.6) by the volume of R, defined d4x �
dzdtdxdy, and defined g � gzzgttg2

xx as the determinant
of the induced metric in the �z; t; x; y� subspace, with gzz �
1=z2 	 �0�z�2. Writing F2 � F��F��, where Greek indi-
ces run over �z; t; x; y�, and ~F�� � 1

2 	
���
F�
 for totally

antisymmetric 	���
 with 	ztxy � 	1, we have explicitly

 

1
2gF

2 � g2
xxA

02
t 	 gttgxxA

02
x 	 gttgxxA

02
y

	 gzzgxx _A2
x 	 gzzgtt �A2

y; (3.8a)
1
4�F ^ F�

2 � �14
~F��F���2 � �A2

yA02t 	 _A2
xA02y

	 2 �AyA
0
t

_AxA
0
y; (3.8b)

where dots, _A, denote derivatives with respect to t, primes,
A0, denote derivatives with respect to z, and bars, �A, denote
derivatives with respect to x.

The action only depends on the derivatives of At�z�,
fx�z�, and fy�z�, so we will have three conserved charges.
In the appendix we identify these as hJti, hJxi, and hJyi,

1/z

)c()b()a(

FIG. 1. Cartoons of D7-brane embeddings, with the coordi-
nates z and � indicated. We can imagine that the D3-branes sit at
the origin. The semicircle about the origin represents the horizon
at z � zH. The boundary is z � 0. � runs from 0 to �

2 . The
horizontal axis is a direction transverse to the D3-branes but
parallel to the D7-branes, i.e. one of X4, X5 X6, or X7. The
vertical axis is X8. (a) A Minkowski embedding. (b) A black hole
embedding. (c) A black hole embedding with a spike in the m!
1 limit.

4For E � B � 0, the position where corrections to the
constant-volume solution are non-negligible is, defining ��z� �
�
2 � " with "� 1 and using SYM quantities, zspike=zH �
"� hJti���

�
p
NfNcT3�

�1=3 [8].
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N �2��0�2g1=2
xx cos3�

�g2
xxA0t � �2��0�2� �A2

yA0t 	 �Ay _AxA0y���������������������������������������������������������������������������������������
�g� �2��0�2 1

2gF
2 � �2��0�4 1

4 �F ^ F�
2

q � hJti; (3.9a)

N �2��0�2g1=2
xx cos3�

jgttjgxxA
0
x��������������������������������������������������������������������������������������

�g� �2��0�2 1
2gF

2 � �2��0�4 1
4 �F ^ F�

2
q � hJxi; (3.9b)

N �2��0�2g1=2
xx cos3�

jgttjgxxA0y � �2��0�2� _A2
xA0y 	 �Ay _AxA0t���������������������������������������������������������������������������������������

�g� �2��0�2 1
2gF

2 � �2��0�4 1
4 �F ^ F�

2
q � hJyi: (3.9c)

Notice that the density and currents are order N �2��0�2 /
NfNc.

With a little algebra we solve for the gauge fields from
Eq. (3.9),

 A0t�z� � �

���������������
gzzjgttj

p
gxx

hJti�� Ba������������������
��� a2

p ; (3.10)

where we have introduced the coefficients
 

� � jgttjg2
xx � �2��0�2 ~Fz� ~Fz�

� jgttjg
2
xx 	 �2��

0�2�jgttjB
2 � gxxE

2�; (3.11a)

� � jgttjg
2
xxN

2�2��0�4gxxcos6�� � �2��0�2hJ�ihJ
�i

� jgttjg2
xxN

2�2��0�4gxxcos6��

	 �2��0�2�jgttjhJti2 � gxx�hJxi2 	 hJyi2��; (3.11b)

a � ��2��0�2 ~Fz�hJ�i� �2��
0�2�jgttjhJ

tiB	 gxxhJ
yiE�:

(3.11c)

Notice that � is simply �det�gab 	 �2��0�Fab� in the
�t; x; y� subspace, and that cos��z� appears only in �. We
have written � in a way that will make generalizing to Dp/
Dq systems in Sec. VI more transparent. We also have

 A0x�z� �

���������
gzz
jgttj

s
hJxi�������������������
��� a2

p ;

A0y�z� �

���������
gzz
jgttj

s
hJyi�	 Ea������������������
��� a2

p :

(3.12)

In the original action we may now replace the gauge
fields with the conserved charges. The resulting effective
action has only the single dynamical field ��z�,

 SD7 � �N
2�2��0�2

Z
d4xcos6�g2

xx

���������������
gzzjgttj

q �������������������
��� a2

p :

(3.13)

We may obtain the equation of motion for ��z� in two
ways. We may derive it from the original action equa-
tion (3.6) and then plug in our gauge field solutions
Eqs. (3.10) and (3.12), or we may Legendre transform to
eliminate the gauge fields at the level of the action. The
Legendre-transformed action ŜD7 is

 Ŝ D7 � SD7 �
Z
d4x

�
Fzt

SD7

Fzt
	 Fzx

SD7

Fzx
	 Fzy

SD7

Fzy

�

� �
1

�2��0�2
Z
d4xg1=2

zz jgttj
�1=2g�1

xx

������������������
��� a2

q
(3.14)

where ŜD7

hJti � A0t�z�,
ŜD7

hJxi � A0x�z� and ŜD7

hJyi � A0y�z� repro-
duce Eqs. (3.10) and (3.12).

Specifying the boundary conditions will then determine
the D7-brane solution completely. First notice that, at the
horizon, the gauge field must obey At�zH� � 0 to be well
defined as a one-form. We are free to choose the leading
asymptotic values of the fields near the boundary z! 0.
We first choose the asymptotic value �0 of ��z�. The gauge
fields asymptotically approach the boundary as

 

At�z� � �B �
1

2

hJti

N �2��0�2
z2 	O�z4�; (3.15a)

Ax�z� � �Et	 cx 	
1

2

hJxi

N �2��0�2
z2 	O�z4�; (3.15b)

Ay�z� � Bx	 cy 	
1

2

hJyi

N �2��0�2
z2 	O�z4�; (3.15c)

where �B, cx, and cy are constants of integration. The
leading asymptotic value �B is the U�1�B chemical poten-
tial. For Ax and Ay we impose the boundary condition cx �
cy � 0.

IV. THE CONDUCTIVITY

We focus now on the quantity
������������������
��� a2

p
appearing in

the effective action equation (3.13). As in Ref. [1], we will
find that demanding reality of the effective action allows us
to solve for hJxi and hJyi, and hence the conductivity, in
terms of E, B, and hJti.

In Eq. (3.11a) we see that, as a function of z, � has a
zero: � < 0 at the horizon where jgttj � 0, whereas � > 0
near the boundary z! 0. We denote the zero of � as z�,
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z4
�

z4
H

�e2�b2	
������������������������������������������������������
�e2�b2�2	2�e2	b2�	1

q

�

����������������������������������������������������������������������������������������������
��e2�b2�	

������������������������������������������������������
�e2�b2�2	2�e2	b2�	1

q
�2�1

r
;

(4.1)

where we have defined the dimensionless quantities

 e �
1

2
�2��0�Ez2

H �
E

�
2

����
�
p
T2
;

b �
1

2
�2��0�Bz2

H �
B

�
2

����
�
p
T2

(4.2)

and converted to field theory quantities. Knowing that � is
the �t; x; y� part of �det�gab 	 �2��0�Fab�, we will inter-
pret z� as an effective horizon on the D7-brane world
volume. Notice that z� � zH when E � 0. We will also
need g2

xx�z�� � �4T4F �e; b� where

 F �e; b� � 1
2�1	 e

2 � b2

	
�����������������������������������������������������������
�e2 � b2�2 	 2�e2 	 b2� 	 1

q
�: (4.3)

For later use notice that F �e; 0� � e2 	 1 and F �0; b� �
1.

In fact all three functions, �, �, and a must share the
same zero z�. From Eq. (3.11b) we see that at the horizon
�< 0 while at the boundary �> 0, so � also has a zero. In
particular �� > 0 at the horizon and at the boundary. If �
and � have distinct zeroes, then in the region between
those zeroes one would change sign while the other would
not, hence in that region �� < 0 and the effective action
would be imaginary. The only consistent possibility is for �
and � to share the zero at z�. We must also have a2 <
��! 0 as z! z�, so that a! 0 at z� as well.

We thus set all of Eqs. (3.11) to zero at z� and solve for
hJxi and hJyi,

 

hJxi �
Egxx

g2
xx 	 �2��0�2B2

�������������������������������������������������������������������������������������������������������������������������
�g2
xx 	 �2��0�2B2�N 2�2��0�4gxxcos6��z�� 	 �2��0�2hJti2

q
; (4.4a)

hJyi � �
�2��0�2hJtiB

g2
xx 	 �2��

0�2B2 E (4.4b)

with all functions of z evaluated at z�. Converting to field
theory quantities, we find
 

�xx �

�����������������������������������������������������������������������������������
N2
fN

2
cT2

16�2

F 3=2

b2 	F
cos6��z�� 	

�2F

�b2 	F �2

vuut ; (4.5a)

�xy �
�b

b2 	F
; (4.5b)

where we have defined � similarly to e and b,

 � �
hJti

�
2

����
�
p
T2
; (4.6)

but while e and b are dimensionless, � has dimension one.
As in Ref. [1], we interpret our result as follows. Two

types of charge carriers contribute to the conductivity. The
first are the charge carriers we have introduced explicitly in
�. Taking � � 0 leaves a nonzero �xx, however, so we
must have another source of charge carriers. We will guess
that these come from pair production in the plasma. Such
pair production should depend onm via a Boltzmann factor
e�m=T . The mass m, or equivalently �0, appears implicitly
in Eq. (4.5) in cos��z��, which should thus behave as
e�m=T . Notice cos��z�� has the correct limiting behavior:
cos��z�� ! 0 as m! 1, and cos��z�� � 1 for m � 0. We
are currently investigating whether cos��z�� produces the
Boltzmann factor [21].

We will check our answer in three limits. The first is
simply to take b! 0 where F �e; 0� � e2 	 1 and we
immediately recover the result of Ref. [1].

To recover Eq. (2.2), we linearize in the electric field. In
practical terms this means setting e � 0, and hence
F �0; b� � 1, in Eq. (4.5). We also restore Lorentz invari-
ance by taking T ! 0. We find �xx � 0 and �xy � hJti=B,
as expected.

To recover Eq. (2.4), we return to finite T and again
linearize in the electric field. We additionally take them!
1 limit cos��z�� � 0. The conductivity becomes

 �xx �
�

b2 	 1
; �xy �

�b

b2 	 1
: (4.7)

As shown in Sec. V, in the m! 1 limit we identify �
2 �����

�
p
T2 � �M. We thus have � � hJti

�M and b � B
�M , and the

conductivity indeed has the form expected for quasipar-
ticles propagating through an isotropic, homogeneous me-
dium, Eq. (2.4).

V. THE DRAG FORCE

In the m! 1 limit where cos� � 0, we expect the
flavor excitations to be well described as a collection of
quasiparticles, with equation of motion

 

d ~p
dt
� ~E	 ~v� ~B�� ~p; (5.1)

with v the quasiparticle velocity and� the drag coefficient.
Our first goal is to compute the magnitude of the drag
force, �j ~pj. In the steady state, dpdt � 0. We then have
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 �j ~pj �
�������������������������������������������������������
E2 	 v2B2 	 2 ~E � � ~v� ~B�

q
: (5.2)

As m! 1, we expect pair creation to be suppressed, so
only the charge carriers in hJti should contribute to h ~Ji,
hence h ~Ji � hJti ~v. We immediately read off v2 � jgttj=gxx
by setting � to zero at z� and dropping the cos��z�� term.
Setting � � 0 at z� gives us

 E2 �
1

�2��0�2
jgttjgxx 	

jgttj
gxx

B2

�
1

�2��0�2
g2
xxv2 	 v2B2: (5.3)

Setting a � 0 at z� gives us the component of ~v in the ŷ
direction,

 vy �
hJyi
hJti
� �

jgttj
gxx

B
E
� �v2 B

E
: (5.4)

We then have 2 ~E � � ~v� ~B� � 2EBvy � �2B2v2. The
drag force is then

 �j ~pj �
1

2��0
gxx�z��v: (5.5)

We can now compute �M. To compare to Refs. [13–15],
we employ the relativistic relation j ~pj � �Mv with � �

1���������
1�v2
p , and find

 �M �
1

2��0

�����������������������������������������������������
gxx�z��2 � jgtt�z��jgxx�z��

q
; (5.6)

which evaluates to 1
��0 z

�2
H �

�
2

����
�
p
T2. This is identical to

the zero-density result of Refs. [13,14] and finite density
result of Ref. [1], but now with nonzero B.

The hJti independence is easy to understand.5 The
plasma contains order N2

c adjoint degrees of freedom and
order NfNc flavor degrees of freedom. The flavor excita-
tions are thus dilute in the large-Nc limit. In a perturbative
analysis, the flavor excitations will be more likely to scatter
off of adjoint degrees of freedom than other flavor excita-
tions. Scatterings with adjoint degrees of freedom will thus
be the flavor excitations’ primary mechanism for the mi-
croscopic energy loss that results in the macroscopic drag
force. Introducing a density hJti of order NfNc will not
change this to leading order in large Nc. Increasing the
strength of the coupling muddies the picture of isolated
scatterings but does not affect the argument, which relies
only on large-Nc counting. Taking m! 1, and in particu-
lar m� �B, serves only to dilute the charge carriers
further. We therefore expect to recover the zero-density
result at leading order in the Nf � Nc limit.

The B independence follows from this, simply because
the zero-density result �

2

����
�
p
T2 was already, curiously,

independent of the quasiparticle momentum, or equiva-

lently of m and v [13]. As v is determined by E and B,
and is the only place where E and B could appear in the
answer, we expect the answer to be independent of E and
B.

The result for the drag force, Eq. (5.5), is identical in
form to the drag force computed at zero density via single-
string calculations. Let us summarize the story that
emerges from these single-string calculations [15–18].
Consider a Minkowski-embedded D7-brane that ends far
from the horizon. Attach the end point of a string to this
D7-brane. An electric field E will cause this end point to
move with velocity v. The body of the string will dangle
into the bulk of AdS, trailing behind the end point (see
Fig. 2). The string will be long and heavy, and thus behave
as a classical object. Such a configuration is the single-
string manifestation of our m! 1 limit. In the SYM
theory we interpret the end point as a single moving
‘‘quark,’’ i.e. flavor excitation.

This ‘‘trailing string’’ in fact has a horizon on its world
sheet: a point along its length at which the time component
of the induced world volume metric vanishes [16–18]. Let
zWH denote this world sheet horizon. zWH is fixed by v. As
v! 1 the horizon moves up the string, towards the bound-
ary, while as v! 0 the horizon moves down the string,
towards the AdS-Schwarzschild horizon. At v � 0, the
string stretches straight from the D7-brane to the horizon.
The world sheet horizon then coincides with the AdS-
Schwarzschild horizon.

The drag force computed from such trailing strings is
given by Eq. (5.5), with z� replaced by zWH. Our effective
horizon z� thus appears to be the generalization of the
world sheet horizon to the D7-brane. This makes sense
intuitively when m! 1 because the dynamics of the D7-
brane spike is identical to that of a bundle of strings [8].

In fact, for a single string, Eq. (5.5) with z� replaced by
zWH is the result for any asymptotically AdS geometry with
a horizon [15]. In this sense Eq. (5.5) is ‘‘universal,’’ when
written in terms of the supergravity quantity gxx. The
conversion to SYM quantities will not always reproduce
�
2

����
�
p
T2, however. For example, the charged AdS-

Schwarzschild black hole background, dual to N � 4

z=z H

z=0

D7
v

z=z WH

FIG. 2. Cartoon of the trailing string. The AdS boundary z � 0
is at the top. The AdS-Schwarzschild horizon z � zH is at the
bottom. The dashed line is the position where the D7-brane ends.
The world sheet horizon on the string, zWH, is indicated.5We thank L. Yaffe for the following argument.
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SYM with nonzero R-charge density [22,23], will produce
a �M that depends on R-charge chemical potentials. That
Eq. (5.5) could be ‘‘universal’’ also for the D7-brane seems
plausible, but to show this would require a more general
analysis. Notice, however, that the argument showing that
�, �, and a share a zero at z� required only that the relevant
part of the D7-brane metric be asymptotically AdS and
possess a horizon.

VI. GENERALIZATION TO DP/DQ SYSTEMS

As in Ref. [1], we can compute the conductivity for a
class of field theories whose holographic duals are probe
Dq-branes in a background of Dp-branes [24,25]. This is
possible because we required only that the DBI action be a
reliable effective action and that the Dq-brane had a hori-
zon. The dual field theories will be large-Nc Yang-Mills
theories with Nf � Nc fundamental-representation fields
that, in some cases, may be confined to a defect.

The Dp-brane solution includes coordinates parallel to
the Dp-branes and spherical coordinates for directions
transverse to the Dp-branes. In this background we may
generically write the induced Dq-brane metric as

 ds2
Dq � gzzdz2 	 gttdt2 	 gxxd ~x2 	 gSSd�2

n; (6.1)

where z is the radial coordinate. We assume this induced
metric depends only on z and parameters like T. The Dq-
brane wraps some n-sphere Sn with metric component gSS
in the space transverse to the Dp-branes. The Dq-brane
world volume then includes Rd with d � q� n� 1. A
magnetic field is only possible for d � 2. We assume the
Dq-brane world volume has a horizon zH defined by
gtt�zH� � 0. The Dp-brane background may also include
a nontrivial dilaton ��z� and nontrivial Ramond-Ramond
(RR) form fields.

We now introduce At�z�, Ax�z; t�, and Ay�z; x�. The Dq-
brane action includes the Born-Infeld term and Wess-
Zumino couplings to background RR fields. The Born-
Infeld term is again a (3	 1)-dimensional Born-Infeld
action with an extra factor,

 SDq � �
Z
d4x

c�z�

�2��0�2

�

����������������������������������������������������������������������������������������
�g� �2��0�2

1

2
gF2 � �2��0�4

1

4
�F ^ F�2

s
;

(6.2)

where we have divided both sides by the volume of Rd�2,
and now the extra factor is

 c�z� �N q�2��
0�2e���z�g�d=2��1

xx �z�gn=2
SS �z�; (6.3)

where N q � NfTDqVn, with TDq the Dq-brane tension
and Vn the volume of a unit Sn. Comparing Eqs. (3.6) and
(6.2) we see that everything is identical to what we have
already done, but with

 N �2��0�2g1=2
xx cos3�! c�z�: (6.4)

In particular, the only change in Eq. (3.11) is in �,

 � � jgttjg
2
xxc�z�

2 	 �2��0�2�jgttjhJ
ti2 � gxx�hJ

xi2

	 hJyi2��: (6.5)

In the appendix we show that the identification of hJti, hJxi,
and hJyi is valid for any probe Dq-brane satisfying our
assumptions, so taking � � � � a � 0 at z� we find
 

�xx�
gxx

g2
xx	�2��

0�2B2

�
���������������������������������������������������������������������������������
�g2
xx	�2��

0�2B2�c�z��
2	�2��0�2hJti2

q
; (6.6a)

�xy�
�2��0�2hJtiB

g2
xx	�2��0�2B2 : (6.6b)

The Dq-brane action also includes Wess-Zumino cou-
plings to RR fields. Generically, these introduce additional
terms in the gauge field equation of motion. Whether our
solution remains valid must be determined on a case-by-
case basis. For example, in the D4=D8= �D8 system [26], the
D8-brane action includes

R
dC3 ^ A ^ F ^ F, with dC3

proportional to the volume form of S4. This coupling
introduces an additional term in the equation of motion
that invalidates our gauge field solution.

A flat Cq�3 form, dCq�3 � 0, will leave the Dp-brane
background unchanged and produce a term,

R
Cq�3 ^ F ^

F, in the Dq-brane action that leaves the gauge field
equation of motion unchanged. Our solution thus remains
valid. Integrating Cq�3 produces a � parameter,

 S�Dq � �
�

8�2

Z
F ^ F: (6.7)

For our gauge field solutions this shifts hJ�i !
hJ�i 	�hJ�i with

 �hJti � 	
�

4�2 B; �hJxi � 	
�

4�2 Ey;

�hJyi � �
�

4�2 Ex;

(6.8)

which we implement in Eq. (6.6) by taking hJti ! hJti 	
�

4�2 B and �xy ! �xy 	
�

4�2 .

VII. CONCLUSION

Using the AdS/CFT correspondence, we computed the
Hall conductivity of a finite baryon number density of
N � 2 hypermultiplet excitations in an N � 4 SYM
plasma in the limits of largeNc and large ’t Hooft coupling.
Our method is valid for any values of m, hJti, T, B, and E
for which the supergravity description as a probe D7-brane
with world volume horizon is valid. We also computed the
drag force on flavor excitations in the plasma in them! 1
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limit, and identified the D7-brane analogue of the trailing
string world sheet horizon.

Electric-magnetic self-duality, or S-duality, of U�1�
Yang-Mills theory in AdS4, and its interpretation in the
dual (2	 1)-dimensional CFT, was studied in Refs. [27–
31]. Put briefly, S-duality appears in the CFT as particle-
vortex duality. S-duality may be extended to SL�2;Z� if a T
transformation can be found. For Abelian Yang-Mills in
AdS4, this arises as a 2� shift of the bulk � angle, which
appears in the dual field theory as a shift in the two-point
function of the dual current by a contact term [27]. The
transformation of the conductivity (and other transport
coefficients) under S- and T-duality was studied in
Refs. [9–12].

A similar analysis should be possible for probe Dq-
branes using the well-known extension of S-duality to
(3	 1)-dimensional Born-Infeld theory [32–35]. Indeed,
the Dq-brane action equation (6.2) is simply the (3	 1)-
dimensional Born-Infeld action with the extra factor c�z�.
The � angle we identified in the Dq-brane action produces
the T-transformation in the same fashion as for Yang-Mills
theory.

In the condensed matter physics literature, an SL�2;Z�
duality transformation has been proposed to relate transi-
tions between quantum Hall plateaux. As a small sampling
of this literature see Refs. [36–39]. We note in passing that
in Ref. [39] the SL�2;Z� action was shown to persist
unaltered even beyond the linear response regime.

We reiterate the comment of Ref. [11], however, that
how a quantum Hall effect may occur in gauge-gravity
duality is currently unclear. The fundamental problem
seems to be how to describe a Fermi surface using
gauge-gravity duality.6 This is perhaps the most exciting
direction for future research.
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APPENDIX: HOLOGRAPHIC
RENORMALIZATION

In AdS/CFT, we equate the on-shell supergravity action
with the generating functional of field theory correlation
functions. The on-shell action, however, is divergent due to
the radial integration. In holographic renormalization
(holo-rg) [41– 44] we introduce a regulator z � 	, add
counterterms at z � 	 to cancel the divergences, and then
take 	! 0.

We find from its equation of motion that ��z� has the
asymptotic expansion

 ��z� � �0z	 �2z3 	 . . . (A1)

The leading coefficient �0 is the source for the dual opera-
tor, given by taking @

@m of the SYM Lagrangian. In other
words �0 gives the hypermultiplet mass. If we separate the
D3-branes and the D7-branes by a distance L in the X8

direction, then m � L
2��0 and L � limz!0

1
z sin��z� � �0

allows us to identify �0 � �2��
0�m.

Plugging Eq. (A1) into the regulated action we find the
divergences
 

Sreg � �
Z zH

	
dzL

� �N
Z zH

	
dz
�
z�5 � �2

0z
�3 	

1

2
�2��0�2

� �B2 � E2�z�1 	O�z�
�
: (A2)

The counterterms we need are [45]

 L1 �
1
4N

��������
��
p

; L2 � �
1
2N

��������
��
p

��	�2;

Lf �N 5
12

��������
��
p

��	�4
(A3)

with �ij the induced metric at z � 	 and � its determinant.
Notice that

��������
��
p

� 	�4 	O�	4�. Supersymmetry re-
quires the finite counterterm Lf [45]. We suppressR
dtdxdy unless stated otherwise. The last divergence

requires a counterterm

 LF � �
1
4N �2��

0�2
��������
��
p

FijFij log	

� �1
2N �2��

0�2�B2 � E2� log		O�	4 log	�: (A4)

The generating functional of the field theory is the 	! 0
limit of S � Sreg 	

P
iLi. We want the expectation values

hJti, hJxi, and hJyi. In holo-rg, hJ�i is

 hJ�i � lim
	!0

1

	4

1��������
��
p

S
A��	�

: (A5)

For hJti, we need
 

S � �
Z zH

	
dz

L
@zAt

@zAt � �
L
@zAt

Z zH

	
dz@zAt

� �
L
@zAt

�At�zH� � At�	��; (A6)

where we have used the fact that L
@zAt

is z-independent on

shell. Enforcing At�zH� � 0 we find S
At�	�

� L
@zAt

and

hence hJti � L
@zAt

.

For hJxi, we reinstate
R
dt because Ax is time dependent,

 S � �
Z
dzdt

�
L
@zAx

@zAx 	
L
@tAx

@tAx

�
: (A7)

We employ precisely the same argument as before for the
first term. For the second term we observe that L

@tAx
is

t-independent on shell and hence6For recent work in this direction, see Ref. [40].
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Z
dt

L
@tAx

@tAx �
L
@tAx

Z
dt@tAx � 0; (A8)

where we demand that the fluctuation be well behaved
(vanishing) at t � �1. The counterterm LF gives a van-
ishing contribution to hJxi for the same reason,
 

LF � �
1

4
N �2��0�2

��������
��
p

�ij�kl

�
Z
dt


@tAx

�FikFjl�@tAx log	

� 	
1

2
N �2��0�2

Z
dt _Ax�	�@tAx log	

	O�	4 log	�

� O�	4 log	�: (A9)

We then have S
Ax�	�

� L
@zAx

and hence hJxi � L
@zAx

.

hJyi is very similar. Ay depends on x so we reinstateR
dx. We have

 S � �
Z
dzdx

�
L
@zAy

@zAy 	
L

@xAy
@xAy

�
: (A10)

The same argument as above applies for the first term, and
for the second term we observe that L

@xAy
is x-independent

on shell. Demanding that the fluctuation be well behaved at
x � �1 gives

R
dx@xAy � 0 and no contribution from

LF. We thus have hJyi � L
@zAy

.

As in Ref. [1], we claim that these results are valid for
any probe Dq-brane with a world volume horizon in a Dp-
brane background. The identification of hJti depended only
on the difference in the value of At at the horizon and its
asymptotic value. This behavior will be true for any probe
brane with horizon. Similar statements apply for the iden-
tifications of hJxi and hJyi. Additional counterterms may
appear for different systems but no such counterterms can
change these results. Any counterterm must be built from
gauge- and Lorentz-invariant combinations of the field
strength. The only components of the field strength that
could contribute are Ftx and Fxy, which in our solution are
constants, so we will always end up with

R
dt@tAx � 0

and
R
dx@xAy � 0, as above.
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