
Can string theory predict the Weinberg angle?

Stuart Raby and Ak�n Wingerter
Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, Ohio 43210, USA

(Received 12 June 2007; published 26 October 2007)

We investigate whether the hypercharge assignments in the standard model can be interpreted as a hint
at grand unification in the context of heterotic string theory. Our analysis is a follow-up to the recent mini-
landscape analysis of the Z6-II orbifold of the E8 � E08 heterotic string. In that analysis, an intermediate
grand unified theory (GUT) was a requirement for finding MSSM-like theories. Nevertheless, about 1% of
the models in this mini-landscape were MSSM-like. In this paper we remove this GUT restriction. To this
end, we introduce a general method to calculate U�1�Y for any heterotic orbifold and compare our findings
to the cases where hypercharge arises from a GUT. Surprisingly, in the overwhelming majority of 3-2
standard models, a nonanomalous hypercharge direction can be defined, for which the spectrum is
vectorlike. For these models, we calculate sin2�w to see how well it agrees with the standard GUT value.
We find that 12% have sin2�w � 3=8, while all others have values which are less. Finally, 89% of the
models with sin2�w � 3=8 have U�1�Y � SU�5�.
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I. INTRODUCTION

In a recent paper, Lebedev et al. [1] performed a ‘‘mini-
landscape’’ search in the heterotic string looking for
MSSM-like models. The search focused on the Z6-II orbi-
fold and quite dramatically it was found that about 1 in 300
theories were MSSM-like. Why should there be such a
‘‘fertile patch’’ in the string landscape can be understood in
terms of the property of orbifold GUTs and ‘‘local GUTs’’
as emphasized in the following Refs. [2–8]. In the Z6-II
orbifold of the heterotic string, four particular shift vectors
were identified that break the visible E8 gauge symmetry to
E6 or SO(10). Then in the first twisted sector (see Fig. 1) it
was shown that massless chiral multiplets in the 27 of E6 or
16 of SO(10) exist, residing at ‘‘local’’ GUT twisted sector
fixed points. In fact, with one Wilson line lying in the
SO(4) torus, there are exactly two possible families of
quarks and leptons. With two Wilson lines, it was possible
to break the visible E8 to the standard model (SU�3� �
SU�2� � U�1�Y� a hidden sector gauge symmetry). Two
families were localized at the local GUT fixed points and
the third family and Higgs doublets were found in a
combination of the untwisted and twisted sectors. In the
‘‘mini-landscape’’ search [1], the SM (including hyper-
charge) was constrained to lie within SU�5� � SO�10� or
E6. This short review describes the ‘‘fertile patch’’ in the
landscape and hopefully makes it clear why it was so
fertile.

In the present paper we also focus on the Z6-II orbifold
with the same shifts. We inherit the same SO(10) symmetry
at the two SO(4) fixed points. Our search differs from
Ref. [1] in that we do not demand that the SM sit within
SU�5� � SO�10�. Our search is more general, so that the
fundamental question we address is - to what extent do
MSSM-like models require an intermediate GUT? In the
following Sec. II we refine this question. In Sec. III we
outline our more general search for MSSM-like models.

Then in Sec. IV we discuss our results, including a com-
parison to the mini-landscape analysis.

II. HYPERCHARGE FROM GRAND UNIFICATION

In string compactifications aiming at the standard model
in four dimensions, one is typically left with a large num-
ber of Abelian factors,1

 SU �3� � SU�2� � U�1�n � non-Abelian factors: (1)

A priori, hypercharge may be any linear combination of the
U(1)’s that gives the correct values on the elementary
particles, cf. Table I. What complicates matters even
more is the fact that generically, the spectrum contains a
large number of representations that may play the roles of
quarks, leptons, and Higgses in the low-energy theory. In
order not to be in gross contradiction to experimental
observation, the spectrum is required to be vectorlike so
that the exotic particles2 may decouple by acquiring a large
Majorana-type mass. In this context, it is not clear which
representations are to be identified with families or exotics,
respectively. As a result, we are left with a large number of
choices, which makes finding a U(1) which may play the
role of hypercharge a hard problem to solve.

The problem is not so difficult to solve, if we assume
some additional structure. Grand unification [11–13] offers
a default choice for hypercharge. In Georgi-Glashow
SU(5) [11], U�1�Y is obtained as the Abelian factor that
is left over after breaking SU(5) to the standard model

1In (heterotic) orbifold constructions, U(1) factors may be
broken by the mechanism of continuous Wilson lines, as ex-
plored in Refs. [9,10].

2All the additional particles that are not in the MSSM are
termed exotics. If the exotics are such that they can be combined
to pairs of representations that are conjugates of each other, the
spectrum is called vectorlike.
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gauge group, see Fig. 2. More specifically, the hypercharge
direction [14] is given by the dual of the root that is
projected out:

 YGG �
5
3�
�
3 �

X
j

5
3�A
�1
SU�5��3j�j

� 1
3�2�1 � 4�2 � 6�3 � 3�4� (2)

This works not only in the case where we start with a grand
unified gauge group in four dimensions, but also in any
other construction where the standard model is realized as
a subset of a grand unified group. A particular example of
this type is a field theoretic or stringy orbifold where grand
unification is realized in higher dimensions [3,15].

In a recent publication [1], we exploited this very fact3 to
derive 223 heterotic Z6-II orbifold models with three gen-
erations of quarks and leptons, one pair of Higgses, and a
vectorlike spectrum (see Fig. 3). The first step in the
analysis was a judicious choice of a shift vector leading
to either SO(10) or E6, with the additional requirement that
at least one family representation, 16 or 27, respectively, be
localized in the first twisted sector. Wilson lines subse-
quently broke the gauge symmetry to that of the standard
model and hypercharge was realized as the U(1) which lies
in SU(5), cf. again Fig. 2.

In light of the success of this approach, one question
immediately arises: How crucial was the assumption that
the standard model gauge group be realized as a subgroup
of SO(10)? If we drop this assumption, can we still find a

suitable U(1) direction that plays the role of hypercharge
such that all family and Higgs representations have the
standard assignments and the remaining particles can be
combined to vectorlike pairs that decouple from the low-
energy theory?

In Sec. III, we present a general method for constructing
a suitable hypercharge out of any number of U(1) factors.
Although we specialize to a heterotic orbifold model, it
should be clear that the outlined methods are applicable in
a much broader context.

III. SEARCHING FOR HYPERCHARGE IN THE
GENERAL CASE

For the sake of clarity, we will consider a specific
example along with the general construction. Table II
shows the spectrum of a typical Z6-II orbifold model
(More details are given in Appendix A).

In the present case, hypercharge may be any linear
combination of 9 Abelian factors,

FIG. 2. From SO(10) to (un)flipped SU(5) to the standard
model.

TABLE I. Matter content of the standard model. In our con-

ventions, Q � T3L �
Y
2

.

Q �3; 2�1=3 L �1; 2��1 H �1; 2�1

�u ��3; 1��4=3 �e �1; 1�2 �H �1; 2��1
�d ��3; 1�2=3 �� �1; 1�0

FIG. 1 (color online). The first twisted sector of the Z6-II
orbifold. The shift vectors of the mini-landscape search preserve
a local SO(10) (or E6) GUT at the fixed points (• • • ) and

(• • ) with two 16 (or 27) dimensional massless multiplets.

All models SU(3)xSU(2) SU(3)xSU(2) in SO(10) 3 "generations" Vectorlike

210

310

410

21,841

7,149

3,563

1,170
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FIG. 3 (color online). Consider shift VSO�10�;1 of Ref. [1]. Of
the (i) 21 841 models, (ii) 33% contain the SM gauge group in at
least one E8, (iii) 16% contain the SM gauge group as a subset of
SO(10), (iv) 5% are three-generation standard models (w.r.t.
color and weak isospin) lying in SO(10), and (v) 0.6% are
three-generation standard models (now including hypercharge)
with a vectorlike spectrum where hypercharge is that of Georgi-
Glashow SU�5� � SO�10�.

TABLE II. Three-generation model with gauge group SU�3� �
SU�2� � U�1�5 � SU�5�0 � U�1�04.

3� �3; 2; 1� 12� ��3; 1; 1� 29� �1; 2; 1� 8� �1; 1; 5�

6� �3; 1; 1� 136� �1; 1; 1� 8� �1; 1; �5�

3The SO(10) structure was required not only for hypercharge,
but also for a couple of other reasons, such as gauge and Yukawa
coupling unification, the presence of a B� L symmetry, a
discrete subgroup of which may be a candidate for R-parity,
etc. A nice discussion of the role of SO(10) in the context of
theories beyond the standard model can be found in
Refs. [16,17].
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 U �1�Y � x1U�1�1 � x2U�1�2 � . . .� x9U�1�9: (3)

The naive ansatz of choosing a subset of the representa-
tions in Table II to be the observed elementary particles
and then solving the linear equations for their having the
correct hypercharges is not feasible. The number of such
choices4 is at least
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corresponding to choosing (i) left-handed quark doublets,
(ii) right-handed quarks, (iii) distinguishing up- and down-
type quarks, (iv) 3 lepton doublets and 2 Higgses,
(v) distinguishing leptons and up-type Higgs, (vi) right-
handed electrons, (vii) right-handed neutrinos. (Note that
in the above counting, the charges under the hidden sector
gauge group are multiplicities for the standard model
particles.)

Even if we were able to cope with such a large number of
cases, the solutions to the linear equations will in general
not give a vectorlike spectrum. From these considerations
it should be clear that another line of thought has to be
pursued.

In the remainder of this section, we describe our strategy
for finding a suitable hypercharge even under the most
unfavorable circumstances. For facility of inspection, in
the following we will enumerate the key ideas entering our
calculations.

A. Exploiting the linear constraints

(i) A judicious choice for the basis of U(1) directions
greatly simplifies the calculations. In principle, one
may choose any n linearly independent directions
that are orthogonal to the simple roots of the unbro-
ken gauge group. However, from experience with
grand unified theories we expect the U(1) directions
(up to some multiplicative factor) to correspond to
the duals of the roots that are projected out, so we can
take them to lie in the root lattice5 of E8 � E08. This is
not only, in some sense, the default choice, but it also
then guarantees that N-times the U(1) directions will
have integer values6 on the representations, where
we denote by N the order of the orbifold.

(ii) Unfortunately, this assumption is not fully justified.
Although it is generally true that we may always find
n linearly independent basis vectors that span the
vector space orthogonal to the simple roots and at the
same time belong to the E8 � E08 lattice, it is a priori
not clear why hypercharge should lie in the lattice, or
in other words, why the coefficients in Eq. (6) below
should be integers. (The deeper reason behind this is
the existence of chiral exotics which may have hy-
percharge assignments that are not multiples of 1=3.)
Therefore, we will drop the assumption on the co-
efficients when we consider the general case in
Sec. III B.

(iii) Since assigning the correct hypercharges to all fam-
ily representations has proved to be impractical, we
make a compromise and demand only that the left-
handed quark doublets and the right-handed quark
singlets have the correct values. In this case, there is
still a choice to make, but the involved numbers are
smaller by orders of magnitude. In the present ex-
ample, this number7 is
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Denoting the directions corresponding to the Abelian
factors by capital letters, our ansatz takes the form

 Y � x1U1 � x2U2 � . . .� xnUn: (6)

The hypercharge of a particular representation is
given by the scalar product of its highest weight
and Y. If we denote the highest weights of the left-
handed quark doublets and of the right-handed quark
singlets by �i, i � 1; . . . ; 9, we obtain

 �i 	 Y � x1�i 	U1 � x2�i 	 U2 � . . .� xn�i 	 Un;

(7)

which is a system of linear diophantine equations,
provided we multiply the left- and right-hand-sides
by 3N. We will henceforth not explicitly mention that
the preceding and all following equations are to be
multiplied by 3N. The factor of N was explained in a
footnote in Sec. III A, and the factor of 3 is the
smallest common multiple of the denominators of
the hypercharge assignments. Now it becomes very
clear that in taking these equations to be diophantine,
we restrict our search to such exotics which have
hypercharge values with a denominator not greater
than 3. We will lift this constraint in Sec. III B.
Although one may think that in our example, where
we have 9 independent U(1) directions, these 9

4The model under consideration is relatively well-behaved
with regard to the multiplicities of particles. There exist cases
in which the net number of generations is realized by differences
of larger multiplicities, thus considerably increasing the com-
plexity of the problem.

5Observe that the root lattice of E8 � E08 is self-dual.
6The highest weight of a representation is of the general form

p� kV, where p is in the E8 � E08 root lattice, k the number of
the twisted sector, and V the shift vector. Our assertion follows
from the fact that NV is in the root lattice.

7Despite this number being not so small, we find a solution in
less than 1 s on a 2.7 GHz Pentium computer. This means that
one of the very first choices for the quarks allows for a hyper-
charge direction. Our experience shows that this is a general
pattern.
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equations severely constrain the values of xi, this is
not true. In general, the system will be under-
determined, and, as a matter of fact, in our case, is
under-determined, since the quarks differ by local-
ization, but not necessarily by the highest weights of
their gauge representations.

(iv) In order to account for the hypercharges of the
leptons and Higgses, and for the absence of chiral
exotics, we set up necessary, but in general not
sufficient, linear constraints:

 

X
�3;2�;��3;2�

Y � 1;
X

�3;1�;��3;1�

Y � �2;

X
�1;2�

Y � �3;
X
�1;1�

Y � 6:
(8)

For readability, we use Y in the above equations as a
shorthand for �k 	 Y, where �k runs over the highest
weights of the representations in the sum.
Note that the sum over e.g. the �3; 1� and ��3; 1�
representations reduces to that over the right-handed
quarks �u and �d alone, since we assume pairs of
exotic particles to carry hypercharge assignments
that are equal in magnitude but opposite in sign.

(v) Another constraint comes from the requirement that
hypercharge be nonanomalous. If the model has an
anomalous U(1) direction that we will denote by U1A,
we demand that it be orthogonal to Y:

 �x1U1 � x2U2 � . . .� xnUn� 	 U1A � 0 (9)

(vi) For solving the obtained system of linear diophan-
tine equations, we developed C++ code implementing
the algorithms described in Ref. [18].

(vii) The solution to the system of linear diophantine
equations is given by the sum of a particular solution
and a linear combination of (not necessarily linearly
independent, see Ref. [18]) homogeneous solutions,8

where the coefficients are all integers. In most cases,
there are no more than 2 homogeneous solutions, so
that we can simply iterate over the integer coeffi-
cients to obtain candidates for hypercharge. Each
candidate will surely fulfill Eqs. (7)–(9), but may
fail to give the correct hypercharge values on the
leptons and Higgses; furthermore, the spectrum may
not be vectorlike.

(viii) Some remarks are in order. First, note that we ex-
plicitly make use of the coefficients being integers,
which is an assumption that is not fully justified.
Second, we can of course not loop over all integer
coefficients, but only over a finite subset. The lattice
basis reduction [19] ensures that the integer coeffi-
cients are ‘‘small.’’ Nevertheless, by restricting our-
selves to a finite set, we may miss an interesting

solution. The general ansatz presented in Sec. III B
will not suffer from these restrictions.

A detailed discussion of our results is presented in
Sec, IV C. At this point, let us briefly remark that we
applied the strategy outlined above to the 1767 three-
generation9 models. For 1114 models, we could establish
the existence of a suitable hypercharge direction. Since a
negative answer in the case of the remaining 653 models
does not prove that hypercharge does not exist, we will
investigate these models using the more sophisticated tools
described in Sec. III B.

B. The general case with nonlinear constraint equations

We now turn our attention to the most general ansatz for
constructing a suitable hypercharge direction for which we
have a vectorlike spectrum.

(i) Again, we make an ansatz

 Y � x1U1 � x2U2 � . . .� xnUn (10)

for the hypercharge direction in terms of the Abelian
group factors and demand that the linear constraints
Eqs. (7)–(9) be satisfied.

(ii) The linear equations by no means exhaust the con-
straints we may require to be fulfilled by a vectorlike
spectrum. In particular, there are the cubic,

 

X
�3;2�;��3;2�

Y3 �
1

9
;

X
�3;1�;��3;1�

Y3 � �
56

9
;

X
�1;2�

Y3 � �3;
X
�1;1�

Y3 � 24;
(11)

and the quintic,

 

X
�3;2�;��3;2�

Y5 �
1

81
;

X
�3;1�;��3;1�

Y5 � �
992

81
;

X
�1;2�

Y5 � �3;
X
�1;1�

Y5 � 96;
(12)

constraints. As before, the sum over e.g. all �1; 1�
representations reduces to that of the right-handed
electrons that carry hypercharge �2, since the right-
handed neutrinos have zero hypercharge, and the
exotic particles come in vectorlike pairs so that their
contribution to the sum vanishes.

(iii) It is important to note that in this approach we
consider the linear and the nonlinear equations on
the same footing. In particular, we do not assume that
the linear equations are diophantine. This fact adds
to the calculational complexity of the problem,
which scales with the number of variables.

8For efficiency, we minimized the length of the particular
solution, and applied an LLL lattice basis reduction [19] on
the homogeneous solutions using the NTL libraries [20].

9This number is slightly higher than the 1170 models listed in
Ref. [1], since we lifted the constraint that the standard model
gauge symmetry be a subset of SO(10). See Sec. IV C for more
details.
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(iv) As in the case of the linear constraints, we scale Y by
3N, so that the coefficients in the polynomial equa-
tions are guaranteed to be integers. This is more
calculational convenience than a conceptional neces-
sity, since the computational tools we are using and
that are to be described below have a far better
performance for integer arithmetics.

(v) The fact that these equations are highly nonlinear
may at first seem discouraging. Luckily, there are
efficient methods for solving systems of polynomial
equations. The first step is the calculation of a
Gröbner basis [21], from which we can already
read off the dimensionality of the solution set, and,
in particular, whether the system has a solution at all.
To this end, we used the computer algebra system
SINGULAR [22]. We present the details of the calcu-
lation in Appendix A.

(vi) If there are no solutions to the constraint equations,
this rigorously proves the absence of a U(1) that may
play the role of hypercharge. In the cases where
solutions exist, we determine them numerically us-
ing Laguerre’s algorithm as implemented by
SINGULAR [22]. Equation (6) then gives the corre-
sponding hypercharge direction, for which we can
explicitly check whether our criteria are satisfied or
not.

(vii) It turns out that in all cases, where the linear, cubic,
and quintic equations were satisfied, the solution
gives a vectorlike spectrum. Demanding only the
linear and cubic equations, however, does not guar-
antee that the spectrum is vectorlike, as we have
learned from experience in the course of our
investigations.

In conclusion, let us remark that solving the nonlinear
constraint equations adds 106 models to the list of 1114
vectorlike spectra of three-generation standard models al-
ready constructed in Sec. III A, so that the total number
increases to 1220. Also, this approach rigorously proves
that for 547 out of 1767 models, there is no U(1) direction
that can play the role of hypercharge in a way that is
compatible with low-energy physics. In Sec. IV, we discuss
these results in greater detail.

IV. PHENOMENOLOGY OF THE MODELS

A. The mini-landscape revisited

We consider a class of orbifold models with promising
phenomenology [1]. In order to keep the discussion as clear
as possible, we focus on one particular shift, namely
VSO�10�;1, which incidentally gives the largest number of
models.

The results of the mini-landscape search [1] relevant to
our present discussion can be summarized as follows. The
shift VSO�10�;1 breaks

 E 8�E08!SO�10��SU�2�2�U�1��SO�14�0�U�1�0:

(13)

If we allow for up to 2 Wilson lines, there are 21 841
inequivalent models. What we mean by two models being
inequivalent is explained in Sec. IV B.

The gauge symmetries of 7149 models contain SU�3� �
SU�2� as a subgroup in at least one E8, and thereof, 1767
models have a three-generation spectrum. Since we do not
know hypercharge yet, three-generation model in this con-
text means that the spectrum, considering only color and
weak isospin, has the right number of representations that
can be identified with the particle content of the standard
model. For a specific example of such a model, see e.g.
Table II in Sec. III. We will refer to it as a 3-2 standard
model.

In the mini-landscape search [1], our rationale had been
to construct a default candidate for hypercharge, namely,
that of Georgi-Glashow SU�5� � SO�10�. To that end, we
considered 3563 models whose gauge symmetries con-
tained SU�3� � SU�2� as a subgroup of SO(10). Of this
set, 1170 models had a three-generation spectrum w.r.t. the
SU�3� � SU�2� � SO�10� gauge symmetry. Taking hyper-
charge to be that of the Georgi-Glashow model, 127 mod-
els had a vectorlike spectrum (see Fig. 3). Here and in the
following, we will call a three-generation model a 3-2-1
vectorlike standard model, if hypercharge has the correct
values (cf. Table I) on the quarks, leptons, and Higgses, and
if all the exotic states come in pairs such that the standard
model quantum numbers including hypercharge in each
pair are equal in magnitude but opposite in sign.

B. The general search for hypercharge in the ‘‘Fertile
Patch’’

The starting point of our search is the set of 21 841
inequivalent models. We call 2 models equivalent, if their
spectra coincide. In this context, there are a couple of
nontrivial issues that must be addressed. (i) The unbroken
gauge group is typically the product of several simple
factors. For each such factor, we have the choice whether
to read its Dynkin diagram from left to right or from right
to left, which corresponds to swapping all the representa-
tions with the complex conjugate ones. Thus, 2 spectra that
differ only by complex conjugation w.r.t. one or more
gauge group factors are to be identified. (ii) Because of
its highly symmetric Dynkin diagram, the algebra SO(8)
deserves special attention. Although the representations
8v, 8s, 8c are not equivalent, their tensor products are
unaffected by a cyclic permutation, so we identify models
whose spectra coincide after this permutation. (iii) In most
cases, the same gauge group factor appears multiple times
in the gauge symmetry. We identify those models whose
spectra coincide when permuting the identical factors in
the same E8. (iv) Two models whose spectra are identical
may differ in the localization of the particles. At present,
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we do not distinguish between those models. (v) When
checking the equivalence of models, we consider only
the non-Abelian charges. To what extent two models that
coincide in all the non-Abelian quantum numbers may
differ w.r.t. U(1) charges is subject to further research.

In the present case we want to be as general as possible,
so, in contrast to the mini-landscape search, we do not
require that the standard model gauge group be contained
in SO(10). There are 7149 models whose unbroken gauge
group contains SU�3� � SU�2� as a subset of the first or
second E8, and 1767 of them are 3-2 standard models, see
Fig. 4.

For each of the 1767 models, we first identify all repre-
sentations of the form �3; 2� and ��3; 1�. Generically, the
number of these representations is greater than 3 and 6,
respectively, so we must make a choice as to what we call
left-handed quark doublets and right-handed up- and
down-type antiquark singlets. For each such choice, we
generate the linear, cubic, and quintic constraint equations
along the lines of Sec. III. To get a flavor of the details of
the calculation, the reader is referred to the example in
Appendix A. Let us here briefly remark that we are making
the most general ansatz in that we treat the linear, cubic,
and quintic constraints on the same footing and that we do
not assume that the equations are diophantine.

The following cases need to be distinguished. (i) There
are only finitely many solutions. We pick any of the
solutions and calculate Y, see Eq. (10). (ii) The solutions
are given by continuous parameters, and the relations
intertwining these parameters are linear. We specialize to
a numerical solution by setting all independent parameters
equal to zero. (iii) Again, the solutions are given by con-
tinuous parameters, but this time, the relations intertwining
the parameters are nonlinear. Since we cannot easily solve
for the independent parameters, we numerically find one
special solution and calculate the corresponding Y.
Hypercharge directions which lead to irrational charges
for the exotics are discarded.

Since our goal is to establish the existence of a suitable
hypercharge direction, we stop at the first solution we find,
i.e. as soon as the dimension of the ideal that describes the
set of solutions to the system of polynomial equations is
greater than or equal to zero.

Our findings are most unexpected. It turns out that 1220
models allow for a hypercharge direction for which the
spectrum is vectorlike and contains three generations of
quarks and leptons, i.e. we find 10 times more models than
in the mini-landscape case, see Fig. 4. We were unsuccess-
ful in our search only for 547 models. In Sec. IV C, we will
analyze the 1220 vectorlike 3-2-1 standard models in
greater detail.

C. Analyzing the vectorlike models

An important question is in what respect these 1220
vectorlike three-generation standard models differ from
the 127 ones constructed previously, see Fig. 4. We will
take a closer look at some key properties of the 127 models
that are deemed desirable features for their phenomenol-
ogy and see to what extent they are realized in the larger
set.

1. 1126 Models: Standard model gauge group in SO(10)

Remember that in Sec. IV we had dropped the assump-
tion that the standard model gauge group be contained in
SO(10). If we now reinstate this constraint, the number of
vectorlike models decreases slightly from 1220 to 1126
(see Fig. 5). Based on the number of three-generation
models in Fig. 4, we could have expected to see a more
pronounced effect, i.e. a more dramatic drop. This suggests
that the SO(10) structure enhances the chances of a model
to have three generations.

A word of caution is in order. Because of the structure of
the gauge symmetry breaking [see Eq. (13)], the SU�3�
factor of the standard model must necessarily be in SO(10).
As to the SU�2� factor, it may lie outside of SO(10), but can
in many cases be related to one which lies in SO(10) by an

FIG. 5 (color online). Overview over the fraction of models
passing our criteria.

                   SU(3)xSU(2)                       3-2 Standard Models                      3-2-1 Standard Models vectorlike0
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FIG. 4 (color online). Comparing the results of Ref. [1] (red) to
our findings (blue). Dropping the assumption of hypercharge
coming from an SO(10) leads to 10�more models.
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outer automorphism, see Appendix D for a specific ex-
ample. Thus, we may be tracing a feature that is mathe-
matical in nature and bears no physical relevance.

The same example in Appendix D illustrates a point
which we had not anticipated. Two distinct sets of shifts
and Wilson lines may lead to the same gauge group and
spectrum, but to different symmetry breaking patterns. The
consequences of this observation are rather bizarre. In the
case of the first model in Appendix D, the symmetry
breaking pattern allows us to complete the standard model
gauge group to an intermediate SU�5� and consequently to
derive Georgi-Glashow hypercharge, for which the spec-
trum is vectorlike and has three generations of quarks and
leptons. As such, it qualifies for our list of phenomenolog-
ically promising models. In contrast, in the second model,
there is no such intermediate SU�5� that we can use to
construct a default hypercharge direction.10

In the early stages of our analysis, we had found only
1094 models, whose standard model gauge group was a
subset of SO(10). After becoming aware of the subtleties
described in the previous paragraph, we took a closer look
at the 126 models which, loosely speaking, were not a
subset of SO(10). In 32 cases, we could find a ‘‘twin
model’’ such that the spectra coincide and the gauge group
is indeed a subset of SO(10), thus giving us 1126 models in
total, see Fig. 5.

2. 127 Models: Hypercharge direction purely due to
SO(10)

Next we would like to know how the 127 vectorlike
three-generation models of the mini-landscape [1] fit into
this new picture. Clearly, we expect them to be a subset of
the 1126 models, and this is easily verified. By construc-
tion, these 127 models satisfy

 Ygeneral � YGG 
 0; (14)

and thus give the standard hypercharges on the 16 of
SO(10). We will now generalize this desirable feature.

3. 800 Models: Not purely SO(10), but standard charges
on 16-plet

After these preliminary considerations, we ask the ques-
tion that is at the heart of the matter: Of the 1126 models, in
those cases where Ygeneral is different from YGG, how does
this difference affect the spectrum?

Despite this difference not being zero, the presence of
SO(10) is too conspicuous to be ignored. We expect that
the 16-plets in the first twisted sector will still give rise to 2
of the 3 families, and our best guess is that Ygeneral is such
that it coincides with YGG on these representations.

Indeed, calculating YGG for the 1126 models where we
have an intermediate SU(5) and comparing it to Ygeneral, we
find that in 800 cases, it coincides with YGG when evaluated
on the 16-plet:

 Ygeneral � YGG 6
0; �Ygeneral � YGG��16� 
 0 (15)

In Appendix B, we present an explicit example. The two
hypercharge directions YGG and Ygeneral, given in Eq. (B4)
and (B5), respectively, differ only in entries in the second
E8. As such, they give the same hypercharge on particles
coming from the 16 of SO(10) that lies completely in the
first E8, but do change the hypercharge on the other states.
Comparing the two spectra for the same shift and Wilson
lines, but different choices for hypercharge, namely, either
YGG or Ygeneral, we find that in the former case, the model
not only fails to be vectorlike, but does not even contain
three generations, see Appendix B for the details. On the
other hand, taking hypercharge to be Ygeneral, we get a
three-generation model that is vectorlike.

We expect that these 800 models will inherit most of the
properties of the 127 ones derived in Ref. [1]. The question
of gauge coupling unification is the exception from the
rule: The extra components of Ygeneral lying outside SO(10)
will have an impact on the value of the GUT scale. We will
address this question in Sec. IV D.

4. 326 Models: Families do not form complete multiplets
of SO(10)

In the remaining 326 vectorlike three-generation mod-
els, it is no longer true that two families arise from 16’s of
SO(10) in the first twisted sector, i.e. these models are
structurally different from the 127 ones we considered so
far as paradigms.

We looked at one example in detail. In summary, calcu-
lating the values of Ygeneral on the 16-plet at the origin in the
first twisted sector, we find that the states corresponding to
�u and �e are missing. Perusing the four-dimensional spec-
trum, it turns out that the representation playing the role of
the �u lives at a fixed point in the first twisted sector with no
SO(10) symmetry, whereas �e lives at the origin, but arises
from a doublet representation outside of SO(10).

D. Gauge coupling unification

The value of sin2�w deserves some special attention,
because for one thing, it sets the GUT scale in the theory,
and, as a consequence, it bears direct relevance to observ-
able parameters at the electroweak scale.

At the GUT scale, the coupling constants g and g0 are
equal, if the generators of SU�2�L and U�1�Y are normal-
ized in the same way. In our conventions, where

 Q � T3L �
Y
2
; (16)

there is a constant of proportionality, g � Cg0, which leads

10In the case of the mini-landscape study, this was not a
problem, since we first constructed Georgi-Glashow hypercharge
and then removed equivalent models. As a result, we ran over all
models.
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to

 sin 2�w �
g02

g2 � g02
�

1

1� C2 : (17)

The constant is given by the relative normalization of the
generators,

 

�����Y2
������ CjjT3Ljj: (18)

Up to a factor, the norm is given by the Killing form, see
e.g. x 13.1.2. of Ref. [23]. Since the vector Y represents the
sum over Cartan generators with the respective coeffi-
cients, the norm of the generator corresponding to Y re-
duces to its vector norm. Evaluating the Killing form on the
fundamental representation for SU�2�L canonically used in
particle physics gives jjT3Ljj

2 � 1=2.
We calculated sin2�w for the 1220 models (see Fig. 5)

for which a hypercharge direction exists. The results are
presented in Fig. 6. For a judicious assessment of the data,
the following remarks should be given some consideration.

For a given model, there is typically more than one
hypercharge direction. In our general search in Sec. IV C,
we stopped at the first solution that gave a vectorlike 3-2-1
standard model. In most of the models, sin2�w is not only
not equal to the standard GUT value of 3=8, but it is
generically too small.

Aiming at a higher value of sin2�w, our first ansatz has
been to minimize the norm of Y. If there are only finitely
many solutions to the constraint equations, we construct
each hypercharge direction and pick the one with smallest
norm. In many cases, however, the set of solutions is given
by one or more parameters. In those cases where the
parameters are given by linear relations, we use a simplex
algorithm [24] to find Y with minimal norm. The algorithm
requires a ‘‘best guess’’ as input and in some cases failed to
find the minimal solution. There were also a couple of
cases where the solutions were parameterized by nonlinear
equations, adding to the complexity of a numerical
minimization.

For this and other reasons, we decided to specifically
search for those models which have a hypercharge direc-

tion such that sin2�w � 3=8. Bearing the results of Sec. III
in mind, it is straightforward to implement this constraint
[see Eq. (6) for Y in terms of the independent U(1) direc-
tions]:

 sin 2�w �
3
8$ jjYjj

2 � 10
3 $

X
i;j

xixjUi 	Uj �
10
3 (19)

We simply add Eq. (19) to the set of constraint equations
in Secs. III A and III B and search for solutions. Naturally,
we can restrict ourselves to the 1220 vectorlike standard
models for which we know that hypercharge exists.

The results are presented in Fig. 6. The values for sin2�w
in the histogram are ‘‘biased’’ in the sense that first, we
specifically looked for the correct GUT scale relation, and
second, we picked the smallest value whenever the prob-
lem was amenable to numeric minimization. Had we listed
the values without these priors, we would have more
models with lower values of sin2�w.

For 148 models, we find sin2�w � 3=8. This number is
to be compared to the 127 models of the mini-landscape
(see Fig. 4), where hypercharge is constructed from SO(10)
and the constraint on sin2�w is thus satisfied by construc-
tion. In the following we take a closer look at the 21 extra
models to assess in what respect, if at all, they differ from
the 127 ones.

In 12 cases, hypercharge has components both in the first
and in the second E8. An explicit check shows that the
hypercharge assignments for the particles coming from the
16 of SO(10) are nonstandard in all cases. This was to be
expected, since the norm of hypercharge is the same as in
the Georgi-Glashow case, but there exist components out-
side of SO(10). In 5 cases, SU�3� � SU�2� � SO�10�. To
see how this fits into our present classification of the cases,
see Fig. 5.

In 6 cases, hypercharge lives in the second E8 and as
such, the standard model is not a subset of the SO(10) that
is left over after the first symmetry breaking due to the shift
alone. There is a fair chance that hypercharge may be in
some SO�10�0 � SO�14�0 � E08, see Eq. (13), so we are
following this lead. Indeed, in 5 cases the symmetry break-
ing pattern is

 E 08!
V

SO�14�0!
W3

SU�5�0�SU�2�0�SU�2�0!
W2

SM�hidden;

(20)

and, moreover, hypercharge lies completely in SU�5�0, so
we are back to the Georgi-Glashow case.11 In the one
remaining case, the standard model is a subgroup of
SU�4�0 � SU�4�0.

Most interestingly, in 3 cases hypercharge is all in the
first E8, but does not arise from Georgi-Glashow. The non-
Abelian gauge group factors of the standard model are not
a subset of SO(10), and in 2 cases the SU(3) and SU(2)
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FIG. 6 (color online). The value of sin2�w at the GUT scale for
the 1220 vectorlike models.

11Note, these differ from the 127, since the Georgi-Glashow
there was required to lie in the first E8.
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factors are not only in different E8’s, but the constructed
hypercharge gives the standard values on the 16 of SO(10).
This observation is interesting enough to present the full
details in Appendix E.

V. CONCLUSIONS

It has long been debated whether string theory is a
theory of everything or anything, and the present work
tries to shed some light on this important question.
Admittedly, we have worked out the details for a very
special class of string theory models, namely, orbifold
compactifications of the heterotic string. Despite all the
qualifications which will necessarily apply to our results,
the big advantage of our ansatz is that we have a complete
picture in the sense that we calculated all models in a well-
defined framework and based our conclusions on finite
numbers, thereby avoiding any discussion of a measure
in the space of vacua.

One result of our studies is that for 69% of the 3-2
Standard models, there exists a hypercharge direction
such that the spectrum becomes a 3-2-1 standard model
and all exotics are vectorlike. This feature had hitherto
been attributed to hypercharge arising from Georgi-
Glashow SU�5� and has now been found to be a more
general result. About 66% (or 800 of 1220) of the 3-2-1
standard models have the same characteristic features as
those found in the mini-landscape search [1] with the
exception of the Weinberg angle at the GUT scale.

The basic question we tried to answer in this publication
can be summarized as follows: Given the standard model
quantum numbers and the absence of chiral exotics at low
energies, do orbifold compactifications predict or at least
prefer values of sin2�w compatible with grand unification?
In other words, in how many cases is the standard GUT
value realized and to what extent is it correlated to the
presence of an SO(10) symmetry? Our results clearly in-
dicate that the most preferred value of sin2�w is in gross
disagreement with grand unification and leads to a GUT
scale which is too low. Nevertheless, a sizable fraction of
the models attain the standard GUT value which lets us
hope that there is some interesting physics yet to be
explored.

Realizing that it might have been too naive to expect
string theory to predict the Weinberg angle, we can add
sin2�w � 3=8 to our list of priors and ask, given the
standard model quantum numbers, the absence of chiral
exotics at low energies and the Weinberg angle, do we
necessarily have an SO(10) as a local symmetry? In this
case, we find a strong correlation between sin2�w � 3=8
and an SO(10) being realized at an intermediate level in
higher dimensions. In fact, of the models with the standard
model spectrum, vectorlike hypercharge and sin2� � 3=8,
89% have U�1�Y � SU�5� � SO�10� in the first or second
E8. However, it came somewhat as a surprise that there
exist 16 models (11%) which do not quite fit into the usual

GUT picture and are nevertheless consistent with unifica-
tion. Moreover, there are 21 models in excess of the mini-
landscape results [1] which are a priori phenomenologi-
cally viable and should not be left out of consideration in
the quest for realistic models.

Let us remark that the methods outlined in the present
publication have a broader range of application. These
include the search for (gauged) discrete family symme-
tries, for Peccei-Quinn-type symmetries for the
�-problem, and for a suitable B-L symmetry, a discrete
subgroup of which can play the role of R-parity. The latter
case has already been worked out and the results will be
presented in a follow-up publication to the mini-landscape
project [25].

The question of hypercharge normalization in the con-
text of string theory has been addressed before, see e.g.
Ref. [26] and references therein. We are aware of the well-
known discrepancy between unification at a string scale of
order 1017 GeV and gauge coupling unification which
occurs at 1016 GeV. There are, however, several reasons
to believe that this discrepancy will be resolved by thresh-
old corrections from Kaluza-Klein modes between a com-
pactification scale and string scale, see e.g. Refs. [27–30]
for orbifold GUTs and Refs. [2,4,31,32] for string thresh-
old corrections with asymmetrically large moduli. In either
case the resolution comes from having grand unification in
the extra dimensions and the standard model in 4
dimensions.

Finally, a general search on a specific class of Z3 orbi-
folds has been performed in Ref. [33]. In this analysis, the
author looks for standard model gauge structure with three
families of quarks and leptons having the correct quantum
numbers. In most cases, this requires a generalized hyper-
charge not in SU(5) unlike what we find. However, it is
difficult to compare our analysis to his, because he does not
study those cases with sin2�w � 3=8 in any detail, and in
the general search, he does not distinguish between models
with vectorlike vs chiral exotics. In contrast, we first find
the vectorlike models with suitable hypercharge and then
analyze sin2�w.
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APPENDIX A: CONSTRUCTING HYPERCHARGE
FOR A SPECIFIC MODEL

We focus on one of the 21 841 models for shift VSO�10�;1

presented in Ref. [1], which we will henceforth denote by
V6. Additionally, we have two Wilson lines, namely W3 of
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order 3 and W2 of order 2:

 V6 �
2
3 �2

3
7
6

1
6 0 0 0 0 1

3 0 0 0 0 0 1 �1
� �

W3 � �1
6

1
6 �1

6 �5
6

1
6

1
6

1
6 �1

6
2
3 0 �1

3 �1
3 �1

3 �1
3 �4

3 �2
3

� �
W2 � �1

2 �1 1 0 1
2 �1 0 0 0 �1

2 0 0 0 0 0 �1
2

� �
The shift and Wilson lines break

 E 8 � E08 ! SU�3� � SU�2� � U�1�5 � SU�5�0 � U�1�04; (A1)

and the spectrum is given by (omitting the U(1) charges):

3� �3; 2; 1� 12� ��3; 1; 1� 29� �1; 2; 1� 8� �1; 1; 5�

6� �3; 1; 1� 136� �1; 1; 1� 8� �1; 1; �5�

The simple roots of the unbroken gauge group are:

 �1 � 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 0
� �

�2 � 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 0 0
� �

�3 � 0 0 0 0 0 0 0 0 0 0 0 1 �1 0 0 0
� �

�4 � 0 0 0 0 0 0 0 0 0 0 1 �1 0 0 0 0
� �

�5 � 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
� �

�6 � 0 0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0
� �

�7 �
1
2 � 1

2 � 1
2 � 1

2 � 1
2 � 1

2 � 1
2 � 1

2 0 0 0 0 0 0 0 0
� �

The U(1) directions are given by:

 U1 � 0 0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0
� �

U2 � 0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0
� �

U3 � 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0
� �

U4 � 0 0 0 0 0 0 0 0 1
2 � 1

2 � 1
2 � 1

2 � 1
2 � 1

2 � 1
2

1
2

� �
U5 � 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �2

� �
U6 � 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 �1

� �
U8 �

1
2 � 1

2 � 1
2 � 1

2
1
2

1
2

1
2 � 1

2 0 0 0 0 0 0 0 0
� �

U9 � 0 0 0 0 0 0 0 0 0 �2 1 1 1 1 1 �1
� �

1. Linear diophantine equations

It is easy to check that the U(1) directions are all orthogonal to the simple roots, and furthermore belong to the E8 � E08
lattice, thus satisfying criterion (i) in Sec. III A. For one particular choice of left- and right-handed quarks (which, due to
space limitations, we cannot specify further, unless we list all the details of the spectrum, such as highest weights,
localization, etc.), we obtain the following particular

 

~U 0 � � 3
2

3
2

3
2

3
2

3
2 � 5

2 � 5
2

5
2 0 �6 �1 �1 �1 �1 �1 1

� �
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and homogeneous solutions

 

~U 1 � 0 1 0 �1 0 0 0 0 � 1
2

1
2

1
2

1
2

1
2

1
2

1
2

7
2

� �
~U2 � 0 �1 0 1 0 0 0 0 1

2 � 1
2

1
2

1
2

1
2

1
2

1
2

3
2

� �
to the system of 14 equations corresponding to Eqs. (7)–(9) in Sec. III A. Hypercharge is then given by

 Y � 1
3�

~U0 � x1
~U1 � x2

~U2� (A2)

for some x1, x2 2 Z. We loop over all�2 � x1; x2 � 2 and check whether Y is such that it gives the correct values on the
quarks, leptons and Higgses, and whether the exotics are vectorlike. The first solution we find is

 x1 � 1; x2 � 1; (A3)

which corresponds to

 Y � � 1
2

1
2

1
2

1
2

1
2 � 5

6 � 5
6

5
6 0 �2 0 0 0 0 0 2

� �
: (A4)

The spectrum, now including hypercharge, reads

3� �3; 2�1=3 5� ��3; 1��4=3 7� ��3; 1�2=3 16� �1; 2��1 45� �1; 1�2 129� �1; 1�0

2� �3; 1�4=3 4� �3; 1��2=3 13� �1; 2�1 42� �1; 1��2

where we have counted the representations of the hidden
gauge group as multiplicities for the standard model
particles.

Several remarks are in order. First, let us note that, had
we not minimized the length of the particular solution and
applied an LLL reduction [19] to the homogeneous solu-
tions, we would have had to cover a considerably larger set
of integers for x1 and x2. From experience we know that the
loss of time in this case can be considerable.

Second, the presented model is such that the standard
model gauge group is a subset of SO(10), but that none of
the U(1) directions stemming from the GUT gives a three-
generation model with vectorlike exotics. Under this as-
pect, the construction of a general hypercharge direction
may give useful phenomenological insights.

2. Linear diophantine equations and the cubic
constraints

Despite the fact that we were able to construct a suitable
hypercharge direction using only the linear constraints, this
is not true in general. To demonstrate the use of the non-
linear constraints, we pursue the present example further.
Starting from the general solution Eq. (A2) and substitut-
ing it into the cubic constraint Eq. (11), we obtain a system
of 4 polynomial equations12 in 2 variables, which are too
complicated even to attempt to write them down. However,
calculating a Gröbner basis13 yields the elegantly short and

simple form

 x2
1 � 2x1x2 � x

2
2 � 0; (A5)

from which we see that the system has a one-dimensional
set of solutions, e.g. x1 � x2 � 1, as found before. One
should not be misled to think that satisfying the linear and
cubic constraints is sufficient for the spectrum to be three-
generation and vectorlike. In the course of our work, we
encountered cases in which the constraints were fulfilled,
but nevertheless the spectrum failed to be three-generation
or vectorlike.

3. Linear diophantine equations, the cubic and the
quintic constraints

Finally, requiring that the quintic constraints Eq. (12) be
satisfied leaves us with only a finite number of solutions.
Again, the constraints are too long to list, but after comput-
ing the Gröbner basis, we obtain

 x2
1 � 2x1x2 � x

2
2 � 0; (A6)

 

70x1x4
2 � 45x5

2 � 8x1x
3
2 � 13x4

2 � 156x1x2
2 � 70x3

2

� 8x1x2 � 30x2
2 � 70x1 � 7x2 � 49 � 0; (A7)

 

875x6
2� 450x5

2� 2880x1x
3
2� 5835x4

2� 1728x1x2
2� 400x3

2

� 5184x1x2� 7461x2
2� 4032x1� 6594x2� 539� 0:

The only solutions to this system are

 x1 � x2 � 1 and x1 � x2 � �
7
5: (A8)

The first solution is the one we already know, and
calculating the hypercharge direction corresponding to

12To generate and manipulate polynomial equations, we have
found GINAC [34] to be a very useful tool.

13Giving an introduction to Gröbner bases is beyond the scope
of the present publication. For a general introduction, see
Refs. [35,36]. We would like to point out Ref. [37] that made
us aware of Gröbner bases and their applications in physics.
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the second solution, we obtain

 Y � � 1
2

1
2

1
2

1
2

1
2 � 5

6 � 5
6

5
6 0 �2 � 4

5 � 4
5 � 4

5 � 4
5 � 4

5 �2
� �

(A9)

leading to the spectrum

3� �3; 2�1=3 5� ��3; 1��4=3 16� �1; 2��1 30� �1; 1�2 15� �1; 1�6=5

2� �3; 1�4=3 13� �1; 2�1 27� �1; 1��2 15� �1; 1��6=5

7� ��3; 1�2=3 79� �1; 1�0 25� �1; 1�4=5

4� �3; 1��2=3 25� �1; 1��4=5

which is a three-generation model with vectorlike exotics.
Thus, we see that our assumption that the coefficients in
Eq. (A2) be integers is not fully justified.

4. The linear, lubic and quintic constraints on the same
footing

In light of these findings, we review our assumptions
entering the foregoing calculation. Choosing the U(1) di-
rections to be root vectors of E8 � E08 is safe, since we can
always find n such directions such that together with the
roots of the unbroken gauge group they span the full 16-
dimensional lattice. For the linear constraints, we will
obtain a system of equations with integer coefficients, but
we must now drop the assumption that the solutions are
given by integers, i.e. the system is not necessarily dio-
phantine. For the cubic and quintic constraints, we had not
assumed the solutions to be integers at all; therefore, there
are no modifications.

In practice, this means that we cannot a priori reduce the
system from 9 to 2 variables by solving the diophantine
equations, but must rather consider the linear constraints
on the same footing as the cubic and quintic ones. Starting
with the general ansatz equation (6), we thus obtain a
system of 12 polynomial equations in 9 variables.
Pursuing the same calculations as previously outlined,
one can show that there are exactly 2 solutions, corre-
sponding to

 

x1 � x2 � x3 � x4 � x5 � x9 � 0; x6 � �6;

x7 � �1; x8 � �2; (A10)

and

 

x1 � x2 � x3 � x4 � 0; x5 �
48
5 ; x6 � �

54
5 ;

x7 � �1; x8 � �2; x9 � �
12
5 : (A11)

Using the nine U(1) directions listed at the beginning of
this section, we recover exactly the 2 hypercharge direc-
tions which we have already constructed, thereby proving
that these are the most general solutions.

APPENDIX B: WHERE DID WE LOSE THE
INTERESTING MODELS?

Consider the model given at the beginning of
Appendix A. We will now address the question to what
extent the general hypercharge directions given in
Eqs. (A4) and (A9) are connected to the presence of an
underlying SO(10) symmetry. More specifically, we will
explain why this model was not found by the analysis
presented in Ref. [1], despite the fact that its standard
model gauge group is contained in SO(10) and there exists
a hypercharge direction such that its spectrum is vectorlike
(see Appendix A).

For the following discussion, only the first E8 factor is
relevant. The shift V6 breaks

 E 8!
V6

SO�10� � SU�2� � SU�2� � U�1�; (B1)

or in terms of Dynkin diagrams:

The Wilson lines W3 and W2 break SO(10) down to the
standard model:

 SO �10�!
W3

SU�4��SU�2��U�1�!
W2

SU�3��SU�2��U�1�2

(B2)

Again, this is most conveniently visualized in terms of
the associated Dynkin diagram:

This clearly shows that the standard model gauge group
is indeed a subset of SO(10). Nevertheless, perusing the list
of 127 vectorlike models given in Ref. [1], we find that this
model is missing.
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To see why we missed this model, we adopt the follow-
ing strategy. First, we construct the standard SO(10) hy-
percharge as we did in Ref. [1]. Then, we compare this
hypercharge to the general one, given in Appendix A,
Eqs. (A4) and (A9).

Standard SO(10) hypercharge is a linear combination of
the Cartan generators that lies in SU(5) and commutes with
the SU�3� � SU�2� step operators. To find this hypercharge
direction, we complete the standard model in all possible
ways to an SU(5) symmetry. Up to a multiplicative factor,
hypercharge will then be given by the dual of the root
which completes the diagram. Having SO(10) in mind,
we have a default choice:

The hypercharge direction is then given by

 U �1�SO�10� �
5
3�
� �

X
j

5
3�A
�1
SU�5��2j�j

� 1
3�3�� 6�� 4�1 � 2�2�; (B3)

or if we substitute for the SU(5) roots,

 YGG � � 1
2

1
2

1
2

1
2

1
2 � 5

6 � 5
6

5
6 0 0 0 0 0 0 0 0

� �
: (B4)

Compare this result to the hypercharge direction found in Eq. (A4) in Appendix A as the result of a general search:

 Ygeneral � � 1
2

1
2

1
2

1
2

1
2 � 5

6 � 5
6

5
6 0 �2 0 0 0 0 0 2

� �
(B5)

Remarkably, the two hypercharge directions differ only in entries in the second E8. To assess what this means for the
phenomenology of the model at hand, we recalculate the spectra, where in one case, we have chosen hypercharge to be
YGG,

3� �3; 2�1=3 4� ��3; 1��4=3 3� ��3; 1�2=3 9� �1; 2��1 2� �1; 1�2 103� �1; 1�0

2� �3; 1��2=3 4� �3; 1�0 5� �1; 2�1 6� �1; 1�4=3

5� ��3; 1�0 10� �1; 2��1=3 6� �1; 1��4=3

5� �1; 2�1=3 37� �1; 1�2=3

62� �1; 1��2=3

and in the other case, we have chosen hypercharge to be Ygeneral:

3� �3; 2��1=3 5� ��3; 1��4=3 7� ��3; 1�2=3 16� �1; 2��1 45� �1; 1�2 129� �1; 1�0

2� �3; 1��4=3 4� �3; 1��2=3 13� �1; 2�1 42� �1; 1��2

In the case where hypercharge is purely SO(10), the
spectrum fails to contain three generations of quarks and
leptons and is not vectorlike either.

Looking at the top row of the first spectrum, it catches
one’s eye that the particle content corresponds to that of 2
complete 16-plets of SO(10), so our best guess is that 2
families still come from 16-plets localized at the first
twisted sector and that the extra component of Ygeneral

does not affect these states at all. Indeed, this is easily
verified by switching off the Wilson lines and evaluating
Ygeneral � YGG on these 16-plets, which gives zero. The
same difference is nonzero on more than half of the other
states. In particular, it is nonzero on the right-handed
electron of the third family, as a comparison of the two
spectra shows. As for the remaining states of the third
family, there exist standard model representations with

the right quantum numbers on which this difference
vanishes.

Flipped SU(5)

Consider the discussion preceding Eq. (B3). There is a
second, not-so-obvious choice to complete the standard
model Dynkin diagram to an SU(5) symmetry and subse-
quently to obtain a possible hypercharge direction:

After a short calculation analogous to the one following
Eq. (B3), we obtain:

 Yflipped �
1
2 � 1

2 � 1
2 � 1

2
3
2

1
6

1
6 � 1

6 0 0 0 0 0 0 0 0
� �

(B6)
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This hypercharge direction corresponds to flipped
SU(5), as can easily be shown by evaluating it on the 16
of SO(10). In comparison to YGG, the roles of �u, �d and of �e,
�� are interchanged.

APPENDIX C: GRAND UNIFICATION FOR
DUMMIES

In this section, we give some useful background infor-
mation on grand unification. The branching rules and U(1)
charges that we present in Table III may either be looked
up in some standard reference on group theory [14], or
calculated by hand using explicit expressions for the sim-
ple roots in some standard basis, see e.g. Appendix 5A of
Ref. [38].

1. Georgi-Glashow SU(5)

The matter content of the standard model fits in 3
irreducible representations,

 10 ! �3; 2�1=3 � ��3; 1��4=3 � �1; 1�2;

�5! ��3; 1�2=3 � �1; 2��1; 1! �1; 1�0;
(C1)

where we have indicated the charges under U�1�Y as sub-
scripts. This hypercharge direction may be calculated by
considering the Dynkin diagram associated with the sym-
metry breakdown:

U�1�Y is the dual of the root that is projected out.
Keeping in mind that the dual roots are given in terms of
the simple roots by the quadratic form matrix, which is the
inverse of the Cartan matrix, we immediately obtain:

 YGG �
5
3�
�
3 �

5
3

X4

j�1

�A�1
SU�5��3j�j

� 1
3�2�1 � 4�2 � 6�3 � 3�4� (C2)

The U�1�Y charges of the irreducible representations are
calculated by taking the scalar product of the respective
highest weight with YGG. We summarize the results in the
4th column of Table III.

2. Pati-Salam

The standard model particle content fits in one 16 of
SO(10). Under SO�10� ! SU�4�c � SU�2�L � SU�2�R, we
have

 16 ! �4; 2; 1� � ��4; 1; 2�: (C3)

For more clarity, we break the Pati-Salam symmetry to
that of the standard model in two steps. In the first step, we
have

 SU �4�c � SU�2�L � SU�2�R ! SU�3�c � U�1�B-L

� SU�2�L � SU�2�R

(C4)

 �4; 2; 1� ! �3; 2; 1�1=3 � �1; 2; 1��1;

��4; 1; 2� ! ��3; 1; 2��1=3 � �1; 1; 2�1;
(C5)

where the subscript denotes the U�1�B-L charge. In the
second step, we have

 SU �3�c � U�1�B-L � SU�2�L � SU�2�R

! SU�3�c � U�1�B-L � SU�2�L � U�1�R (C6)

where the first subscript denotes the U�1�B-L charge as
above and the second one is the U�1�R charge.
Hypercharge is then given as the linear combination

 U �1�Y � U�1�B-L � U�1�R: (C7)

Again, this is most conveniently visualized in terms of
Dynkin diagrams:

We can easily calculate the directions corresponding to
the two Abelian factors:

 YB-L �
4
3�
�
0 �

4
3

X
j�1;2;0

�A�1
SU�4��0j�j �

1
3��1 � 2�2 � 3�0�

(C8)

 YR � ��4 �
X
j�4

�A�1
SU�2��4j�j �

1
2�4 (C9)

Incidentally, we should remark that

 YGG � YB-L � YR; (C10)

as was to be expected.

3. Flipped SU(5)

Under SO�10� ! SU�5� � U�1�X we have

 16 ! 10�1 � �53 � 1�5: (C11)

TABLE III. Branching rules and U(1) charges for the matter
multiplets in the standard model.

su(5) irrepSM irrepU�1�XU�1�YU�1�B�LU�1�RU�1�fl flippedGG

10 �3; 2� �1 1=3 1=3 0 1=3 Q Q
��3; 1� �1 �4=3 �1=3 �1 2=3 �d �u
�1; 1� �1 2 1 1 0 �� �e

�5 ��3; 1� 3 2=3 �1=3 1 �4=3 �u �d
�1; 2� 3 �1 �1 0 �1 L L

1 �1; 1� �5 0 1 �1 2 �e ��
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[This also defines what we mean by U�1�X.] Breaking
the SU(5) symmetry to that of the standard model, we
obtain

 10 ! �3; 2��1;1=3 � ��3; 1��1;�4=3 � �1; 1��1;2;

�5! ��3; 1�3;2=3 � �1; 2�3;�1; 1! �1; 1��5;0;
(C12)

where the first and second subscript denotes the U�1�X and
U�1�Y charge, respectively. In terms of Dynkin diagrams,
this reads:

The direction corresponding to U�1�X is given by:

 Y X � 4��5 � 4
X5

j�1

�A�1
SO�10��5j�j

� �2�1 � 4�2 � 6�3 � 3�4 � 5�5� (C13)

In flipped SU(5), hypercharge is a linear combination of
this direction and B-L, namely:

 Y fl � �
1
2YX �

1
2YB-L (C14)

Calculating the hypercharge assignments for the ele-
mentary particles, it turns out that in comparison to
Georgi-Glashow SU(5), the roles of �u, �d and of �e, �� are
interchanged, cf. Table III.

APPENDIX D: GEORGI-GLASHOW
HYPERCHARGE IN DISGUISE

Consider the following two models below, to which we
will refer as

First Model

 V6 �
1
3

1
2 � 1

3 � 1
6 � 1

6 � 1
6 � 1

6 � 1
6

1
12

1
4

1
12 � 1

12 � 1
12 � 1

12
11
12

11
12

� �
W3 � � 1

6
1
2

1
6 � 1

6 � 1
6

1
6

7
6

7
6

7
6 � 5

6 � 5
6 � 5

6 � 5
6 � 5

6 � 25
6 � 13

6

� �
W2 � � 3

4 � 1
4 � 1

4 � 1
4 � 1

4
1
4

5
4

5
4

3
4

1
4 � 1

4 � 3
4 � 3

4 � 3
4

25
4

29
4

� �
Second Model

 V6 �
2
3

1
3

1
6

1
6 0 0 0 0 � 1

6
1
2

1
2

1
2

1
2

1
2 � 1

2
1
2

� �
W3 �

1
6 � 1

6
1
6

1
6 � 1

2
1
6

1
6 � 1

6 � 1
3

2
3

2
3

1
3

1
3

1
3

1
3 � 1

3

� �
W2 � � 3

4
1
4

3
4 � 3

4 � 1
4 � 1

4 � 1
4

1
4 � 1

4 � 1
4 � 1

4 � 3
4 � 3

4 � 3
4

1
4 � 1

4

� �
for the sake of brevity. The gauge group in both cases is

 SU �3� � SU�2� � SU�2� � U�1�4 � SU�7�0 � U�1�02; (D1)

and their spectra coincide:

3� �3; 2; 1; 1� 3� ��3; 1; 2; 1� 2� �1; 2; 2; 1� 4� �1; 1; 1; 7� 34� �1; 1; 1; 1�

12� �3; 1; 1; 1� 13� �1; 2; 1; 1� 4� �1; 1; 1; �7�
12� ��3; 1; 1; 1� 17� �1; 1; 2; 1�

In both cases, the shift V6 breaks

 E 8 ! SO�10� � SU�2� � SU�2�: (D2)

For the first model, the Wilson lines break to:

The underlining indicates the breaking of SO(10).

In contrast, in the second model, the Wilson lines break
to:

In both cases, the resulting gauge group and the spectra
are the same. The difference lies in the way how the SO(10)
breaks. For the first model, hypercharge that lies in SO(10)
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(see Appendix C) gives a vectorlike spectrum, whereas for
the second model, we cannot even attempt to construct this
hypercharge direction, since the intermediate SO(10) is
seemingly missing. Our general ansatz will yield a hyper-
charge direction in either case, but for the second model,
the connection between the underlying SO(10) and hyper-
charge is disguised. This complication is not relevant for
the mini-landscape search, since there, we first constructed
the hypercharge direction and then identified the models
with identical non-Abelian spectra.

APPENDIX E: GEORGI-GLASHOW UNIFICATION
WITHOUT SU(5)

Consider the following model with shift and Wilson
lines

 V6 �
2
3

1
3

1
6

1
6 0 0 0 0 1

3 0 0 0 0 0 0 0
� �

W3 �
1
6

1
6 � 1

6 � 1
2

1
2

1
6

1
6

1
6 � 2

3
1
3

1
3 0 0 0 0 0

� �
W2 � � 1

4
1
4

1
4

1
4

1
4 � 1

4 � 1
4 � 1

4 0 � 1
2

1
2 0 0 0 0 0

� �
and hypercharge

 Y � 1
2 � 1

2 � 1
2 � 1

2
3
2 � 1

6 � 1
6 � 1

6 0 0 0 0 0 0 0 0
� �

:

The shift and Wilson lines break

 E 8 � E08!
V

SO�10� � SU�2� � SU�2� � SO�14�0!
W3

SU�4�

� SO�10�0 � SU�2�0!
W2

SU�3� � SO�10�0 � SU�2�0:

The gauge groups for the color and weak interactions are
located in the first and second E8, respectively, whereas
hypercharge lies fully in the first one. As such, the matter
representations like �3; 2� cannot originate from the 16 of
SO(10), since SU�3� � SU�2��SO�10� in the first place.

Nevertheless, evaluating Y on the �16; 1; 1; 1� which
lives at the origin (for W3 � W2 � 0), we recover the
standard charges. A quick calculation shows that Y lies
in SO(10), so it corresponds to either regular or flipped
SU(5) for some choice of simple roots of SO(10).

It is still true that the 16 is unaffected by the orbifold
projections, so the massless states which we expect to

survive are

 16 ! �3; 1�1=3 � �3; 1�1=3 � ��3; 1��4=3 � ��3; 1�2=3

� �1; 1��1 � �1; 1��1 � �1; 1�2 � �1; 1�0

at the origin in the 5th twisted sector, and a quick check
shows that this is indeed true. The big difference is that
only �u, �d, �e and �� (see Table I) live in this 16 at the origin,
and the other representations in the multiplet have an
interpretation as exotic particles. Since there is no Wilson
line along the ~e6 in the torus, the spectrum is degenerate
along this direction.

In Fig. 7, we present the localization of the standard
model fields. There are 2� �3; 2�1=3 in the 5th twisted
sector living at and , respectively. Their highest
weights are

 Q� �
1
12 � 1

12
1
12

1
12

1
4

3
4 � 1

4 � 1
4 � 1

3
1
2 � 1

2 0 0 0 0 0
� �

;

Q� �
1
12 � 1

12
1
12

1
12

1
4

3
4 � 1

4 � 1
4 � 1

3
1
2 � 1

2 0 0 0 0 0
� �

:

These states are not part of a 16 or any other SO�10� irreducible representation, as can be seen by calculating the Dynkin
labels w.r.t. the simple roots. Nevertheless, the scalar product with Y gives the correct hypercharge for a left-handed quark
doublet in both cases.

FIG. 7 (color online). Localization of the matter fields in the
3rd torus.
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