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I. INTRODUCTION AND SUMMARY

One of the most interesting outcomes of the AdS/CFT
correspondence [1–4] is the ability to study quantitatively
the deconfined phase of 3� 1 dimensional gauge theories,
something which cannot be done analytically for QCD
(except at temperatures much higher than the QCD scale).
For strongly coupled large N gauge theories which have (at
zero temperature) a dual description given by a weakly
curved string background, the deconfined phase has a dual
description in terms of a black hole (black brane) back-
ground which can be reliably studied in the supergravity
approximation. Of course, theories with a weakly curved
dual are rather different from QCD in various ways, but one
can still hope that their deconfined phase will not behave
that differently from that of QCD, and in some cases these
theories are even continuously connected to (largeN) QCD
by varying a dimensionless parameter, and one could hope
that the dependence on this parameter is small (at least at
temperatures of order the deconfinement temperature).

The simplest theory to study in this way, on which most
of the research thus far has focused, is the strong coupling
limit of N � 4 supersymmetric Yang-Mills theory, whose
deconfined phase has a very simple description as a black
hole in anti-de Sitter space [5]. This theory does not con-
fine at low temperatures, but its deconfined phase still
seems to exhibit many similarities to that of QCD.
Obviously, it would be nice to have additional examples
of 3� 1 dimensional deconfined theories which can be
studied quantitatively by using their gravity dual, and, in
particular, examples of deconfined phases of confining

theories, in which one could study the dependence on the
temperature compared to the deconfinement scale.1 So far
there is only one known example of such a deconfined
background, which is that corresponding to 4� 1 dimen-
sional supersymmetric Yang-Mills theory (with a specific
UV completion) compactified on a circle with antiperiodic
boundary conditions for fermions [5,6]. It would be nice to
have additional examples, especially since in the example
above the physics at the deconfinement scale is really five
dimensional rather than four dimensional.

In this paper we study the deconfined phase of the
confining ‘‘cascading gauge theories’’ constructed by
Klebanov and collaborators [7–9]. The equations deter-
mining the corresponding black hole solutions are quite
complicated, and have no known analytic solutions. At
very high temperatures it is possible to find analytic solu-
tions in an expansion in inverse powers of the logarithm of
the temperature, and the leading order solution in this
expansion was found in [10]. This solution shows that at
high temperatures the number of degrees of freedom in the
theory grows as the square of the logarithm of the tem-
perature [10–12]. In this paper we numerically solve the
equations for a wide range of values of the temperature, in
the supergravity approximation, and use the solutions to
analyze the thermodynamics of the deconfined phase.2

At low temperatures the ‘‘cascading gauge theories’’
spontaneously break a discrete chiral symmetry [and also
a continuous U�1�B symmetry] [9,14–16]. At high tem-
peratures one expects these symmetries to be restored, but
a priori it is not obvious whether there is a single phase
transition from a low-temperature phase with confinement
and chiral symmetry breaking to a high-temperature phase
with no confinement and chiral symmetry restored, or*Ofer.Aharony@weizmann.ac.il
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1Note that in any large N gauge theory with a weakly curved

string theory dual the deconfinement transition is a first order
phase transition. This is similar to large N QCD, but it is
different from QCD itself, so one should be careful when
comparing the behavior of such theories near the phase transition
to that of QCD.

2Similar numerical solutions were studied in [13], but we do
not understand the parametrization used there to analyze the
solutions. Presumably, our solutions should be identical to (some
of) the solutions of [13], but our parametrization allows for a
direct computation of the thermodynamical properties of the
solutions.
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whether additional phases also exist. In this paper we only
study deconfined phases in which the chiral symmetry is
restored; we plan to study the possibility of having other
phases in the future [17]. In the classical supergravity
approximation the free energy of the low temperature
confined phase vanishes (since it only arises at one-loop),
and thus the phase transition to a black hole background
occurs at the lowest temperature for which the free energy
of a black hole background starts becoming negative.
Assuming that this transition goes directly to the chirally
symmetric black holes that we construct, we find that there
is a first order deconfinement transition at a temperature
Tcritical � 0:614 111�3��, according to a specific definition
of the strong coupling scale � that we describe in Sec. V.3

The black hole backgrounds continue to exist also at lower
temperatures, but they have positive free energies so they
no longer dominate the thermodynamics. Presumably, as
the temperature is lowered further, the black hole back-
grounds eventually become singular; in this paper we only
compute the numerical solutions until a temperature
slightly below the deconfinement temperature, so we do
not see this.

There are several interesting directions for further study.
We are currently working on checking whether the solu-
tions we find are stable to deformations which break the
chiral symmetry, in order to see if there are signs of a
deconfined nonchirally symmetric phase appearing at in-
termediate temperatures [17]. The black hole solutions that
we find (numerically) can be used for a detailed analysis
of the properties of the deconfined phase (for instance its
hydrodynamical properties [18] or jet quenching [19,20]);
it would be interesting to understand the similarities and
differences between these properties and those of decon-
fined conformal theories. It is possible to add flavors in
various ways to the ‘‘cascading gauge theories’’ [21–27],
and it would be interesting to study the flavor physics in the
deconfined phase, and whether there are any phase tran-
sitions associated with the flavor sector.

Our study is purely in the supergravity approximation; it
would be interesting to study the corrections to this ap-
proximation, in particular, those coming from string theory
corrections to the supergravity action. The cascading gauge
theories have a continuous dimensionless parameter such
that in one extreme of this parameter supergravity is a good
approximation, while in the other extreme they reduce to a
standard N � 1 supersymmetric Yang-Mills (SYM) the-
ory. At zero temperature supersymmetry tells us that the
dependence on this parameter is smooth. However, it is not
obvious if the behavior of the deconfined phase is smooth

as this parameter is changed; in fact, it seems plausible [28]
that as in other similar cases [6] there would be a phase
transition in this phase, since the geometry in the super-
gravity regime does not have any cycles shrinking at the
horizon (except for the thermal S1), while in the SYM
regime one expects the transition to be independent of
the Kałuza-Klein (KK) modes so a two-cycle should still
shrink (as it does in the confined phase). Of course, even in
the absence of such a phase transition, the behavior of the
theory could be modified as the dimensionless parameter is
changed, so our analysis does not teach us directly about
the phase structure of the large N N � 1 SYM theory.

This paper is organized as follows. In Sec. II we describe
our ansatz for the black hole solutions and the equations of
motion that it leads to. In Sec. III we describe the boundary
conditions for these equations. In Sec. IV we analyze the
meaning of the parameters appearing in these boundary
conditions, and show how to translate them into physical
quantities such as the temperature and free energy. In
Sec. V we describe our numerical procedure and present
the ‘‘bare’’ numerical results. In Sec. VI we translate these
results into physical properties, and present the results for
physical quantities such as the free energy and the expec-
tation values of various operators as a function of the
temperature. The Appendix contains a perturbative analy-
sis of the very high temperature solutions; this is useful
both in order to make sure that our analysis is valid by
verifying that it is consistent (at least at very high tempera-
tures) with the first law of thermodynamics, and in order to
test our numerical solutions at very high temperatures by
testing their agreement with the perturbative expansion.

II. EQUATIONS FOR THE CASCADING BLACK
HOLE

In this paper we compute the metrics corresponding to
the finite temperature behavior of the ‘‘cascading gauge
theory’’ found in [7–9],4 which may be thought of as a
specific SU�K� � SU�K �M� N � 1 supersymmetric
gauge theory, with a number of colors K which runs
logarithmically with the energy scale [9,11,12,30,31].
The ‘‘cascading gauge theory’’ has a single dimensionless
parameter (in addition to the integer M), which in the
gravitational description of this theory can be taken to be
gsM where gs is the string coupling (which is constant in
the zero temperature solution) and M is the Ramond-
Ramond (RR) 3-form flux (corresponding to the number
of fractional branes). When this parameter is large, the
gravitational description of the background is valid at all
scales. On the other hand, when it is small, the theory at
low energies reduces exactly to the N � 1 SYM theory,
but the gravity dual is highly curved. We will only analyze
the theory in the regime of large gsM, where the gravita-

3It is easy to translate this definition to other definitions of the
strong coupling scale, such as the mass gap. Note that, as in all
theories with a gravity approximation, the square root of the
confining string tension is not a useful measure of the strong
coupling scale, since it must be much larger than all other
measures of this scale for gravity to be a good approximation. 4See [29] for a recent review of this theory.
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tional approximation is good and all radii of curvature are
large compared to the string scale.

As in any other confining background, the low tempera-
ture behavior of this theory is governed by a gas of had-
rons; the gravity dual of this description is simply given by
a thermal identification (t � t� 1=T) of the zero tempera-
ture solution found in [9]. As the temperature is increased
one expects the theory to deconfine; in the gravitational
dual, deconfined phases are described by black holes
(whose horizon fills all of space, so they are really black
branes). Our goal in this paper will be to compute the
gravitational backgrounds corresponding to the deconfined
phase of the cascading gauge theory. Note that the low
temperature phase is stable all the way up to the Hagedorn
temperature of the confining theory (related to the confin-
ing string tension); when the gravitational approximation is
valid, this temperature is very large compared to the char-
acteristic mass scale of the gravitational background
(which determines the mass of the low-lying hadrons).
Thus, as in all other cases of confining backgrounds with
gravity duals, we expect the deconfinement transition to
occur at a temperature which is much smaller than the
Hagedorn temperature, which means that it should be a
first order phase transition.

The cascading gauge theory has a Z2M chiral symmetry
[9,15] which is spontaneously broken to Z2 at low tem-
peratures (by gaugino condensation in the limit where the
theory is a pure SYM theory), and it has a U�1�B symmetry
which is also spontaneously broken [14,16]. At high
enough temperatures we expect these symmetries to be
restored [11,32]; this expectation is confirmed by the
analysis of the asymptotically high temperature black
hole solutions in [10]. A priori it is not obvious if the
deconfinement transition happens together with the global
symmetry restoration transitions, or if the transitions are
separate. In this paper we will only look for solutions
which preserve the chiral symmetry and the U�1�B sym-
metry; the stability of these solutions with respect to chiral-
symmetry-breaking deformations will be analyzed in [17].
We also assume that the solutions preserve the SU�2� �
SU�2� global symmetry of the theory, which is preserved
also at low temperatures so it is reasonable to assume that it
is preserved at all temperatures.

The form of the gravitational background of the cascad-
ing gauge theory at large radial variables (close to the
boundary) was found in [8] and is known as the
Klebanov-Tseytlin (KT) solution; this form preserves the
full global symmetry. The solution at any temperature is
expected to asymptote to this background near the bound-
ary (the ‘‘UV region’’). In the zero temperature solution [9]
the Z2M and U�1�B symmetries are broken far from the
boundary (in the ‘‘IR region’’), but we will look for solu-
tions where they are preserved. Recall that the solution for
M � 0 (where the theory does not cascade) is [33] AdS5 �
T1;1, and that the solution of [8] has a similar form but with

the radii of curvature (and the flux) varying logarithmically
in the radial coordinate. Since we are looking for solutions
that preserve the full global symmetry, we can perform a
Kałuza-Klein reduction on the T1;1, and leave only the
fields which are singlets of the global symmetry group.
In general there are 5 such fields5; the five dimensional
graviton and 4 scalar fields. In the M � 0 limit the scalar
fields have scaling dimensions � � 4; 4; 6; 8. The scalar
fields are various linear combinations of the dilaton, the
overall volume of the T1;1, the relative size of the circle in
T1;1 (thinking of T1;1 as a circle fibration over two 2-
spheres), and one mode coming from the RR fields.

We are looking for black hole solutions that preserve
spatial rotational and translational invariance, as well as
time translation invariance, so we can always choose a
form of the five dimensional metric where only 3 compo-
nents are not vanishing—G00, Gii (i � 1; 2; 3) and Grr
(where r is the radial position). We can use the freedom
of reparametrizing the radial coordinate to eliminate one of
these degrees of freedom—we will choose our radial
coordinate x to be defined by

 

G00

Gii
� ��1� x�2 (2.1)

(with no summation over i). This choice is convenient
since at the boundary we expect the metric to be Lorentz
invariant so x! 0, while at the horizon G00 vanishes so
x! 1; the range of the radial coordinate in our parametri-
zation is thus x 2 �0; 1�. Note that in the conformal M � 0
case there is a simple form of the black hole solution in this
parametrization, which is given by
 

ds2
10 � �

2�2x� x2��1=2���1� x�2dt2� dx2
1�dx

2
2�dx

2
3�

�
dx2

4�2x� x2�2
��dT1;1�2; (2.2)

where �dT1;1�2 is the metric on T1;1, and the constant � is
related to the temperature T as follows:

 � � �T: (2.3)

Motivated by the form of (2.2), we write down the most
general ansatz for a black hole metric preserving all the
symmetries as6

 

ds2
10�h

�1=2�2x�x2��1=2���1�x�2dt2�dx2
1�dx

2
2�dx

2
3�

�Gxx�dx�
2�h1=2

�
f2�e

2
 ��f3

X2

a�1

�e2
�a
�e2

�a
�

�
;

(2.4)

5We only consider the fields which are turned on in the
solutions that we are interested in; other fields, such as the
type IIB axion, are consistently set to zero.

6The frames fe�a ; e�a
g are defined as in [30], such that the

metric on a unit size T1;1 is given by �e2
 � �

P2
a�1�e

2
�a
� e2

�a
�.
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where h, f2, and f3 are some functions of the radial
coordinate x. There is also a dilaton g�x�, and form fields
given by
 

F3 � Pe ^ �e�1
^ e�1

� e�2
^ e�2

�;

B2 �
K
2P
�e�1
^ e�1

� e�2
^ e�2

�;

F5 � F 5 � ?F 5;

F 5 � �Ke ^ e�1
^ e�1

^ e�2
^ e�2

;

(2.5)

where K is a function of the radial coordinate x. The
constant P appearing in (2.5) is a constant times the quan-
tized flux M; we will write down the precise constant in
terms of the five dimensional Newton’s constant below. We
will find it simpler to work in terms of P rather thanM, and
we will only go back to using the integer fluxM in the final
section. After we gauge-fixed the radial coordinate by
(2.1), we have a constraint equation coming from the
equation of motion of this variable; we can use this equa-
tion to solve for Gxx, which is given by

 

Gxx �

���
h
p
f2

3

2�x� 1�P2g2�2� x�2x2�
�12P2f2

3g
2f2h

2�1� x� � f2x
2�2P2f2

3g
2h02 � 12P2g2h2f023 � K

02hg� 2P2h2f2
3g
02�

� �x� 1��2� x�2 � 4xP2f3g
2hf2�2� x��x

2 � 2x� 2��h0f3 � 4f03h�

� 4xP2f3�2� x�g
2h2�2xf03�1� x��2� x� � �x

2 � 2x� 2�f3�f
0
2�; (2.6)

with

 � � K2 � 8h2f2
3f2�f2 � 6f3� � 2hf2

3P
2g: (2.7)

All in all, we have 5 scalar functions of x that we need to solve for: h, f2, f3, g, and K. We can derive the equations of
motion for these fields, in the supergravity approximation, either directly from the ten dimensional type IIB supergravity
action, or by first reducing this action to five dimensions and then deriving the equations of motion. The equations that we
find take the following rather complicated form:

 

0 � h00 � �8hf2�f2 � 6f3� � gP
2	
f2

3h
02

�
� �8xh2f2

3f2�f2 � 6f3��x� 2� � K2�3x2 � 6x� 4� � 4hf2
3P

2g�1� x�2	

�
h0

x�1� x��2� x��
� 6�K2 � hf2

3P
2g�

hf023
f2

3�
� �8h2f2

3f2�f2 � 6f3� � 3K2 � 4hf2
3P

2g	
K02

4gf2
3P

2�

� �K2 � hf2
3P

2g�
hg02

g2�
� 2h�K2 � hf2

3P
2g��2xf03�1� x��2� x� � �x

2 � 2x� 2�f3	
f02

f3f2x�1� x��2� x��

� 8�x2 � 2x� 2��K2 � hf2
3P

2g�
hf03

x�1� x��2� x�f3�
� 2�7hf2

3P
2g� 16h2f2

3f2�f2 � 6f3� � 5K2	
h

�2� x�2x2�
;

(2.8)

 

0 � f002 �
f022
f2
� �4xf03f3h�1� x��2� x��gP2 � 8f2

2h� � 8f2h2f2
3f6xf3�x� 2� � f2�4� 2x� x2�g � xK2�2� x�

� 4hf2
3P

2g�1� x�2	
f02

�1� x��2� x�x�
� f2

3�gP
2 � 8f2

2h�
f2h

02

h�
� 6h�gP2 � 8f2

2h�
f2f

02
3

�

� �K2 � 24f2
3h

2f2�f2 � 2f3��
f2K

02

4hf2
3P

2g�
� hf2

3�gP
2 � 8f2

2h�
f2g

02

g2�
� 2f2

3�x
2 � 2x� 2��gP2 � 8f2

2h�

�
f2h

0

�2� x��1� x�x�
� 8hf3�x2 � 2x� 2��gP2 � 8f2

2h�
f2f

0
3

�2� x��1� x�x�

� 2�16f2
3h

2f2�2f2 � 3f3� � K2 � hf2
3P

2g	
f2

�x� 2�2x2�
; (2.9)
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0 � f003 � �2P
2ghf2

3 � 8f2
3f2h2�4f2 � 15f3� � K2	

f023
f3�
� 4�f2 � 3f3�

f3
3f2h

02

�
� 2�f2 � 3f3�

f3hf2K
02

P2g�

� 4�f2 � 3f3�
f3

3h
2f2g02

g2�
� 8�x2 � 2x� 2��f2 � 3f3�

hf3
3f2

�2� x��1� x�x�
h0

� 8�f2 � 3f3��2xf03�1� x��2� x� � �x
2 � 2x� 2�f3	

h2f2
3f
0
2

�2� x��1� x�x�
� f8f2f2

3��5x
2 � 10x� 8�f2

� 6f3�3x
2 � 6x� 4�	h2 � 2xP2gf2

3�x� 2�h� xK2�x� 2�g
f03

�1� x�x�2� x��

� �4P2ghf2
3 � 2K2 � 8f2

3f2�3f3 � f2�h
2	

f3

x2�2� x�2�
; (2.10)

 

0 � K00 �
KK02

�
� �hgf3 � 2hgf03�1� x� � hf3g0�1� x� � gf3h0�1� x�	

K0

ghf3�x� 1�
� 12P2 gKhf

02
3

�
� 2

gP2Kf2
3h
02

h�

� 2P2 Khf
2
3g
02

g�
� 4�2xf03�1� x��2� x� � �x

2 � 2x� 2�f3	
Kgf3P

2hf02
f2�1� x��2� x�x�

� 4P2gK�x2 � 2x� 2�
f2

3h
0

�2� x��1� x�x�
� 16�x2 � 2x� 2�

Kf3P2ghf03
�2� x��1� x�x�

� 12
f2

3hKP
2g

x2�2� x�2�
; (2.11)

 

0 � g00 �
g0

1� x
� �8h2f2

3f2�f2 � 6f3� � 3P2ghf2
3 � K

2	
g02

g�
� P2 f

2
3g

2h02

h�
� 6P2 hg

2f023
�

� �8h2f2
3f2�f2 � 6f3� � K2�

K02

4P2f2
3h�

� 2f2
3�x

2 � 2x� 2�P2 g2h0

�2� x��1� x�x�

� 2f3g2P2�2xf03�1� x��2� x� � �x
2 � 2x� 2�f3	

hf02
f2�2� x��1� x�x�

� 8�x2 � 2x� 2�P2 g2hf3f
0
3

�2� x��1� x�x�

� 6P2 g2f2
3h

x2�2� x�2�
: (2.12)

III. BOUNDARY CONDITIONS

In order to solve the equations of motion (2.8), (2.9), (2.10), (2.11), and (2.12) we need to specify boundary conditions,
both at the asymptotic boundary and at the horizon. We will require that asymptotically the solution should match onto the
Klebanov-Tseytlin solution, and that it should be regular near the horizon.

A. UV boundary conditions

Near the boundary x! 0 it is possible to solve the equations by a power series in x and ln�x�, whose leading term gives
the KT solution. This expansion takes the general form

 

h� h0;0�
P2g0

8a2
0

ln�x��
X1
n�1

Xn
k�1

hn;kxn=2lnk�x�; f2 � a0�
X1
n�1

Xn
k�1

an;kxn=2lnk�x�; f3 � a0�
X1
n�1

Xn
k�1

bn;kxn=2lnk�x�;

K� 4h0;0a
2
0�

1

2
P2g0�

1

2
P2g0 ln�x��

X1
n�1

Xn
k�1

Kn;kx
n=2lnk�x�; g� g0�

X1
n�1

Xn
k�1

gn;kx
n=2lnk�x�:

(3.1)

Most of the coefficients appearing in this expansion are not
independent; the independent coefficients correspond ei-
ther to parameters of the cascading gauge theory or to

vacuum expectation values (VEVs) of the operators dual
to the fields we are solving for. In the KT case there are 3
asymptotic parameters, which we choose to be g0, h0;0, and
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a0. g0 is related to the dimensionless parameter of the
cascading gauge theory, and we will see that one combi-
nation of the other parameters is related to the temperature
and the other is related to the dynamical scale of the
cascading theory. Naively we would expect to have 5
parameters related to VEVs, but in fact there is one relation
between the VEVs which is given by the conformal anom-
aly equation (see [30]), so we are left with four parameters
corresponding to VEVs, which we choose to be
fa2;0; g2;0; a3;0; a4;0g. Note that a VEV appearing at order
xn=2 corresponds to an operator which has dimension 2n in
the conformal limit of the theory.

Using these 7 parameters we can solve for the coeffi-
cients in (3.1) to any order we wish. It turns out that there
are no nonzero coefficients at order O�x1=2�. The nonzero
coefficients at the following orders are

(i) Order O�x�:

 h2;1 � �
3g0a2;0

28a3
0

P2;

h2;0 �

�
5g0a2;0

28a3
0

�
g0

16a2
0

�
g2;0

16a2
0

�
P2 �

3a2;0h0;0

7a0
;

(3.2)

 b2;0 � �
1

7
a2;0; g2;1 �

6g0a2;0

7a0
; (3.3)

 K2;1 � �
6g0a2;0

7a0
P2;

K2;0 �

�
g0a2;0

a0
�

1

4
g0 �

1

2
g2;0

�
P2 �

24

7
a0a2;0h0;0:

(3.4)

(ii) Order O�x3=2�:

 h3;0 �
g0a3;0

60a3
0

P2; b3;0 � �
1

4
a3;0;

K3;0 �
g0a3;0

6a0
P2:

(3.5)

(iii) Order O�x2�: using the notation � � 139P2g0 �
120h0;0a

2
0, we have

 h4;3 � �
3g0a

2
2;0

196a4
0

P2; a4;2 � �
12a2

2;0

245a0
;

b4;2 � �
12a2

2;0

245a0
;

(3.6)

 

h4;2 �
1

�

��
�

142 637g2
0a

2
2;0

3920a4
0

�
75g2

0a2;0

16a3
0

�
5g2

0

16a2
0

�
75g2

0a4;0

8a3
0

�
5g2

2;0

16a2
0

�
139g0a2;0g2;0

28a3
0

�
P4

�
1002g0h0;0a

2
2;0

49a2
0

P2 �
1440h2

0;0a
2
2;0

49

�
; (3.7)

 

h4;1 �
1

�

��
95g2

0

32a2
0

�
230 383g2

0a
2
2;0

23520a4
0

�
139g0a2;0g2;0

24a3
0

�
35g2

0a4;0

16a3
0

�
7g2

2;0

96a2
0

�
1423g2

0a2;0

224a3
0

�
P4

�

�
136 327g0h0;0a

2
2;0

245a2
0

�
5

2
g0h0;0 �

5h0;0g
2
2;0

g0
�

528h0;0a2;0g2;0

7a0
�

150g0a4;0h0;0

a0
�

570g0h0;0a2;0

7a0

�
P2

�
5160h2

0;0a
2
2;0

49
�

5760a2
0h

3
0;0a

2
2;0

49g0P2

�
; (3.8)

 

h4;0 �
1

�

��
31 973g2

0a
2
2;0

17640a4
0

�
11g2

0a4;0

4a3
0

�
201g2

0a2;0

56a3
0

�
219g2

0

64a2
0

�
139g0g2;0

32a2
0

�
695g0a2;0g2;0

252a3
0

�
335g2

2;0

288a2
0

�
P4

�

�
35g0a4;0h0;0

2a0
�

67g0h0;0a2;0

4a0
�

167g0h0;0

8
�

262 231g0h0;0a2
2;0

2940a2
0

�
28h0;0a2;0g2;0

a0
�

15

4
g2;0h0;0 �

5h0;0g2
2;0

3g0

�
P2

� 600a0a4;0h
2
0;0 �

2104a0h2
0;0a2;0g2;0

7g0
�

535 356h2
0;0a

2
2;0

245
�

2280a0a2;0h2
0;0

7
�

20a2
0g

2
2;0h

2
0;0

g2
0

�
49 536a2

0h
3
0;0a

2
2;0

49g0P
2

�
;

(3.9)
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 a4;1 �
1

�

��
�

12 463g0a2
2;0

70a0
�

15

2
g0a2;0 �

1

2
g0a0 � 15g0a4;0 �

a0g2
2;0

2g0

�
P2 �

26 688

245
a0h0;0a2

2;0 �
48a2

0h0;0a2;0g2;0

7g0

�
1152a3

0h
2
0;0a

2
2;0

49P2g0

�
; (3.10)

 b4;1 �
1

�

��
�

7177g0a2
2;0

490a0
�

15

2
g0a2;0 �

1

2
g0a0 � 15g0a4;0 �

a0g2
2;0

2g0

�
P2 �

7872a0h0;0a2
2;0

245
�

48a2
0h0;0a2;0g2;0

7g0

�
1152a3

0h
2
0;0a

2
2;0

49P2g0

�
; (3.11)

 b4;0 �
1

�

��
6366g0a

2
2;0

245a0
� 6g0a0 �

74

7
g0a2;0 � 41g0a4;0 �

6a0g
2
2;0

g0

�
P2 �

126 144a0h0;0a
2
2;0

245
�

576a2
0h0;0a2;0g2;0

7g0

� 120a2
0a4;0h0;0 �

480a2;0h0;0a2
0

7
�

13 824a3
0h

2
0;0a

2
2;0

49P2g0

�
; (3.12)

 g4;2 �
18g0a

2
2;0

49a2
0

; g4;1 �
36g0a

2
2;0

49a2
0

�
3g0a2;0

7a0
�

6a2;0g2;0

7a0
; (3.13)

 g4;0 �
1

�

��
214 407g2

0a
2
2;0

980a2
0

�
15g2

0

4
�

3243g2
0a2;0

28a0
�

225g2
0a4;0

2a0
�

263g2
2;0

4
�

139g2;0g0

2

�
P2 �

7200g0h0;0a
2
2;0

49

�
360a0h0;0a2;0g2;0

7
�

360a0g0h0;0a2;0

7
� 60a2

0g2;0h0;0 �
60a2

0g
2
2;0h0;0

g0
�

8640a2
0h

2
0;0a

2
2;0

49P2

�
; (3.14)

 K4;2 � �
12g0a2;0

35a2
0

P2; (3.15)

 

K4;1 �
1

�

��
�

4701g2
0a2;0

56a0
�

9719g2
0a

2
2;0

56a2
0

�
195a2

0a4;0

4a0
�

13g2
2;0

8
�

13g2
0

8
�

417g0a2;0g2;0

14a0

�
P4

�

�
360g0a0a2;0h0;0

7
�

51096g0h0;0a2
2;0

245
� 48a0h0;0a2;0g2;0

�
P2 �

12 384a2
2;0a

2
0h

2
0;0

49

�
; (3.16)

 

K4;0 �
1

�

��
�

189g2
0

16
�

123g2
0a2;0

56a0
�

97g2
0a4;0

4a0
�

23885g2
0a

2
2;0

392a2
0

�
139g0a2;0g2;0

14a0
�

139g0g2;0

4
�

57g2
2;0

4

�
P4

�

�
45g0a

2
0h0;0

2
�

283077g0h0;0a2
2;0

245
� 30a2

0g2;0h0;0� 390g0a0a4;0h0;0�
2973g0a0a2;0h0;0

7
�

240a0h0;0a2;0g2;0

7

�
P2

�
1440a3

0h
2
0;0a2;0g2;0

7g0
�

1440a3
0h

2
0;0a2;0

7
�

35712a2
2;0a

2
0h

2
0;0

49

�
: (3.17)

B. IR boundary conditions

Next, we discuss the behavior of solutions to (2.8), (2.9),
(2.10), (2.11), and (2.12) near the horizon, x! 1.
Introducing a near-horizon coordinate

 y � 1� x (3.18)

we find that in order for the solutions (2.4) to have a
nonsingular Schwarzschild horizon, the functions
fh; f2; f3; g; Kg must all be even functions of y with a

good Taylor series expansion around y � 0:
 

h �
X1
n�0

hhny2n; f2 �
X1
n�0

ahny2n; f3 �
X1
n�0

bhny2n;

K �
X1
n�0

khny
2n; g �

X1
n�0

ghny
2n: (3.19)

When one solves the equations of motion perturbatively in
y, one finds that the solutions are labeled by six indepen-
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dent parameters, which one can choose to be
fhh0 ; a

h
0 ; b

h
0 ; k

h
0 ; g

h
0 ; a

h
1g. Naively one might think that all

five equations of motion (2.8), (2.9), (2.10), (2.11), and
(2.12) would have one normalizable mode and one non-
normalizable mode near the horizon, so that requiring a
regular solution will set the coefficients of the non-
normalizable modes to zero and leave us with 5 parame-
ters. However, it turns out that for one combination of the
equations both modes are normalizable near the horizon,

leading to the extra parameter; this is related to a scaling
symmetry of the geometry (2.4) which we will discuss in
the next subsection, which implies that one combination of
parameters is not determined before choosing a scale.7

Using these 6 parameters we can solve for the coeffi-
cients in (3.19) to any order we wish. Using the notation
�h � 8hh0�a

h
0�

2 � P2gh0s, we have
(i) order O�y2�:

 

hh1 �
1

�h

�
8�ah0�

2�hh0�
2 �

�kh0�
2

2�bh0�
2
�
ah1�k

h
0�

2

�bh0�
2ah0
�

�
3

2
hh0g

h
0 �

hh0g
h
0a

h
1

ah0

�
P2

�
;

bh1 �
1

�h

�
1

2
gh0b

h
0P

2 � 2hh0b
h
0�3�a

h
0�

2 � 3ah0b
h
0 � 2ah0a

h
1 � 6ah1b

h
0�

�
;

kh1 �
1

�h

�
P2gh0k

h
0�a

h
0 � 2ah1�

ah0

�
;

gh1 �
1

�h

�
�gh0�

2P2�ah0 � 2ah1�

2ah0

�
:

(3.20)

(ii) order O�y4�:

 kh2 �
1

��h�2

�
�
gh0P

2kh0�a
h
0 � 2ah1�

2

2�ah0�
2

�
4hh0�a

h
0�

2 � 12hh0a
h
0b

h
0 � g

h
0P

2

��
; (3.21)

 gh2 �
1

��h�2

�
�
�gh0�

2P2�ah0 � 2ah1�
2

4�ah0�
2

�2hh0�a
h
0�

2 � 6hh0a
h
0b

h
0 � g

h
0P

2�

�
; (3.22)

 

hh2 �
1

��h�2

�
4hh0a

h
0

�bh0�
2
�16�bh0�

2�ah0�
3�hh0�

2 � ah0�k
h
0�

2 � 2ah1�k
h
0�

2� �
hh0�g

h
0�

2P4�3ah0 � 2ah1�

2ah0

�
gh0P

2

4�ah0�
2�bh0�

2
�78�hh0�

2�bh0�
2�ah0�

4 � 6�hh0�
2�ah0�

3�bh0�
3 � 8�hh0�

2�ah0�
2�ah1�

2�bh0�
2 � 24�hh0�

2�ah1�
2�bh0�

3ah0

� 24�hh0�
2�ah0�

3ah1�b
h
0�

2 � 24�hh0�
2�ah0�

2ah1�b
h
0�

3 � �kh0�
2�ah0�

2 � 4�kh0�
2�ah1�

2�

�
; (3.23)

 

ah2 �
1

��h�2

�
�12�hh0�

2a5
0 � 12bh0�h

h
0�

2�ah0�
4 � 16�hh0�

2�ah0�
4ah1 � 48�hh0�

2�ah0�
3ah1b

h
0 � 48�hh0�

2�ah0�
3�ah1�

2

� 48�hh0�
2�ah0�

2bh0�a
h
1�

2 �

�
7

2
�ah0�

3hh0g
h
0 �

3

2
bh0g

h
0h

h
0�a

h
0�

2 � 2hh0�a
h
0�

2ah1g
h
0 � 6hh0a

h
0a

h
1b

h
0g

h
0

� 10hh0a
h
0�a

h
1�

2gh0 � 6hh0�a
h
1�

2gh0b
h
0

�
P2 �

�
�

3

8
ah0�g

h
0�

2 �
1

2
�gh0�

2ah1

�
P4

�
; (3.24)

 

bh2 �
1

��h�2

�
�hh0�

2��45bh0�a
h
0�

3 � 16�ah0�
3ah1 � 45�bh0�

2�ah0�
2 � 132�ah0�

2ah1b
h
0 � 180�bh0�

2ah0a
h
1 � 84ah0b

h
0�a

h
1�

2

� 180�bh0�
2�ah1�

2�bh0 �
hh0g

h
0P

2bh0
4ah0

�6�ah0�
3 � 9bh0�a

h
0�

2 � 12ah0a
h
1b

h
0 � 8ah0�a

h
1�

2 � 12�ah1�
2bh0�

�
1

8
�gh0�

2bh0P
4

�
: (3.25)

7Such a scaling symmetry in geometries with translationally invariant horizons was also noticed in [34].
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IV. MAPPING OF PARAMETERS TO THE FIELD
THEORY

A. Translation to the parametrization of [30]

In this section we wish to understand the physical mean-
ing of the 3 parameters which we used in the previous
section to parametrize our theory (in the UV)—h0;0, a0,
and g0. As we mentioned, g0P is the dimensionless pa-
rameter of the cascading theory (which must be large for
the gravity approximation to be valid), while h0;0 and a0

are related to the scale of cascading theory and to the
temperature. Note that our ansatz (2.4) is invariant under
a scaling symmetry taking
 

�t; ~x� ! ��2�t; ~x�; h! ��2h;

f2 ! �f2; f3 ! �f3;
(4.1)

and leaving all other functions in our solution (as well as
the coordinate x) invariant. In terms of our asymptotic
parameters, this scaling transformation leaves h0;0a

2
0 in-

variant, meaning that this combination is a function of the
dimensionless parameter of our theory, which is the ratio
between the temperature and some scale � which charac-
terizes the cascading theory. We can choose this scale � to
be, say, the mass of the lightest glueball, or the square root
of the string tension. We will find it more convenient to use
a different definition of � which will be described below.

The parametrization (2.4) we used above for the solution
breaks down at zero temperature, since it assumes the
existence of a horizon. In order to understand which com-
binations of our parameters depend on the temperature and
which do not it is convenient to switch to a different
parametrization of the geometry, which is valid also at
low temperatures: an example of such a parametrization
is given by [30]
 

ds2
10 � ĥ�1=2��2��f̂2dt2 � dx2

1 � dx
2
2 � dx

2
3�

� ĥ1=2��2�d��2 � ĥ1=2f̂2�e2
 �

� ĥ1=2f̂3

X2

a�1

�e2
�a
� e2

�a
�; (4.2)

where fĥ; f̂2; f̂3; f̂g are functions of �. In this parametriza-
tion the supersymmetric zero temperature solution is char-
acterized by two parameters: the value of the string
coupling ĝ0, and the coefficient of the warp factor ĥ0;0;
in terms of these parameters we can write the asymptotic
solution for small � as
 

ĥ � ĥ0;0 �
1
2ĝ0P

2 ln���;

K̂ � 4ĥ0;0 �
1
2ĝ0P2 � 2ĝ0P2 ln���;

ĝ � ĝ0; f̂ � f̂2 � f̂3 � 1:

(4.3)

Note that the ansatz (4.2) is invariant under a joint rescaling
of the x; t coordinates and the � coordinate; such a rescal-

ing leads to a constant shift in ĥ0;0. Thus, we can think of
ĥ0;0 as determining the scale of the cascading theory; note
that this is independent of the temperature, since in the
parametrization (4.2) all IR effects (including the effects of
the temperature) are suppressed by powers of �.

We would like to match (4.3) with the asymptotic solu-
tion (3.1) used above. We require that as �! 0 (and
correspondingly x! 0) all the corresponding warp factors
in the metric should agree to leading order, i.e.,
 

lim
f�;xg!0

��2f̂���2ĥ����1=2

�1� x�2�2x� x2��1=2h�x��1=2
� 1;

lim
f�;xg!0

ĥ���1=2f̂2���

h�x�1=2f2�x�
� 1; lim

f�;xg!0

ĥ���1=2f̂3���

h�x�1=2f3�x�
� 1;

lim
f�;xg!0

ĝ���
g�x�

� 1; lim
f�;xg!0

K̂���
K�x�

� 1: (4.4)

This matching uniquely identifies

 x �
1

2
a2

0�
4 � higher orders; g0 � ĝ0;

h0;0a2
0 � ĥ0;0 �

1

8
P2ĝ0 ln

�
a2

0

2

�
:

(4.5)

B. Expectation values in the black hole background

In order to proceed, we would like to compute the
expectation values of various operators in the cascading
theories in terms of our parameters; in particular we want
to compute the expectation value of the stress-energy
tensor and of scalar operators which have dimension four
when P! 0. The expectation values of these operators
were evaluated in [30] using the coefficients appearing in
the expansion in powers of � of the functions appearing in
(4.2), up to order �4. In order to recycle those results we
need to translate our boundary expansion of the previous
section to the one of [30], namely, to write the leading
terms of the expansion of [30] in terms of our parameters
fh0;0; a0; g0; a2;0g, as we did for the zeroth order terms in
(4.5).8

When we do the matching we have some freedom, since
in the parametrization (4.2) there is a freedom of perform-
ing diffeomorphisms of � depending on higher powers of
�, that only affect the higher order terms in the expansion.
Of course this freedom does not affect the eventual expec-
tation values. We will fix this freedom by making an
explicit choice for x as a function of � to order O��8�,
given by

 x �
1

2
�4a2

0 � �
8a3

0

�
5

24
a0 �

1

14
a2;0

�
�O��10�: (4.6)

8Note that the parameters fa3;0; a4;0g only show up at orders
O��6� and O��8�, respectively, so they do not affect the expec-
tation values of these operators.
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We can now identify all the terms in the expansion of [30]
using our expansion of the previous section. Translating
(4.5) to the notation of [30], we find at order �0

 

p0 � g0; K0 � 4h0;0a
2
0 �

1

2
P2g0 �

1

2
P2g0 ln

�
a2

0

2

�
;

G�0�ij � �ij � diag��1; 1; 1; 1�: (4.7)

All the coefficients in [30] at order �2 vanish, while the
independent parameters appearing at order �4 are given by
(again in the notation of [30])

 a�4;1� � 0; a�4;2� � 0; a�4;3� � 0;

G�4;0�tt � a2
0; G�4;0�xixi � 0;

p�4;0� �
a2

0g2;0

2g0
�

3

7
a0a2;0 ln

�
a2

0

2

�
;

a�4;0� �
4

7
a0a2;0 �

1

3
a2

0; b�4;0� �
1

3
a2

0:

(4.8)

The one-point function of the stress energy tensor is
given by [30]
 

8�G5hTiji � �
1
2G
�0�
ij G

�4;0�a
a � 2G�4;0�ij

� 3
2G
�0�
ij �b

�4;0� � a�4;0��; (4.9)

where G5 is the five dimensional Newton’s constant ob-
tained after we do the dimensional reduction on T1;1 (see
[30]). In the normalizations that we are using,G5 is related
to the ratio P=M (using the careful analysis of [35]) by
G5 � 8�3P4=81M4. Using (4.9) we obtain that the energy
density E and the pressure P are given in terms of our
parameters by
 

E � hTtti �
1

8�G5

�
3

2
a2

0 �
6

7
a0a2;0

�
;

P � hTxixii �
1

8�G5

�
1

2
a2

0 �
6

7
a0a2;0

�
:

(4.10)

Since we do not have any chemical potentials, the free
energy density F is

 F � �P �
1

8�G5

�
6

7
a0a2;0 �

1

2
a2

0

�
: (4.11)

The expectation values of the remaining two scalar opera-
tors which have dimension 4 when P � 0 are (using their
normalization defined in [30])
 

hOK0
i �

24a0a2;0

7P2g0

;

hOp0
i � 2

a2
0g2;0

g2
0

�
12a0a2;0

7g0

�
1� ln

�
a2

0

2

��
:

(4.12)

Note that in general curved backgrounds there was an
ambiguity in some of the one-point correlation functions

computed in [30], but there is no such ambiguity when the
asymptotic four dimensional metric is flat (as in our case).

C. Basic thermodynamic relation

The equations above tell us, using the asymptotic values
of the fields, that

 sT � E �F � E � P �
a2

0

4�G5
(4.13)

in the cascading background, where s is the entropy den-
sity. On the other hand, we can also compute the entropy
density and temperature directly at the horizon in terms of
the horizon parameters fhh0 ; a

h
0 ; b

h
0 ; k

h
0 ; g

h
0 ; a

h
1g:

 

s �
�ah0�

1=2�bh0�
2�hh0�

1=2

4G5
;

T �
1

4�hh0b
h
0

�����������������������������������������
2�8hh0�a

h
0�

2 � gh0P
2�

ah0 � 2ah1

vuut :

(4.14)

At first sight the previous two equations seem to give a
nontrivial relation between some of our UV parameters and
some of the IR parameters related to the expansion near the
horizon. However, it turns out that sT is a renormalization
group flow invariant in supergravity black brane geome-
tries without a chemical potential [36,37], so this relation is
trivially satisfied in any solution of our equations of
motion.

To simplify notations we rewrite the metric (2.4) as
 

ds2
10 � �c

2
1dt

2 � c2
2�dx

2
1 � dx

2
2 � dx

3
3� � c

2
3�dx�

2

� c2
4�e

2
 � � c

2
5

X2

a�1

�e2
�a
� e2

�a
�; (4.15)

where ci � ci�x� can be identified by comparing (2.4) and
(4.15). Now, from the relation between components of the
Ricci tensor

 Rx1

x1 � Rt
t; (4.16)

we have a constraint9

 

c4
2c4c4

5

c3

�
c1

c2

�
0
� const: (4.17)

Evaluating the left-hand side of (4.17) near the horizon,
using the standard relations between the area of the horizon
and the entropy and between the surface gravity of the
horizon and the temperature, we have

 lim
x!1�

c4
2c4c

4
5

c3

��������
�
c1

c2

�
0
��������� 8�G5sT: (4.18)

On the other hand, evaluating the left-hand side of (4.17)

9Equation (4.17) can also be directly derived from (2.8), (2.9),
(2.10), (2.11), and (2.12).
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near the boundary and using the asymptotic solution (3.1)
we find

 lim
x!0�

c4
2c4c4

5

c3

��������
�
c1

c2

�
0
��������� lim

x!0�

h1=4f1=2
2 f2

3

�2x� x2�G1=2
xx

� 2a2
0:

(4.19)

Thus, our Eq. (4.13) follows in a straightforward way from
the equations of motion.

V. NUMERICAL PROCEDURE

A. Reducing the number of parameters

Before we begin the numerical solution of the equations,
we can use the symmetries of the problem to get rid of
some of our parameters. First, as mentioned above, the
parameters h0;0 and a0 are not scale invariant, but only the
combination h0;0a2

0, which is a function of the temperature
divided by the dynamical scale. We will choose as our
parameter which is related to the dimensionless tempera-
ture the combination ks defined by

 P2g0ks � 4h0;0a2
0 �

1
2P

2g0: (5.1)

Equation (4.5) now tells us that �ks � ln�a2
0=2�=2	 is inde-

pendent of the temperature (it depends only on the dynami-
cal scale of the cascading theory). Thus, we can choose to
define the scale � of this theory by a relation of the form

 ks �
1

2
ln
�
a2

0

�4

�
�

1

2
ln
�
4�G5sT

�4

�
: (5.2)

Using the expressions for the high temperature entropy
density of the theory computed in [10,11], we see that at
high temperatures ks ’ �1=2� ln�T4=�4�, with corrections
scaling as ln�ln�T=���. We will use ks instead of the
temperature as our basic dimensionless parameter, and
use (5.2) to translate between ks and T=�.

Having understood this relation, we can now use the
scaling symmetry (4.1) to set a0 � 1, or, equivalently, use
the fact that the solution to the equations of motion de-
pends on the 7 UV parameters fg0; h0;0; a0; a2;0; g2;0;
a3;0; a4;0g that we used in our expansion only through the
six invariant combinations

 

�
g0; ks; â2;0 �

a2;0

a0
; â3;0 �

a3;0

a0
; â4;0 �

a4;0

a0
; g2;0

�
: (5.3)

Recall also that we are solving the theory in the super-
gravity approximation, which includes only the leading
order terms both in the gs expansion and in the curvature
(	0) expansion. When we neglect gs corrections, the action
(and the equations of motion we wrote) does not depend
separately on P2 and g but only on the combination P2g.
We can thus set g0 � 1, and recall that whenever we have a
factor of P2 we really mean P2g0. Furthermore, when we
neglect 	0 corrections, the action is multiplied by a con-
stant when we rescale the ten dimensional metric by a

constant factor (and rescale the p forms accordingly), so
that the equations of motion are left invariant; this trans-
formation acts on our variables as
 

h! ��2h; f2;3 ! �2f2;3; K ! �2K; g! g;

(5.4)

and it changes P by P! �P. We can use this transforma-
tion to relate the solutions for different values of P (as long
as we are in the supergravity approximation). Thus, we will
perform the numerical analysis for P � 1, and we can use
(5.4) to obtain the solutions for any other value of P.

As a test of our numerics, we can check if it reproduces
the solution at high temperatures which can be computed
perturbatively (as was done at leading order in [10], and at
higher orders in the Appendix). This computation implies
that the correct solution should obey at large ks (A35)–
(A38):
 

â2;0 �
7

12

1

ks
�

7

24
ln�2�

1

k2
s
�O�k�3

s �;

â3;0 �
4

5
��2	3

1

ks
�

��
2

15
�

2

5
ln�2�

�
��2	3 �

4

5
��4	3

�
1

k2
s

�O�k�3
s �;

â4;0 �

�
ln�2�

30
�

1021

1800

�
1

ks
�

�
167809

108000
�
�ln�2��2

360

�
781

1200
ln�2����4	4

�
1

k2
s
�O�k�3

s �;

g2;0 �

�
�

1

2
�

1

2
ln�2�

�
1

ks
�

�
1

4
ln�2��

1

4
�ln�2��2� 
 �4	2

�
1

k2
s

�O�k�3
s �; (5.5)

where the values of the various constants appear in the
Appendix, and we used the high-temperature relation be-
tween the value of K at the horizon, which we denote by
K?, and our dimensionless parameter ks:

 K? � P2ĝ0�ks �
1
2 ln�2� �O�k�1

s ��: (5.6)

B. Our numerical method

As described above, for a given value of the temperature
(or of ks) we have four parameters controlling the behavior
of our solutions near the UV. What we need to do is to find
for which value of these four parameters the solution is
regular near the horizon, and this will determine the correct
vacuum expectation values for this value of the tempera-
ture. The most naive way to proceed would be to go over all
possible values of these parameters, use these values to
determine the solution near the boundary, integrate the
equations of motion up to x � 1, and see if the solution
there is regular or not. Unfortunately, we cannot integrate
the equations analytically but only numerically, and when
we integrate the equations near the horizon, numerical
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errors always generate modes that blow up at the horizon,
so we cannot really obtain solutions that are regular at the
horizon in this way.

One alternative might be to perform the integration in
the opposite direction—start from a general solution near
the horizon, integrate the equations to the boundary, and
see for which values of our near-horizon parameters we
find a regular solution at the boundary (with the correct KT
asymptotics). However, this suffers from the same prob-
lem, that numerical errors generate modes that grow near
the boundary.

Thus, we are led to a procedure where we integrate the
equations both from the boundary and from the horizon
towards the middle of the interval x � 0:5, and attempt to
match a solution that we get by integrating from the
boundary with a solution that we get by integrating from
the horizon. After setting g0 � 1, for a given value of ks,
the UV behavior (3.1) is determined by 4 parameters
(related to operator VEVs) (5.3)

 fâ2;0; â3;0; â4;0; g2;0g: (5.7)

The IR behavior (3.19) is determined by 6 horizon parame-
ters

 fhh0 ; a
h
0 ; a

h
1 ; b

h
0 ; k

h
0 ; g

h
0g: (5.8)

Matching a UV solution and an IR solution to (2.8), (2.9),
(2.10), (2.11), and (2.12) at x � 0:5 implies 10 constraints
(5 for matching the values of the functions, and 5 for
matching their derivative). Notice that we have precisely
the same number of constraints as necessary to uniquely
determine all the UVand IR parameters [(5.7) and (5.8)] for
a given value of ks.

Since both the boundary x � 0 and the horizon x � 1
are singular points of the differential equations (2.8), (2.9),
(2.10), (2.11), and (2.12), we integrate the differential
equations (2.8), (2.9), (2.10), (2.11), and (2.12) from x �
0:01 (for the boundary integration) and from y � 0:01 (for
the horizon integration). In the former case the initial
conditions are specified by the asymptotic expansion
(3.1) which we developed to order x9=2 (inclusive); in the
case of the horizon integration the initial conditions are
specified by the asymptotic expansion (3.19) to order y10

(inclusive). The coefficients of these asymptotic expan-
sions generalize the results presented in Sec. III, and are
available from the authors upon request. The mismatch
between the boundary and the horizon integrations is en-
coded in the ‘‘mismatch vector’’ ~vmismatch, defined by
 

~vmismatch � �hb � hh; h
0
b � h

0
h; f2;b � f2;h; f

0
2;b � f

0
2;h; f3;b

� f3;h; f03;b � f
0
3;h; Kb � Kh;K

0
b

� K0h; gb � gh; g
0
b � g

0
h�jx�y�0:5; (5.9)

where the subscripts h or b correspond to functions
fh; f2; f3; K; gg integrated from the horizon or boundary,
respectively, and the prime denotes derivatives with respect

to x or y. The UV parameters (5.7) and the IR parameters
(5.8) are tuned to ensure that

 k ~vmismatchk< 10�5: (5.10)

An illustration of the integration as a function of the UV
and IR parameters is presented in Fig. 1.

We performed the numerical integration using
WOLFRAM MATHEMATICA 6© with 40 digit precision, to
ensure sensitivity to the irrelevant operator parameters â3;0

and â4;0.

C. Numerical results

We present the numerical results for the UV (5.7) and the
IR (5.8) parameters as a function of ks in two regimes10:

(i) for large values of ks, where we can check our
numerical results against the perturbative analytic
predictions (5.5);

(ii) for an interval of small values of ks that includes the
first order transition point to a confined thermal
cascading background with broken chiral symmetry
(as we will discuss in the next section).

1. Large values of ks
Figures 2 and 3 present the dependence of the UV

parameters fâ2;0; â3;0; â4;0; g2;0g on ks 2 �4:29; 24:0�, with
a step of �ks � 0:01 (blue points). In this regime the
typical norm of the mismatch vector (5.9) jj ~vmismatchjj 

10�10 or less. The dashed (red) curves and the dotted

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.3

0.5

0.6

0.7

0.8

h

FIG. 1 (color online). Mismatch of hb�x� (for x < 0:5) and
hh�y � 1� x� (for x > 0:5) for different values of the parame-
ters, for ks � 0:4. The solid (blue) curves correspond to ‘‘cor-
rect’’ values of the parameters (5.7) and (5.8), with
jj ~vmismatchjj � 9� 10�6. The dotted (green) curves correspond-
ing to all values of parameters 10% larger than the correct ones,
produce jj ~vmismatchjj � 3� 10�1. The dashed (red) curves cor-
respond to all values of parameters 20% smaller than the correct
ones, giving jj ~vmismatchjj � 8� 10�1.

10The IR parameters are presented only for small values of ks.
Additional data are available from the authors upon request.

OFER AHARONY, ALEX BUCHEL, AND PATRICK KERNER PHYSICAL REVIEW D 76, 086005 (2007)

086005-12



(green) curves represent the perturbative O�k�1
s � and

O�k�2
s � asymptotics (5.9), respectively. Note that the dotted

(green) curves track our numerical data quite well in this
regime.11

2. Small values of ks
Figures 4–8 present the dependence of the UV

fâ2;0; â3;0; â4;0; g2;0g and the IR fah0 ; a
h
1 ; b

h
0 ; g

h
0 ; k

h
0 ; h

h
0g pa-

rameters on ks 2 �0:25; 0:48� with a step of �ks � 0:01
(�ks � 0:005 near the transition) (blue points). In this
regime the typical norm of the mismatch vector (5.9)
jj ~vmismatchjj 
 10�5 or less. A highly nontrivial check on
our numerics is the consistency of the holographic flow
invariant sT. The latter can be computed in the IR using

(4.14), or in the UV using (4.13). We find that

 

��������
sTjIR
sTjUV

� 1

��������
10�5 (5.11)

or less, which provides an independent check on the accu-
racy of matching the IR and UV solutions (5.9).

The special (red) point in Fig. 4 denotes a critical value
of ks � kcritical, for which the corresponding value of the
parameter â2;0 � â2;0�kcritical� �

7
12 leads to a vanishing of

the free energy density (4.11). We find kcritical by perform-
ing a linear fit of the first 5 numerical points:

 kcritical � 0:257 12�1�: (5.12)

Our available numerical data shows that the free energy
density (4.11)

 F �
3a2

0

28�G5

�
â2;0 �

7

12

�
(5.13)
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− 0.01

0.00

ks

2,0

FIG. 3 (color online). Values of the UV parameters â4;0 and g2;0 as a function of ks (blue points). The dashed (dotted) red (green)
curves represent the perturbative O�k�1

s �=O�k�2
s � asymptotics of the parameters, given by (5.5).

10 15 20

0.02

0.06

0.08

0.10

0.12

0.14

ks

2,0

10 15 20

− 0.20

− 0.15

− 0.10

− 0.05

ks

3,0

FIG. 2 (color online). Values of the UV parameters â2;0 and â3;0 as a function of ks (blue points). The dashed (dotted) red (green)
curves represent the perturbative O�k�1

s �=O�k
�2
s � asymptotics of the parameters, given by (5.5).

11In the Appendix we confirm using the perturbative high-
temperature expansion that the cascading geometry thermody-
namics satisfies the first law of thermodynamics up to order
O�k�3

s �.
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is negative when ks > kcritical and is positive when ks <
kcritical, so we find that at temperatures lower than ks �
kcritical the black hole solutions are not thermodynamically
preferred over the gas of particles in the background of [9].
Thus, if we assume that these are the only two possible
configurations, kcritical gives a critical temperature corre-
sponding to a first order confinement transition, with chiral

symmetry breaking, in the gravitational dual to the cascad-
ing gauge theory. Examination of the infrared parameters
in Figs. 6–8 shows that the geometry at this transition is
nonsingular (as expected for a first order transition), and
can be made arbitrarily weakly curved for large values of
P, justifying the validity of the supergravity approxima-
tion. This observation is the main result of our paper.
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FIG. 5 (color online). The values of the UV parameters â4;0 and g2;0 as a function of ks.
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FIG. 4 (color online). The values of the UV parameters â2;0 and â3;0 as a function of ks.
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FIG. 6 (color online). The values of the IR parameters ah0 and ah1 as a function of ks.

OFER AHARONY, ALEX BUCHEL, AND PATRICK KERNER PHYSICAL REVIEW D 76, 086005 (2007)

086005-14



VI. PHYSICAL RESULTS OBTAINED FROM OUR
NUMERICAL SOLUTIONS

In this final section we translate the results of the pre-
vious section into physical quantities in the theory as a
function of the temperature. We present all the results as a
function of T=�, where the temperature T is given by
(4.14), and the scale � enters through the temperature
dependence of ks. Recall that the numerical results pre-
sented in Sec. V were obtained when setting P � g0 � 1
and a0 � 1. It is easy to restore the correct powers of P
using the scaling symmetry (5.4), and to then put a factor of
g0 � ĝ0 together with every factor of P2. In order to relax
the a0 � 1 condition, all the dimensionful quantities must
be computed in units of [see (5.2)]

 � � e�ks=2: (6.1)

In particular, from (4.14) we have

 

T
�
�

eks=2

4�hh0b
h
0

������������������������������������
2�8hh0�a

h
0�

2 � gh0�

ah0 � 2ah1

vuut ; (6.2)

enabling us to translate the dependence on ks into a de-
pendence on the temperature.

Equations (4.10) and (4.11) imply that the simplest ex-
pressions arise for the free energy density and the energy
density divided by sT, which are given by

 

F

sT
�

3

7

�
â2;0 �

7

12

�
;

E

sT
�

3

4

�
1�

4

7
â2;0

�
: (6.3)

Equations (5.2) and (4.14) allow us to compute the entropy
density divided by the temperature cubed, which is a
measure of the number of degrees of freedom in the theory:

 

4�G5

P4ĝ2
0

s

T3 �
32�4sT

81M4ĝ2
0T

4 �
32�4sT

81M4ĝ2
0�4

�
�

T

�
4

�

�
1

4�hh0b
h
0

������������������������������������
2�8hh0�a

h
0�

2 � gh0�

ah0 � 2ah1

vuut �
�4
: (6.4)

Notice that at high temperatures we can use the perturba-
tive expression (A42) of the Appendix and (4.13) to deter-
mine
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FIG. 7 (color online). The values of the IR parameters bh0 and gh0 as a function of ks.
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FIG. 8 (color online). The values of the IR parameters kh0 and hh0 as a function of ks.
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s

T3 �
sT

T4 �
a2

0

4�G5T
4 �

�4K2
?

64�G5

�
1�O

�
P2ĝ0

K?

��

’
81

128
M4ĝ2

0ln2

�
T
�

�
: (6.5)

Finally, we can evaluate the vacuum expectation values of
the two dimension 4 scalar operators (4.12):

 

hOK0
i

�4 �
24

7

e2ks

P2ĝ0

â2;0;

hOp0
i

�4 � e2ks

�
2
g2;0

ĝ2
0

�
12�1� ln�2� � 2ks�

7ĝ0
â2;0

�
:

(6.6)

Figure 9 presents ln�T�� as a function of ks at low and
high temperatures. This is useful to determine the tempera-
ture dependence of the various UV and IR parameters
presented in Figs. 2–8. Notice that the high temperature
dependence of ks is in a good agreement with the high
temperature asymptotic analysis of the Appendix. Indeed,
a straight line fit of the points in the plot on the right

determines the slope to be 0.46(3), while the ks ! 1 slope
is expected to be 1

2 (A40).
Figure 10 presents F

sT as a function of T
� at low and high

temperatures. Using a straight line fit of the first 6 points in
the (left) free energy density plot, we determine the de-
confinement and chiral symmetry restoration temperature
to be

 

�
T
�

�
critical

� 0:614 111�3�; (6.7)

by requiring that the free energy density vanishes at T �
Tcritical. Notice that there are noticeably large deviations
from scale invariant thermodynamics even for rather large
temperatures. Indeed, for T

�
 10, the deviation of F
sT from

the conformal result

 

F

sT

��������conformal
� �

1

4
(6.8)

is about 12%.
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FIG. 9 (color online). The relation between ks and the temperature T.
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FIG. 10 (color online). The free energy density F , divided by sT, as a function of T� . On the left we plot temperatures at and slightly
above the deconfinement transition, and on the right much higher temperatures.
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Figure 11 presents E
sT as a function of T

� at low and high
temperatures. Here, the deviation at high temperature from
the conformal result

 

E

sT

��������conformal
�

3

4
(6.9)

is three times less than the corresponding deviation in the
free energy density (or pressure). Such a suppression is
easy to understand once we notice from (6.3) that

 

F

sT
� �1� �� �

F

sT

��������conformal
;

E

sT
�

�
1�

1

3
�
�
�

E

sT

��������conformal
;

(6.10)

where � � 12
7 â2;0. Note that the lattice results for QCD also

imply that the energy density of the QCD plasma near the
deconfinement transition is much more similar to that of
scale-invariant thermodynamics than the QCD pressure
[38].

Figure 12 presents the temperature dependence of the
effective number of degrees of freedom of the strongly
coupled cascading gauge theory at low and high tempera-
tures, as defined by N2

eff / s=T
3. One way to characterize

the phase transition temperature is by the effective number
of degrees of freedom (in the deconfined phase) at this
temperature. Using the straight line fit of the first 6 points
in the (left) effective number of degrees of freedom plot,
we find that at the deconfinement and chiral symmetry
restoration temperature (6.7)

 

32�4

81M4ĝ2
0

s

T3

��������T�Tcritical

� 3:4291�5�: (6.11)

Figure 13 presents the temperature dependence of the
vacuum expectation values of the dimension 4 operators
hOK0

i and hOp0
i [see (6.6)] at low temperatures. At high

temperatures we can use the perturbative expressions
(A35), (A38), and (A42) of the Appendix to determine
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FIG. 12 (color online). The temperature dependence of the effective number of degrees of freedom in the strongly coupled cascading
gauge theory, as defined by N2

eff / s=T
3.
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FIG. 11 (color online). The energy density E, divided by sT, as a function of T
� .
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 P�2ĝ�1
0

hOK0
i

�4 /

�
T
�

�
4

ln
�
T
�

�
;

P�4ĝ�1
0

hOp0
i

�4 /

�
T
�

�
4
ln2

�
T
�

�
:

(6.12)
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APPENDIX: PERTURBATIVE EVALUATION OF
THE SOLUTIONS AT HIGH TEMPERATURE

In this Appendix we analyze the high temperature ther-
modynamics of the cascading gauge theory perturbatively
in P2ĝ0=K?, where

 K? � P2ĝ0�ks �
1
2 ln�2� �O�k�1

s �� (A1)

is the five-form flux evaluated at the horizon, and ks is
defined by (5.1).

The purpose of this perturbative analysis is twofold:
first, we would like to test our asymptotic identification
of the cascading geometry parameters (4.5), of the tem-
perature and of the dynamical scale �, against the first law
of thermodynamics; second, we would like to obtain ana-
lytic predictions for the high-temperature values of the UV
(5.7) and the IR parameters (5.8) perturbatively in
P2ĝ0=K?, in order to benchmark our general numerical
analysis. We will test the first law of thermodynamics to
order O�P6ĝ3

0=K
3
?� inclusive, and evaluate the UV parame-

ters (5.7) to order O�P4ĝ2
0=K

2
?� inclusive.

The Appendix is organized as follows. In Sec. A 1 we
derive the perturbative equations of motion to order
O�P6ĝ3

0=K
3
?� inclusive. In Sec. A 2 we present the near

horizon and the near boundary expansions of the solutions,
outline our numerical method for the computation of the
UV/IR parameters of the perturbative solutions, and collect
numerical expressions for some of these parameters. In
Sec. A 3 we present perturbative expressions for the ther-
modynamics of the deconfined cascading gauge theory,
and verify the first law of thermodynamics.

1. Perturbative equations of motion

As discussed above, without loss of generality we can
set g0 � ĝ0 � 1. We use the following parametrization for
the solution in perturbation theory in P2

K?
:

 h�x� �
K?
4~a2

0

�
K?
~a2

0

X3

n�1

��
P2

K?

�
n
�
�2n�x� �

5

4
�2n�x�

��

�
K?
~a2

0

O

�
P8

K4
?

�
; (A2)

 f2�x� � ~a0 � ~a0

X3

n�1

��
P2

K?

�
n
�
�2�2n�x� � �2n�x�

�
4

5
�2n�x�

��
� ~a0O

�
P8

K4
?

�
; (A3)
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FIG. 13 (color online). The temperature dependence of the vacuum expectation values of the dimension 4 operators hOK0
i and hOp0

i.
The operators are normalized such that they are invariant under the scaling transformation (5.4).
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 f3�x� � ~a0 � ~a0

X3

n�1

��
P2

K?

�
n
�
�2�2n�x� � �2n�x�

�
1

5
�2n�x�

��
� ~a0O

�
P8

K4
?

�
; (A4)

 K�x� � K? � K?
X3

n�1

��
P2

K?

�
n
�2n�x�

�
� K?O

�
P8

K4
?

�
; (A5)

 g�x� � 1�
X3

n�1

��
P2

K?

�
n

2n�x�

�
�O

�
P8

K4
?

�
: (A6)

The advantage of this parametrization is that the equa-
tions for f�2n; �2n; �2n; 
2ng decouple, once the (de-
coupled) equation for �2n is solved, at each order
(n � 1; 2; 3) in perturbation theory. We find (for n �
1; 2; 3)

 0 � �002n �
�02n
x� 1

� J �2n	� ; (A7)

 

0 � �002n �
�02n
x� 1

�
8�2n

x2�x� 2�2
�

2

5
�02�

0
2n �

8�2n

3x2�x� 2�2

� J �2n	� ; (A8)

 0 � �002n �
�3x2 � 6x� 4��02n
x�x� 1��x� 2�

�
2

3
�02�

0
2n � J �2n	� ; (A9)

 0 � �002n �
�02n
x� 1

�
3�2n

x2�x� 2�2
� 2�02�

0
2n � J �2n	� ;

(A10)

 0 � 
 002n �

 02n
x� 1

� 2�02�
0
2n � J �2n	
 ; (A11)

where the source terms fJ �2n	� ;J �2n	� ;J �2n	� ;J �2n	� ;J �2n	
 g

are functionals of the lower order solutions: �2m, �2m,
�2m, �2m, 
2m, with m< n. Explicit expressions for the
source term functionals are available from the authors upon
request.

The perturbative solutions to (A7)–(A11) must be regu-
lar at the horizon, and must have the appropriate KT
asymptotics (3.1) near the boundary.

The leading order (n � 1) solution to (A7)–(A11) was
obtained in [10]:

 �2 � �
1
2 ln�2x� x2�; (A12)

 

�2 �
�x2 � 2x� 2�

20�2x� x2�

�
dilog�2x� x2� �

1

6
�2

�
�

1

15

�
ln�2x� x2�

15
; (A13)

 �2 �
1

12
ln�2x� x2�; (A14)

 


2 �
�2

24
�

1

2
dilog�1� x� �

1

2
dilog�2� x�

�
1

2
ln�x� ln�1� x�: (A15)

There is no simple expression for �2 —it is straightforward
to write an appropriate solution using Green’s function for
(A10), but this explicit expression is not useful.

Similarly, although the higher order n � 2; 3 solutions
to (A7)–(A11) could be presented in quadratures, these
expressions are not useful. Rather, we identify the higher
order solutions by specifying their asymptotic expressions
near the horizon and near the boundary, along with the
numerical values for the relevant integration constants.

2. UV/IR asymptotics of the perturbative solutions

The UV/IR parameters of the higher order perturbative
solutions are found by solving the differential equations
(A7)–(A11) numerically from the boundary (x � 0), and
requiring the proper boundary conditions at the horizon,
which are
 

lim
x!1�

�02n � lim
x!1�

�02n � lim
x!1�

�02n � lim
x!1�

�02n � lim
x!1�


 02n � 0;

n � 2; 3: (A16)

To begin, we present the asymptotics of �2. As x! 0�
we find

 �2 �
2

3
x� ��2	3 x

3=2 �
11

15
x2 �

3

4
��2	3 x

5=2 �
176

315
x3

�
9

16
��2	3 x

7=2 �
676

1575
x4 �

7

16
��2	3 x

9=2 �O�x5�;

(A17)

where ��2	3 is related to the condensate of the dimension 6
operator at order O�P

2

K?
�. Nonsingularity of the �2�x� solu-

tion to (A10) at the horizon, together with

 lim
x!1�

�02 � 0;

determines

 ��2	3 � �0:872 358 024�9�: (A18)

Near the horizon, as y � 1� x! 0�, we find
 

�2 � �h2;0�
�
�

1

4
�

3

4
�h2;0

�
y2�

�
33

64
�h2;0�

7

64

�
y4

�

�
107

256
�h2;0�

181

2304

�
y6�

�
�

3181

49152
�

5913

16384
�h2;0

�
y8

�O�y10�; (A19)

where �h2;0 can be determined numerically to be

 �h2;0 � 0:168 06�9�: (A20)
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a. Order n � 2 asymptotics

(i) As x! 0� we find
 

�4 �

�
��4	2 �

1

2
ln�x�

�
x�

2

15
��2	3 x

3=2

�

�
�

106

225
�

7

30
ln�2� �

1

2
��4	2 �

1

60
ln�x�

�
x2

�
1

50
��2	3 x

5=2 �O�x3�; (A21)

 

�4 �

�
�

1

12
�

1

18
ln�2� �

1

18
ln�x�

�

�

�
13

360
�

1

30
ln�2� �

7

30
��4	2 �

1

12
ln�x�

�
x

�
4

225
��2	3 x

3=2 �

�
��4	4 �

�
7

360
�

1

36
ln�2�

�
1

15
��4	2

�
ln�x� �

11

360
ln2�x�

�
x2

�
97

1575
��2	3 x

5=2 �O�x3�; (A22)

 

�4 �
1

36
ln�x��

�
�

1

6
��4	2 �

11

144
�

1

24
ln�2�

�
1

24
ln�x�

�
x�

2

225
��2	3 x

3=2

�

�
�

191

43 200
�

1

36
��4	2 �

1

80
ln�2��

1

144
ln2�2�

�

�
19

720
�

1

72
ln�2�

�
ln�x��

1

144
ln2�x�

�
x2

�
229

3150
��2	3 x

5=2�O�x3�; (A23)

 

�4 �

�
�

14

9
�

4

3
��4	2 �

2

3
ln�2�

�
x� ��4	3 x

3=2

�

�
67

450
�

22

15
��4	2 �

1

3
ln�2� �

2

5
ln�x�

�
x2

�

�
4

5
��2	3 �

3

4
��4	3

�
x5=2 �O�x3�; (A24)

 


4 �

�

 �4	2 �

�
�

13

12
� ��4	2 �

1

2
ln�2�

�
ln�x�

�
x

�

�
�

13

24
�

1

2

 �4	2 �

1

8
ln2�2� �

�
�

13

24
�

1

2
��4	2

�
1

2
ln�2�

�
ln�x� �

1

8
ln2�x�

�
x2

�
4

75
��2	3 x

5=2 �O�x3�; (A25)

where the new UV parameters f��4	2 ; �
�4	
4 ; �

�4	
3 ; 


�4	
2 g

are determined numerically from the horizon bound-
ary condition (A16):

 ��4	2 jnumeric � 0:736 759 74�3�; (A26)

and

 

��4	4 jnumeric � 0:005 342 155 6�6�;

��4	3 jnumeric � �1:115 630 010 0�2�;


 �4	2 jnumeric � 0:622 262 593�4�:

(A27)

With (A26) and (A27) there are no additional UV
parameters to tune in order to enforce the horizon
boundary condition (A16) for �4. We find

 �04�x � 0:999 99�jnumeric 
 10�6; (A28)

which is of the same order of magnitude as the error
in (A16) for all other functions.

(ii) The asymptotic expressions of the n � 2 solutions
near the horizon y � 1� x! 0� take the form

 

�4 � �h4;0 � �
h
4;2y

2 � �h4;4y
4 �O�y6�;

�4 � �h4;0 � �
h
4;2y

2 � �h4;4y
4 �O�y6�;

�4 � �h4;0 � �
h
4;2y

2 � �h4;4y
4 �O�y6�;

�4 � �h4;0 � �
h
4;2y

2 � �h4;4y
4 �O�y6�;


4 � 
h4;0 � 

h
4;2y

2 � 
h4;4y
4 �O�y6�:

(A29)

To verify the first law of thermodynamics to order
O� P

6

K?3� we will need the numerical expressions only
for f�h4;0; �

h
4;0; �

h
4;2g. We find

 �h4;0jnumeric � 0:622 26�3�; (A30)

and

 �h4;0jnumeric � �0:079 819�3�;

�h4;2jnumeric � 0:019 198�8�:
(A31)

b. Order n � 3 asymptotics

To verify the first law of thermodynamics to order
O� P

6

K?3� we will need the asymptotic expression for �6

only. We find
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1
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7
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ln2�x�

�
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�

�
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10 500
��2	3 �

4

25
��2	3 �

�4	
2 �

1

50
��4	3 �

2

25
��2	3 ln�x�

�
x5=2 �O�x3� (A32)

as x! 0�, with

 ��6	2 � �0:622 262 59�3� (A33)

determined from the horizon boundary condition (A16).

c. Perturbative expressions for UV parameters (3.1)

Finally, we collect perturbative expressions for the vari-
ous independent UV parameters a2;0, a3;0, a4;0, g2;0 as
defined by (3.1). Because of the scaling symmetry (4.1) it
is convenient to quote these parameters relative to a0. Also,
in the next subsection we show that the first law of ther-
modynamics requires that

 ��4	2 �
13

12
�

1

2
ln�2�: (A34)

Note that (A34) agrees with (A26) up to an error of order
10�10. In the following expressions for the UV parameters
in (3.1) we use the analytic expression (A34).

We find

 

a2;0

a0
�

7

12

P2

K?
�O

�
P6

K3
?

�
; (A35)

 

a3;0

a0
�

4

5
��2	3

P2
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�
4

5
��4	3 �

2

15
��2	3

�
P4

K2
?
�O

�
P6

K3
?

�
;

(A36)

 

a4;0

a0
�

�
1

30
ln�2� �

1021

1800

�
P2

K?

�

�
��4	4 �

661

1800
ln�2� �

1

72
�ln�2��2 �

167 809

108 000

�
P4

K2
?

�O

�
P6

K3
?

�
; (A37)

 g2;0 �

�
�

1

2
�

1

2
ln�2�

�
P2

K?
� 
 �4	2

P4

K2
?
�O

�
P6

K3
?

�
: (A38)

3. Perturbative thermodynamics of the nonextremal
cascading geometry

One of the interesting properties of the deconfined cas-
cading geometry is the temperature dependence of the five-
form flux evaluated at the horizon K? � K?�T�. The need
for such dependence was first pointed out in [10]; it stems
from the fact that when studying the thermodynamics of

nonconformal gauge theories (such as the cascading gauge
theory) one must keep the intrinsic scale of the cascading
gauge theory fixed,12 rather than keeping fixed the five-
form at the horizon.

The fact that K? is temperature dependent introduces
additional temperature dependence into the thermody-
namic potentials [the free energy density F (4.11), the
energy density E (4.10), and the entropy density s (4.14)]
via the UV parameters a0 and a2;0, both of which depend
on K?. As a result, the first law of thermodynamics

 dF � �sdT (A39)

would not be valid, unless the temperature dependence of
K? is properly determined and taken into account. One
possible approach is to use the first law of thermodynamics
(A39) as a way to determine K?�T�. Such an approach was
proposed and implemented in [30] to leading order in
O�P

2

K?
�, where it was found that validity of (A39) requires

that

 

dK?�T�
dT

�
2P2

T
�O

�
P4

K?

�
(A40)

(this was also proposed in [10], based on the requirement
of keeping the glueball spectrum scale of the cascading
gauge theory fixed). Equation (A40) was also shown to be
required for the consistency of the hydrodynamics of the
cascading gauge theory plasma in [18].

The main observation of this paper is that one can
rigorously determine the temperature dependence of K?
without referring to the first law of thermodynamics. In the
bulk of the paper this was implicitly done in our solutions.
In the context of the perturbative high-temperature expan-
sion, we can obtain such an identification perturbatively by
expanding the exact matching condition (4.5), enforcing
the fixed scale of the cascading gauge theory, perturba-
tively in P2

K?
. We will demonstrate here that this identifica-

tion is consistent with the first law of thermodynamics.
This provides a nontrivial consistency check on our
solutions.

In the rest of this subsection we present explicit expres-
sions for a0 as a function of the temperature T to order
O�P

4

K2
?
�. One can then use (A35) to compute the thermody-

namic potentials of the cascading black hole geometry. We

12This fact was not clearly taken into account in previous
numerical studies [13].
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present explicit perturbative expressions for dK?�T�
dT , and

verify the first law of thermodynamics to order O�P
6

K3
?
�.

a. Cascading black hole thermodynamics to order O�P
2

K?
�

Explicitly evaluating the temperature of the black hole
to order O�P

2

K?
� we find

 ~a 0 �
�2K?T

2

4

�
1�

2P2

3K?
�O

�
P4

K2
?

��
: (A41)

Using (A12)–(A15), we further determine

 a0 �
�2K?T

2

4

�
1�

P2

2K?
�O

�
P4

K2
?

��
: (A42)

The matching condition (4.5) then determines

 O

�
P4

K?

�
� 4ĥ0;0 � K? � P2

�
1

2
ln
�
�4T4K2

?

16

�
�

1

2

�
:

(A43)

Assuming that K? � K?�T� and differentiating (A43), we
find (A40).

b. Cascading black hole thermodynamics to order O�P
4

K2
?
�

We can evaluate the black hole temperature to order
O�P

4

K2
?
� by requiring that the Euclidean continuation of the

metric (2.4) does not have a conical singularity as y! 0�.
We find13

 

T �
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��
: (A44)

Solving for ~a0 from (A44), and reading off fa0; a2;0g in
(3.1) from (A2)–(A6), we find
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; (A45)
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7
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�
1�

P2

2K?
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��
: (A46)

Additionally we find [see (5.1)]

 P2ks � 4h0;0a2
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1

2
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�
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ln�2�
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K?
�O

�
P6

K3
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��
:

(A47)

We are now ready to verify the first law of thermody-
namics. The matching condition (4.5), to order O�P

4

K2
?
�, gives
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ln
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(A48)

which results in the following ordinary differential equa-
tion for K? � K?�T�:

 

dK?
dT

�
2P2

T

�
1�

P2

K?
�O

�
P4

K2
?

��
: (A49)

Now, given (A45) and (A46) we can evaluate the energy
density E and the pressure P . The first law of thermody-
namics (A39) leads to

 

dK?
dT

�
2P2

T

�
1�

P2

K?

�
ln�2� �
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6
� 2��4	2
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�O

�
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K2
?

��
:

(A50)

Consistency of (A49) and (A50) makes a prediction

 ��4	2 �
13

12
�

1

2
ln�2�: (A51)

As a highly nontrivial check on our numerical analysis of
the perturbative expansion, note that (A51) agrees with
(A26) to within a factor of order 10�10.

With (A51) we can also evaluate the speed of sound
squared
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c. First law of thermodynamics to order O�P
6

K3
?
�

For the temperature dependence ofK? to order O�P
6

K3
?
�we

can again find two expressions—one involving both the
UV parameters and the IR parameters, and the other one
parameter-independent. These parallel the expressions
(A49) and (A50):
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13We used from (A19) �h2;2 � ��
1
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3
4�

h
2;0�.
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where we used (A34). Consistency of (A53) and (A54)
leads to a prediction
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We can estimate the error in our solutions by comparing
the two sides of (A55). Using the explicit expressions for
the perturbative UV parameters (A27) and the perturbative
IR parameters (A30) and (A31), we find
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Finally, the speed of sound can be expressed either in
terms of the UV parameters or the IR parameters
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Consistency of (A57) and (A58) is guaranteed by (A55).

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
Int. J. Theor. Phys. 38, 1113 (1999).

[2] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.
Lett. B 428, 105 (1998).

[3] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and

Y. Oz, Phys. Rep. 323, 183 (2000).
[5] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[6] O. Aharony, J. Sonnenschein, and S. Yankielowicz, Ann.

Phys. (N.Y.) 322, 1420 (2007).
[7] I. R. Klebanov and N. A. Nekrasov, Nucl. Phys. B574, 263

(2000).
[8] I. R. Klebanov and A. A. Tseytlin, Nucl. Phys. B578, 123

(2000).
[9] I. R. Klebanov and M. J. Strassler, J. High Energy Phys. 08

(2000) 052.
[10] S. S. Gubser, C. P. Herzog, I. R. Klebanov, and A. A.

Tseytlin, J. High Energy Phys. 05 (2001) 028.
[11] A. Buchel, Nucl. Phys. B600, 219 (2001).
[12] M. Krasnitz, arXiv:hep-th/0011179.
[13] L. A. Pando Zayas and C. A. Terrero-Escalante, J. High

Energy Phys. 09 (2006) 051; M. Mahato, L. A. P. Zayas,
and C. A. Terrero-Escalante, arXiv:0707.2737.

[14] O. Aharony, J. High Energy Phys. 03 (2001) 012.
[15] I. R. Klebanov, P. Ouyang, and E. Witten, Phys. Rev. D 65,

105007 (2002).
[16] S. S. Gubser, C. P. Herzog, and I. R. Klebanov, J. High

Energy Phys. 09 (2004) 036.
[17] O. Aharony and A. Buchel (unpublished).
[18] A. Buchel, Phys. Rev. D 72, 106002 (2005).
[19] A. Buchel, Phys. Rev. D 74, 046006 (2006).
[20] E. Caceres and A. Guijosa, J. High Energy Phys. 12 (2006)

068.

[21] T. Sakai and J. Sonnenschein, J. High Energy Phys. 09
(2003) 047.

[22] P. Ouyang, Nucl. Phys. B699, 207 (2004).
[23] B. A. Burrington, J. T. Liu, L. A. Pando Zayas, and D.

Vaman, J. High Energy Phys. 02 (2005) 022.
[24] D. Arean, D. E. Crooks, and A. V. Ramallo, J. High Energy

Phys. 11 (2004) 035.
[25] S. Kuperstein, J. High Energy Phys. 03 (2005) 014.
[26] T. S. Levi and P. Ouyang, arXiv:hep-th/0506021.
[27] F. Benini, F. Canoura, S. Cremonesi, C. Nunez, and A. V.

Ramallo, arXiv:0706.1238.
[28] O. Aharony, in Proceedings of String Theory:

Achievements and Perspectives, Tel Aviv, Israel, 2007,
http://stringfest.tau.ac.il/aharony.pdf.

[29] M. J. Strassler, arXiv:hep-th/0505153.
[30] O. Aharony, A. Buchel, and A. Yarom, Phys. Rev. D 72,

066003 (2005).
[31] O. Aharony, A. Buchel, and A. Yarom, J. High Energy

Phys. 11 (2006) 069.
[32] A. Buchel, C. P. Herzog, I. R. Klebanov, L. A. Pando

Zayas, and A. A. Tseytlin, J. High Energy Phys. 04
(2001) 033.

[33] I. R. Klebanov and E. Witten, Nucl. Phys. B536, 199
(1998).

[34] A. Buchel and J. T. Liu, J. High Energy Phys. 11 (2003)
031.

[35] C. P. Herzog, I. R. Klebanov, and P. Ouyang, arXiv:hep-th/
0108101.

[36] A. Buchel and J. T. Liu, Phys. Rev. Lett. 93, 090602
(2004).

[37] A. Buchel, S. Deakin, P. Kerner, and J. T. Liu, arXiv:hep-
th/0701142.

[38] F. Karsch and E. Laermann, arXiv:hep-lat/0305025.

BLACK HOLE IN THE THROAT: THERMODYNAMICS OF . . . PHYSICAL REVIEW D 76, 086005 (2007)

086005-23


